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Comparative Presentation of Criteria for Adaptive
Finite-Element Mesh Generation in Multiconductor

Eddy-Current Problems
Dimitris P. Labridis, Member, IEEE

Abstract—Four local error estimators used for a posteriori
h-type adaptive finite-element mesh generation are presented and
compared in the solution of several steady-state multiconductor
eddy-current problems, encountered in electrical power transmis-
sion and distribution systems. The proposed technique combines
four different criteria with the concept of Delaunay triangulation to
provide finite-element triangular meshes, adaptive to the charac-
teristics of each problem. By refining the elements with the largest
errors and recomputing the solution iteratively, finite-element
meshes having a uniform error density are obtained. The problems
examined lead to quantitative results concerning the performance
of each estimator in the accuracy of the solution, in terms of both
convergencerateandqualityofelectromagnetic field lines.

Index Terms—Adaptive systems, eddy currents, finite-element
methods, multiconductor transmission lines.

I. INTRODUCTION

DEVELOPED first in the domain of structural analysis [1],
a posteriorierror estimation leading to an h-type adaptive

meshing turned out to be [2] an essential part of all finite-ele-
ment procedures used to solve electrostatic and magnetostatic
problems. Error estimators have been originally introduced in
the literature in conjunction with adaptive mesh methodologies
in [3]. The proposed methods fall into two basic categories:

• error estimators based on dual or complementary varia-
tional principles [3]–[5] and

• error estimators based on the requirement of equidistribu-
tion of various locally estimated norms and/or functions
[5]–[11].

The former approach requires, however, a second solution at
every step of the iterative procedure, by implementing an addi-
tional formulation for the complementary problem. In general,
procedures based on dual or complementary solutions are slow
and difficult to implement [8], especially for three-dimensional
(3–D) problems. Therefore, local error estimators seem to be in
general the best option.

The mesh optimization and, therefore, the quality assessment
of the solution depends on the choice of the suitable error
estimator. Due to the large number of proposed heuristic
estimators, a comparative evaluation of performance of adap-
tive meshing algorithms using different estimators is useful
[12]–[14], in order to choose the suitable estimator for a
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particular electromagnetic field problem. The correct choice
is further complicated by the fact that these estimators tend to
be problem-oriented. Examples of exclusive applications to
distinct electrical engineering areas are problems with saturable
ferromagnetic regions [15], analysis of microwave and optical
devices [16], inverse and forward biomagnetic problems [17],
dipole and quadruple magnets [18].

Application of error estimators exclusively to steady state
time harmonic quasi-static eddy-current problems have also
been recently reported [19]–[22]. The most significant differ-
ence with respect to the corresponding techniques developed
for magnetotstatics is that phasor quantities are involved in
modelling steady state, as a response to a time harmonic
excitation current. As a result, some error indicators do not
maintain a constant value during the period of the current. The
time variation of these estimators must therefore be taken into
account, in order to increase their reliability.

In this paper, an investigation on four differenta posteriori
error estimators has been performed, limited to triangular first-
order elements. Results have been analyzed and compared, in
the solution of several two–dimensional (2-D) multiconductor
eddy-current problems commonly encountered in power sys-
tems. Therefore, the 2-D formulation of [23], [24] has been
considered, in order to impose the known rms currents flowing
through each conductor. Another approach, suggested in [32],
[33], is directly extendable to three-dimensional (3-D) multi-
conductor eddy-current problems and it could be used in the
case of a 3-D generalization of the proposed estimators.

Numerical examples examined include overhead transmis-
sion lines, underground power cables, and substation busbars
under various loading conditions. In every example, character-
istic operational parameters are computed and compared to cor-
responding values obtained from analytical solutions. Useful
conclusions are obtained from this comparison and finally a
single local error estimator is proposed as being more suitable
for all the above mentioned problems.

II. I NTERELEMENT CONDITIONS

A. Global Boundary Relations

The well-known [23], [24] diffusion equation governing 2-D
multiconductor eddy-current problems in the complex domain
is

(1a)
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along with the necessary boundary conditions in the limitof
the solution region

(1b)

and

(1c)

where
the permeability of vacuum;
the relative permeability;
the -direction component of the uniformly distributed
source current density;
the rms current flowing through each conductor.

The unknowns in the systems of (1a) areand , the values
of at the limit of region are specified by the Dirichlet
condition (1b), and the total current density is specified by
the integral form (1c).

