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Abstract: in this paper, the finite element method (FEM) is used to
calculate the frequency dependent series impedance matrix of an
overhead transmission line. A novel approach is proposed, leading from
FEM results to the direct computation of the symmetrical components
impedance matrix of any single or double circuit transmission line.
Results show excellent agreement with those obtained by classical
computation methods. Test cases examined include impedance
calculations in the presence of certain terrain irregularities in the line
neighborhood, such as line by a mountain side of variable slope, line
inside a canyon or line near a water region.
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|. INTRODUCTION

The parameters required to describe an overhead power
transmission fine in power system transient analysis are
series impedances and shunt admittances per unit length.

The present paper deals with the calculation of the
frequency dependent series impedances of a transmission
line. Originally, these calculations were based exclusively on
the geometry. Later, skin and proximity effect were taken into
account [1], [2], [3]. In 1926 Carson [4] first proposed a
method of calculating the influence of imperfect earth on
transmission lines. These formulae have been used for deca-
des, before new approaches for these calculations were ma-
de available to the scientific community [5], [6], [7], [8], [9]

An implementation of skin effect and Carson formulae
can be found in Electromagnetic Transient Program (EMTP)
[10], [11], as a supporting tool dedicated to the calculation of
line parameters. Line parameters calculated by EMTP have
been used in this paper as a reference.
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Although a variety of methods is available today, none of
them is able to calculate line parameters, when certain terrain
irregularities are present in the vicinity of the line.

The Finite Element Method (FEM) is a numerical method,
which may be used to solve the electromagnetic field
equations in a region, regardless of geometric complexity. in
this paper, a methodology using FEM for the calculation of
transmission line series impedances is proposed. By the new
method, electromagnetic field variables are linked to the
symmetrical components impedance matrix of a power
transmission line.

Il. TRANSMISSION LINE MODELLING

A transmission line is described by the two matrix equa-
tions (1) and (2), linking the voltages and currents of the line,

-§V=—Z(m)l (1
Iy 2
S1= Y(0)V (2)

where V is the voltage vector with respect to a reference
conductor, I is the current vector and z is the. longitudinal
direction along the transmission line. Matrices Z(w) and Y(w)
are the frequency dependent series impedance and shunt
admittance matrix per unit length, respectively.

The proposed method deals with the calculation of Z(w) of
an overhead transmission line using the Finite Element
Method. Z{(w) consists of four components,

Z(CO) :deam +Zskin (CU)+Z prox (a))+Zean‘h (a)) (3)

where Z,..» depends on the geometric configuration of the
transmission line, Zg(w) and Z,.(w) express skin and
proximity effect respectively and Z...x(») accounts for the
influence of imperfect earth.

Carson [4] proposed an infinite series approach in order
to calculate correction terms for the per unit length resistance
and reactance of a transmission line, due to the existence of
lossy ground. Different series apply, depending on the value
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of parameter X,

k=4ﬁJ§404‘£%VE§ (4)

where D depends on the geometrical configuration of the line,
f is the excitation frequency and p is the resistivity of the
ground, which is considered semi-infinite and homogeneous.

I1l. FIELD EQUATIONS AND EQUIVALENT CIRCUITS

A system of N infinitely long conductors, carrying
currents J; (i=1,2,...,N) over imperfect earth is considered. If
the conductor cross sections lie on the x-y plane, the linear
two-dimensional electromagnetic diffusion problem for the
magnetic vector potential (MVP) A, and the total current
density vector J; in the longitudinal direction z is.described by
the system of equations (5), (6) and (7) [12]

1[ﬁ4+y& ‘wod, +J_ =0 (5)
— JWOA, 2 =
o, | &° & '
[[ras=1,. i=12,...N ("
S

The total current density J, can be decomposed in two
components

J=J, +J, (8)

as shown in [13]. In (8) Jez is the eddy current density given
by (9) and J, is the source current density, which is given by
(10).

J, =—jwdd, (9)

J, =-oV¢ (10)

Thus, considering a system of N conductors of arbitrary
shape over lossy ground, the mutual complex impedance
between a conductor / of conductivity o, and another
conductor j carrying a currentJ; is given by {15]

I/,- ",]:‘ /o-i N )
F

=l (i,j=1 2, .
o, I /

(1)

When i=j, the self impedance of a conductor is calculated
by (11). The impedance matrix Z, representing the equivalent
circuit of the transmission line described in (1), may be
calculated as follows [16];

e A current is applied sequentIaHy to each conductor, while
the remaining conductors are forced to carry zero
currents,

e Using (11), the jth column of Z can be calculated.

This procedure has to be repeated N times in order to
calculate the N columns of Z.

A common practice in power engineering analysis is the
use of symmetrical components. However, mainly because of
the ‘uncertainty as to the actual current distribution, the
zero-sequence impedance of transmission lines is one of the
most approximate parameters in system studies. In this
aspect, a novel FEM approach is proposed, allowing the
direct computation of the symmetrical components impe-
dance matrix of any single or double circuit. power
transmission Jine, taking into account a more realistic distri-
bution of the return current between overhead ground wires
and earth. This is accomplished by applying a positive, a
negative and a zero sequence system of currents succes-
sively to the line, leading to (12), as shown in Appendix A.

1
Zm =A" 'mvouFEM

In the above equation Zy, is the symmetrical components
impedance matrix of the line, Vonarem is the matrix containing
the voltages across’ line conductors, as calculated by FEM
and A is the symmetrical components transformation
matrix [17]. :

V. FINITE ELEMENT FORMULATION

The electromagnetic field associated with an overhead
transmission line may be considered unbounded. The FEM
has been used to solve unbounded field problems using
several approaches, such as the extension of the discreti-
zation area (direct solution), the use of integral equations
(Green's function) [18], the “window frame' technique" [19],
the boundary element method [20], the “infinitesimal scaling”
[21] as well as the newer “hybrid harmonic/finite: element
method” [22]. For the same reasons explained. in [23], the
first method was adopted here. The discretization area was a
square 10 kmx 10 km, with the transmission line located .in
its center. An homogeneous Dirichlet boundary condition for
the MVP is imposed on the perimeter of this square.

The proposed method was used for the FEM computation
of overhead transmission line impedances under the
following considerations: )

e The discretization area is subdivided ‘in- first order
triangular finite elements.

e A Delaunay based [24] adaptive mesh generation