Multiconductor eddy-current problems encountered in power
systems always consist of many interconnected materials, and
therefore, it is required to satisfy the interface relations. These
are the continuity of the normal component of the flux density
vector and the continuity of the tangential components of the
magnetic field vector across the boundary between two dif-
ferent materials. In the 2-D formulation of the diffusion equation
(1a)–(1c) it is supposed that the only component of magnetic
vector potential (MVP) is in the direction, i.e.,

(2a)

where is a complex phasor, since the excitation current is
supposed to be harmonic. Using the definition of MVP, it can
be easily shown that

(2b)

(2c)

and

(2d)

where the flux density components and are also com-
plex phasors. However, the absolute value of the resultant flux
density at a point, given from (2b) and (2c), is obviously a com-
plex number butnot a phasor. This is the major difficulty of the
estimators encountered in eddy-current problems, as it will be
shown later.

In any case, the continuity of the normal component of the
flux density in terms of MVP may be written as

(3a)

and that of the tangential component of the magnetic field as

(3b)

Fig. 1. A typical triangular elemente and its neighborsf , q, andr.

across the boundary between materials one and two, having
magnetic permeabilities and , respectively.

B. Local Boundary Conditions in 2-D FEM Formulation

The application of boundary conditions in elementary level
will be defined with the help of Fig. 1. Elementand one of
its neighbors belong in the general case to two different ma-
terials, with properties characterised by the subscriptsand ,
respectively. Therefore, across their common sidethe inter-
face relations (3a) and (3b) must be verified.

Supposing for simplicity that first order finite elements are
used and knowing that their shape functions are always contin-
uous, the continuity relation of the normal component of the flux
density across is always preserved from the definition of the
MVP as the curl of flux density vector , i.e.,

(4a)
where is the length of . On the contrary, the continuity
relation of the tangential component of the magnetic field is a
natural condition and it is obtained only in a mean sense [25].
This means that an error is always introduced in the application
of (3b) across , and this error is only minimized (although
never vanishes) by a mesh having more and smaller elements in
that area. Therefore, the quantity given by

(4b)

is always nonzero and therefore it represents one of the most
frequently used local error estimators.

A last but important remark concerning (4b) is that is
always a complex number, but not a phasor. It is well known
that the locus of the absolute value of the resultant flux density,
defined in a 2-D problem in (2b) and (2c), is an ellipse in the

– plane. Moreover, since the field and physical properties of
the two neighbors and are dissimilar, the corresponding el-
lipses differ significantly not only in their major and minor axes,
but also in their orientation. Therefore, in order to estimate cor-
rectly the contribution of the local error introduced in (4b), the
actual time variation of every component of must be taken
into account. This will lead to instantaneous and real values of
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the error estimators, allowing greater flexibility in all necessary
comparisons.

III. ERRORESTIMATORS

Many error estimators have been proposed in the literature
[11], [19], [20]–[22], for the solution of eddy-current problems.
In this paper, four estimators are proposed and applied to the
solution of various power transmission and distribution multi-
conductor problems. The first two estimators are based on the
interelement conditions previously explained, while the other
two are based on the equidistribution of the stored magnetic en-
ergy.

A. Criterion #1: Weighted Discontinuity of the Instantaneous
Tangential Component

Considering the typical element, shown in Fig. 1 and as-
suming that is the unit vector in the direction of the common
side between and its neighbor , an error estimator
may be defined, according to (4b), as

(5)

Corresponding error estimators and may be defined for
the other two neighborsand of element . The discontinuity
of the two components is further weighted with the areaof
element , so that large elements obtain priority for refinement.
This usually leads [9] to an increase of convergence of the adap-
tive procedure.

However, when power system quasi-static eddy-current prob-
lems are solved using the 2-D formulation of (1a)–(1c), complex
quantities due to the harmonic current excitation are introduced.
As a consequence, of (5) will also be complex and not a
phasor, as explained earlier. To overcome this, the actual time
variation of the flux density will be considered here.

Assuming that only first order elements are employed in the
2-D finite-element method (FEM) analysis, constant complex
flux densities are obtained by (2b) within each element. Ac-
cording to the notation of Fig. 1, the estimator defined in (5)
becomes a complex number equal to

(6)

The and direction components of the constant elemen-
tary flux density may be written in terms of the rms values
and and phase angles and , respectively. The cor-
responding harmonic time variation of every component of the
elementary flux density will be

(7a)

(7b)

and the time variation of the magnitude of the elementary resul-
tant flux density

(7c)

A time sampling is used, by dividing the periodinto equal
intervals. Every time instantcorresponds to a time angle equal
to rads. Using this time angle, instantaneous values

of the magnitude of the elementary flux density are com-
puted at every time instant using (7c). Tangential instanta-
neous components , are then calculated in the common
side and a real and positive instantaneous estimator is de-
fined from (6) as

(8)

Real and positive estimators and similar to (8) may be
easily expressed for the other two neighborsand of element
. At every , a maximum elementary real error estimator is

computed as

(9)

By applying next a requirement of equidistribution of the
error, which in many other cases [6] has been shown to lead to
an optimal mesh, the mean value of all defined in (9) is
calculated at every time instant, for all triangles of the current
mesh. All triangles with are marked with a unitary
integer flag, where is a user defined integer parameter such
that . The above procedure continues for all time intervals

. In the end, every elementwill be assigned
a integer number equal to the sum of the correspondingin-
stantaneous integer flags, being therefore in the range– .

The previous procedure is easily incorporated in the adapta-
tion mechanism and has many advantages. First, it implies real
only arithmetic. The second is that it gives the user the oppor-
tunity to experiment with the optimum number of time inter-
vals, in order to accommodate time and memory resources of
the computer. Finally, it ends up with a flexible error estimation,
in the sense that the user is able to choose which of the triangles
will be refined in the next mesh. Some of these choices may be,
for example, to refine all the triangles set with error flag , or
to refine only the triangles set with an error flag equal to.

B. Criterion #2: Absolute Discontinuity of the Instantaneous
Tangential Component

This criterion is a variation of the previous one and it is also
based on the discontinuity of the tangential component of the
magnetic field, as defined in (4b). It emphasizes on the abso-
lute difference of the two tangential components, completely
ignoring the size of the corresponding element. Following the
notation of Fig. 1, an error estimation betweenand is now
defined as

(10)
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Assuming again first order elements and constant complex
flux densities in every element, the estimator defined in (10)
becomes in quasi-static eddy-current problems another complex
quantity equal to

(11)

In order to overcome the nonphasor behavior of the complex
flux density explained earlier, the actual time variation of the
flux density is also taken into account. At every time instant,
a real and positive error estimator is obtained from (11) as

(12)

Corresponding error estimators and may again be de-
fined for the other two neighbors and of element and a
maximum elementary estimator is computed as in (9).

The absolute value introduced in (12), like the square intro-
duced in (8), simply prohibits negative error estimator values.
The requirement of equidistribution of the error is also applied,
the mean value of all is calculated at every time in-
stant for all triangles of the current mesh, all triangles with

are marked with a unitary integer flag and in the
end, every element will again be assigned a integer number
equal to the sum of the corresponding instantaneous integer
flags. The advantages of this criterion, concerning flexibility
and user intervention, are therefore the same described in the
previous criterion.

C. Criterion #3: Instantaneous Energy of the Magnetic Field

The stored magnetic energy in a linear and isotropic
volume is given by

(13)

Using the same 2-D FEM formulation of the quasi-static eddy-
current problem defined in (1a)–(1c) and following the assump-
tion of linear shape functions, the flux density is constant inside
the element having area . Therefore, integrating (13) over
the area of element , the elementary stored magnetic energy
per unit length is derived as

(14)

Since flux density is not a phasor, the mean value of stored mag-
netic energy in elementis not obtained easily from (14). Using
the instantaneous values of the elementary flux density defined
in (7c), the instantaneous value of the stored energy per unit
length is derived from (14) as

(15)

Fig. 2. Cross section of a double circuit transmission line (TL), having two
overhead ground wires (OHGW). The center coordinates of each conductor and
OHGW are given in meters.

and since the vacuum permeability is constant, an instantaneous
real and positive local estimator for the element may be
defined here as

(16)

The estimator defined in (16) is undoubtedly a clear and
meaningful quantity. However, it must be pointed out that
it does not represent an error estimator in a strict sense.
Without having an analytical solution of the problem, there
is no general way to precalculate of (16) and therefore to
make a comparison, in order to decide if elementhas to be
refined or not. However, FEM is a method mainly based on
the minimization of energy. This minimization becomes better
if the parts of the solution region having greater energy than
others are thoroughly approximated. This leads to an adapted
mesh having better equidistribution of the energy.

It must be also noticed that, between the different materials
of the solution region, energy may take very different values
[21]. Therefore, unlike the two previous criteria, the mean value

of all given from (16) is now calculated at everyfor
all triangles of the current mesh that belong to theth material.
All triangles of the th material having are finally
marked for refinement.

An additional computational advantage of this criterion, as
compared to the first two criteria, is that a single real estimation
is immediately computed for every element. Therefore, the cal-
culation of the maximum estimator per element of (9) is omitted.

D. Criterion #4: Instantaneous Energy Density of the
Magnetic Field

The last criterion is a slight variation of the previous one. The
energy density of the magnetic field in a 2-D problem may be
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TABLE I
TL SHOWN IN FIG. 2 WITH BALANCED LOAD: MAXIMUM VALUES OF THERESULTANT FLUX DENSITY IN THREEPOINTSP , P , AND P , LYING IN THE AXIS OF

SYMMETRY OF THE TL. THE y COORDINATES OF THEPOINTS ARE1, 8,AND 28.569 m, RESPECTIVELY. THE FLUX DENSITIESHAVE BEEN CALCULATED BY FEM
AFTER FOUR ITERATIONS, USING EACH OF THE FOUR CRITERIA. THE FEM VALUES ARE COMPARED TO THECORRESPONDINGREFERENCE

MAXIMUM FLUX DENSITIESB , OBTAINED AT EVERY POINT FROM [26]

TABLE II
TL SHOWN IN FIG. 2 WITH BALANCED LOAD: DISTRIBUTION OF ELEMENTS IN THE DIFFERENTMATERIALS OF THESOLUTION REGION, MEMORY ALLOCATED BY

THE FEM SOLVER DURING THE FOURTH ITERATION AND TOTAL EXECUTION TIME REQUIRED BY THE FOUR ITERATIONS, FOR EACH OF

THE FOUR DIFFERENTCRITERIA

considered as the energy per unit area, per unit length. If this area
is the area of element, this criterion results to an unweighted
estimation of the magnetic energy, as compared to (14).

The magnetic energy density in a 2-D problem defined in
an area is given by

(17)

Following again the assumption of linear shape functions and
of constant flux density inside the elementand by integrating
over the area of element , (17) leads to the elementary en-
ergy density

(18)

Using for the reasons explained earlier the instantaneous values
of the elementary flux density defined in (7c), the instantaneous
value of energy density derived from (18) is

(19)

and since the vacuum permeability is constant, an instantaneous
real and positive local estimator for the element may be
defined as

(20)

As in the previous criterion, the mean value of all
given from (16) is calculated at every time instantfor all tri-
angles of the current mesh that belong to theth material. All
triangles of the th material having are eligible
for refining. The justifications as well as the advantages of this
criterion are identical with those of the previous one.

IV. FINITE-ELEMENT MESH MANIPULATION

The local error estimators previously defined and their corre-
sponding mean values are initially calculated, using an original
coarse mesh and FEM solution. All elements with errors ex-
ceeding a predefined threshold percentage of each mean value
are eligible for refinement. This refinement must not violate
mesh consistency. After the refined mesh and the next FEM so-
lution have been obtained, a number of checks has to be made
in order to decide whether the mesh adaptation algorithms may



272 IEEE TRANSACTIONS ON MAGNETICS, VOL. 36, NO. 1, JANUARY 2000

(a)

(b)

Fig. 3. (a) Finite-element mesh and (b) magnetic vector equipotentials at!t =

0 for the TL shown in Fig. 2 after the fourth iteration, using criterion #1.

proceed or not. These aspects along with some general direc-
tions are discussed in the following sections.

A. Element Subdivision

Once a triangle has been marked for refinement, three dif-
ferent element subdivision rules have been used, one for trian-
gles having a side on an external boundary, a second for trian-
gles lying on an internal boundary, and a third for all the other
triangles.

(a)

(b)

Fig. 4. (a) Finite-element mesh and (b) magnetic vector equipotentials at!t =

0 for the TL shown in Fig. 2 after the fourth iteration, using criterion #2.

• If a marked triangle has a side on an external (Dirichlet or
Neumann) boundary, a new node is added at the midpoint
of the boundary side. The original triangle is deleted and
two new triangles are formed, using the new node and the
three former triangle vertices.

• If a marked triangle has a side on an inside (interface)
boundary between two different materials, a new node
is added at the midpoint of the interface side. The two
adjacent triangles are deleted and four new triangles are
formed, using the new node and the four former triangle
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(a)

(b)

Fig. 5. (a) Finite-element mesh and (b) magnetic vector equipotentials at!t =

0 (b) for the TL shown in Fig. 2 after the fourth iteration, using criterion #3.

vertices. Care has been taken in order to ensure that the
new inserted node lies exactly on an explicitly defined
curved interface and not simply at the midpoint of the in-
terface side.

• If finally a marked triangle lies on the bulk, a new node
is added in its centroid. The triangle is deleted and three
new triangles are formed, using the new node and the three
former triangle vertices.

Once the above rules have been applied to the whole mesh, a
Delaunay triangulation is performed to provide an optimal mesh
for the given set of nodes. The Delaunay triangulation follows

(a)

(b)

Fig. 6. (a) Finite-element mesh and (b) magnetic vector equipotentials at!t =

0 for the TL shown in Fig. 2 after the fourth iteration, using criterion #4.

the directions of [3], in order not to swap triangle edges across
interface boundaries. Using the new optimally adapted mesh, a
new FEM solution is calculated.

B. Termination Conditions

The procedure described previously is applied iteratively,
until certain termination conditions are satisfied. These con-
ditions are primarily imposed by the resources available on
the computer used. A user may choose one of the following
conditions.
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TABLE III
TL SHOWN IN FIG. 2 WITH UNBALANCED LOAD: ZEROSEQUENCEIMPEDANCE PERUNIT LENGTHZ OF THELEFT CIRCUIT OF THETL, CALCULATED BY FEM
AFTERFIVE ITERATIONS, USING EACH OF THE FOUR CRITERIA. THE FEM VALUES ARE COMPARED TO THEREFERENCEZEROSEQUENCEIMPEDANCE PERUNIT

LENGTH Z = 0:286 + j1:067 
=km, OBTAINED FROM [26]. NET CURRENTS ASWELL AS THE CORRESPONDINGERRORSCOMPARED

TO THE TOTAL 3000 A ZERO SEQUENCEGO CURRENT AREALSO SHOWN

• The iterative procedure must stop if the memory resources
of the computer are almost exhausted. This may be easily
handled using a memory check in the end of each iteration,
using the empirical rule that every subsequent mesh will
need at least the double memory of the previous one.

• The iterative procedure must stop after a previously speci-
fied number of iterations . This is usually the case when
someone wants to compare different error estimators, in
terms of the convergence of some operating parameter
characterizing the solved problem.

• The iterative procedure must stop after a previously spec-
ified maximum execution time.

• The iterative procedure must stop if all triangles of the
current mesh are marked for refinement. In this case, the
desirable equidistribution of the error condition has been
already met. A further subdivision of the mesh will prob-
ably add to the next FEM solution only a floating point
computational error. Although this seems to be the best
termination condition, it is unlikely to happen on a real
geometrically complicated problem.

Indifferently of which of the first three above conditions has
been met, the most recent solution must be available to the user
in a form suitable to perform a next iteration, if it is still neces-
sary.

V. EXAMPLES AND PERFORMANCEANALYSIS

A. Common Values and Parameters

In all the examples presented in the following performance
analysis, the rms current , the frequency of the harmonic
current, and the resistivity of the earth are assumed to have
the following values:

A

Hz

m (21)

and remain constant, unless they are explicitly changed in a spe-
cific example. These constant values lead to a more precise eval-
uation of the performance of the four different criteria, since the
corresponding estimators are sensitive to many of them.

Two other parameters that also remain constant in all criteria
are the integer parameter, defining the proportion of elements
of the current mesh that will be marked for refinement and the
integer number used in time sampling computations. Con-
cerning the first one, a value of has been found to be
a good compromise between speed and convergence. For the
second one, a value of has been proved to be a secure
choice in all cases presented. Values less than six frequently lead
to poor time sampling of the estimators, while values greater
than 12 lead to unnecessary oversampling.

Having mainly in mind the accuracy of the solution in the pre-
sented examples, all the triangles set with an error flag greater
than one have been selected for refinement. One of the advan-
tages of the proposed method is that it allows the user to perform
a quick problem solution using here values greater than one, or
even the fastest through not so accurate solution, using a value
equal to .

All computations have been made using a Pentium computer
at 233 MHz having 128 MB of memory. The operating system
was Linux, the different criteria were C++ modules and they
were easily incorporated in the FEM package developed by the
author during the last 15 years.

B. Double Circuit Transmission Line—Balanced Case

The double circuit transmission line (TL), shown in Fig. 2, is
initially considered. The two circuits are loaded with balanced
harmonic currents, given in phasor notation by

(22)

The line is located over homogeneous earth with resistivity.
Eddy currents are induced in the earth as well as in the two
grounded overhead ground wires (OHGW). The problem is
solved using FEM with the four different criteria. An original
coarse mesh consisting of 1915 elements has been used. Using
the FEM solution, (2b) and (7c), the maximum values of the
resultant flux density in three points (, , and ) have been
calculated. The three points are located in the axis of symmetry
of the line ( ), while their corresponding coordinates are
1, 8, and 28.569 m, respectively.
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TABLE IV
TL SHOWN IN FIG. 2 WITH UNBALANCED LOAD: DISTRIBUTION OFELEMENTS IN THE DIFFERENTMATERIALS OF THESOLUTION REGION, MEMORY ALLOCATED

BY THE FEM SOLVER DURING THE FIFTH ITERATION AND TOTAL EXECUTION TIME REQUIRED BY THE FIVE ITERATIONS, FOR EACH OF

THE FOUR DIFFERENTCRITERIA

The FEM values are compared with those obtained from the-
oretical formulas, taken in this case from the most recent report
of the IEEE Magnetic Fields Task Force of the Transmission
and Distribution Committee [26]. The above comparison is
shown in Table I, using as a termination condition the number
of iterations . In this table, the flux density maximum
values obtained from [26] have the subscript, considered
as reference, while the corresponding FEM obtained values
have the composite subscript along with the corresponding
criterion number (i.e., from one to four). Criteria #1 and #3
present smaller errors than the other two, independently of the
distance. Criteria #2 and #4 present small error only in the
neighborhood of the phase conductors (point), while this
error increases rapidly when the point moves away from the
high field region. Table II shows the distribution of elements
in the different materials of the solution region, the memory
allocated by the FEM solver during the fourth iteration as
well as the execution time needed for the four iterations, for
the four different criteria, respectively. It is remarkable that
criterion #1 creates fewer elements per material, uses less
memory, and therefore needs less execution time than crite-
rion #3. The preferable criterion for this problem is therefore
criterion #1. This conclusion may be emphasized by the cor-
responding meshes and magnetic vector equipotential plots
shown in Figs. 3–6, which focus in the high field region near
the current carrying conductors. The plots have been made
with a constant MVP increment of Wb/m. These
figures also offer an explanation of the reasons the two other
criteria (#2 and #4) produce significant errors, as shown in
Table I. Although they generate a great number of triangles in
the conductors, they build a very coarse mesh in the air sur-
rounding them. On the other hand, criteria #1 and #3 present
an adequate quality of magnetic vector equipotential lines.

Fig. 7. Cross section of two underground insulated cables. The center
coordinates of each of the two conductors are given in meters. Conductor
radius is equal to 0.04 m and insulation thickness is 0.01 m.

C. Double Circuit Transmission Line—Unbalanced Case

The double circuit TL of Fig. 2 is now loaded with unbalanced
currents. The left circuit is loaded with zero-sequence currents,
while the right circuit is forced to carry zero currents. The cur-
rents are now given in phasor notation by

(23)

The same original mesh, consisting of 1915 elements, has been
initially used.

Using (23) and following the methodology presented in [27],
FEM solution of (1a)–(1c) may lead directly to the computation
of the symmetrical components impedance matrix for the TL.
Values for the zero sequence impedance per unit lengthof



276 IEEE TRANSACTIONS ON MAGNETICS, VOL. 36, NO. 1, JANUARY 2000

TABLE V
UNDERGROUNDCABLE ARRANGEMENT SHOWN IN FIG. 7: MUTUAL IMPEDANCE PERUNIT LENGTHZ = R + jX , CALCULATED BY FEM FOR THREE

DIFFERENTFREQUENCIES, USING EACH OF THE FOUR CRITERIA. TERMINATION CONDITION IS THE COMPUTERMEMORY, EQUAL TO 130 Mb. THE FEM VALUES

ARE COMPARED TO THEREFERENCEMUTUAL IMPEDANCE PERUNIT LENGTHZ = R + jX , OBTAINED AT EVERY FREQUENCY FROM[29]. COMPARISON IS

MADE FOR THEREAL AND FOR THE IMAGINARY PARTS OFZ , R , andX , RESPECTIVELY

TABLE VI
BUSBARSARRANGEMENTSHOWN IN FIG. 8 WITH BALANCED LOAD: MAXIMUM VALUES OF ELECTROMAGNETICFORCES PERUNIT LENGTH, ACTING ON THE

CENTRAL CONDUCTOR(PHASE b). THE FORCESHAVE BEEN CALCULATED BY FEM AFTER NINE ITERATIONS, USING EACH OF THEFOUR CRITERIA. THE FEM
VALUES ARE COMPARED TO THECORRESPONDINGREFERENCEMAXIMUM FORCES PERUNIT LENGTHF = 2:0840 N/m, OBTAINED FROM [31]

TABLE VII
BUSBARSARRANGEMENT SHOWN IN FIG. 8 WITH BALANCED LOAD: DISTRIBUTION OF ELEMENTS IN THE DIFFERENTMATERIALS OF THE SOLUTION

REGION, MEMORY ALLOCATED BY THE FEM SOLVER DURING THE NINTH ITERATION AND TOTAL EXECUTION TIME REQUIRED

BY THE NINE ITERATIONS, FOR EACH OF THE FOUR DIFFERENTCRITERIA

the left circuit of the TL shown in Fig. 2 are presented here, using
the four different criteria. The reference value for the zero se-
quence impedance per unit length is obtained from the line con-
stants section of the well known electromagnetics transient pro-
gram (EMTP) [28] and equals to km.
The percent error for the real and imaginary parts of is
shown in Table III, using again as a termination condition the
number of iterations .

Because the load is now unbalanced, the net current,
which is the phasor sum of all currents in the different con-
ducting materials, becomes an important operational parameter.
Approximately 80% of the return current will flow in this case
through earth, while the remaining portion will flow through
the two OHGW’s. Using an ideal mesh, must approach
to a zero magnitude phasor and therefore it may represent an

Fig. 8. Cross section of three rigid rectangular busbars. The center coordinates
of each busbar are given in meters. Busbar height is equal to 0.08 m and its width
is 0.01 m.

additional estimation for the criterion used, concerning espe-
cially the mesh quality in the earth. Magnitude of the net cur-
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(a)

(b)

Fig. 9. (a) Finite-element mesh and (b) magnetic vector equipotentials at!t =

0 for the busbars shown in Fig. 8 after the ninth iteration, using criterion #1.

rent for every criterion as well as the corresponding errors are
also shown in Table III. The % error reported is a fraction of
the total conductors current, which in this case is the sum of the
three zero-sequence currents A.

Table IV shows the distribution of elements in the different
materials of the solution region, the memory allocated by the
FEM solver during the fifth iteration as well as the execution
time needed for the five iterations, for each criterion. The small
number of elements generated in earth by criteria #2 and #4 jus-
tify the net current errors of Table III. Also, criterion #3 gener-
ates unnecessarily a large number of elements inside the three

conductors of the right circuit of the TL, leading to a larger
memory requirement and to a larger total execution time com-
paring to criterion #1.

D. Mutual Impedance of Underground Cable System

The next problem examined, shown in Fig. 7, concerns the
behavior of the different criteria in the calculation of the mutual
impedance per unit length of two isolated underground ca-
bles. Three different frequencies have been chosen, 100, 1000,
and 10 000 Hz, in order to test the estimators in varying skin
depths. In order to compute by the method presented in [27],
the two cables were loaded with unbalanced harmonics currents
given in phasor notation by

(24)

The integral relation given in [29] has been used to compute a
reference value for the mutual impedance per unit length in this
case. Numerical integration has been performed for the evalu-
ation of the complex infinite integrals involved in [29]. For the
FEM calculations, an original mesh consisting of 316 elements
has been initially used. The reference values for the three fre-
quencies, having the subscript, as well as the values obtained
using FEM with the different criteria, having the subscripts,

, , and , are shown in Table V. Due to the difficul-
ties introduced by the frequency variation, the termination con-
dition used here was the exhaustion of the computer memory.
Impedance values per unit length and corresponding errors are
given separately for the real and the imaginary components of

. Criterion #1 is evidently the only one that gives accept-
able errors in this case. Criterion #3 leads to small errors in the

Hz case but fails for greater frequencies, the main
reason for this being the poorly adapted mesh in the earth sur-
rounding the two cables.

E. Electromagnetic Forces in Rigid Busbars

The last problem examined, shown in Fig. 8, concerns the cal-
culation of electromagnetic forces acting on three-phase rigid
busbars. The busbars are loaded with balanced harmonic cur-
rents, given in phasor notation by

(25)

The forces per unit length calculated by FEM follow the ap-
proach presented in [30]. The maximum force per unit length

acting on the central conductor (phase b) of Fig. 8 is only
reported, since minor forces act on the outer conductors. The
reference force per unit length in this case has been calculated
using the relations given in the corresponding IEC Standard
[31]. Using the geometry given in Fig. 8, (21) and (25) the ref-
erence maximum force per unit length is obtained from [31] as

N/m.
A coarse triangular mesh consisting of 62 elements has been

initially used. Since in the methodology developed in [31] the
earth influence is ignored, the corresponding problem solved
by FEM and described by this mesh completely neglects earth
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(a)

(b)

Fig. 10. (a) Finite-element mesh and (b) magnetic vector equipotentials at
!t = 0 for the busbars shown in Fig. 8 after the ninth iteration, using criterion
#2.

effects, in order to establish a consistent comparison. The ref-
erence maximum force per unit length as well as the cor-
responding FEM values obtained by the different criteria are
shown in Table VI. The termination condition used here was
the number of iterations, specifically . Table VII shows
the distribution of elements in the different materials of the so-
lution region, the memory allocated by the FEM solver during
the ninth iteration, as well as the execution time needed for the
nine iterations, for each criterion. Criteria #1 and #3 produce

(a)

(b)

Fig. 11. (a) Finite-element mesh and (b) magnetic vector equipotentials at
!t = 0 for the busbars shown in Fig. 8 after the ninth iteration, using criterion
#3.

acceptable percent errors, but as in all previous cases, criterion
#1 generates the smallest mesh, needs only 3 Mb of memory for
the ninth iteration, and therefore takes a much smaller execution
time than criterion #3. This advantage of the criterion #1 allows
the user to exhaust memory resources of the computer, if a better
accuracy is required.

Finally, the corresponding meshes and magnetic vector
equipotential plots are shown in Figs. 9–12, centered in the
high field region near the busbars. The plots have been made
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(a)

(b)

Fig. 12. (a) Finite-element mesh and (b) magnetic vector equipotentials at
!t = 0 for the busbars shown in Fig. 8 after the ninth iteration, using criterion
#4.

with a constant MVP increment of Wb/m. Criteria
#1 and #3 show again an adequate quality of magnetic vector
equipotential lines. The same conclusions as in the balanced
TL case, concerning the unnecessary creation of elements by
criteria #2 and #4, also hold here.

VI. CONCLUSION

Four different criteria, introducing local error estimators for
a posteriorih-type adaptive finite-element mesh generation are

presented. The estimators are suitable for the solution of 2-D
steady-state time harmonic quasi-static eddy-current problems,
frequently encountered in electrical power transmission and dis-
tribution systems. The estimators are based on instantaneous
field values, in order to overcome the difficulties introduced by
the nonphasor behavior of field components.

The performance of the estimators has been investigated by
solving various eddy-current problems. As a general conclu-
sion, criterion #1, which is based on the discontinuity of the
instantaneous tangential components of the magnetic field, has
been proved satisfactory in all cases. It generates simple meshes,
needs less computer resources, takes less time to converge, and
always leads to acceptable errors. Criterion #3, based on the
equidistribution of the instantaneous energy of the magnetic
field, also leads to adequate results in many cases. However, it
usually generates dense and memory consuming meshes, con-
verges slowly, and fails when frequency is greater than 100 Hz.
The other two criteria produce unacceptable meshes for all test
cases and they must be avoided, at least for these kinds of prob-
lems.
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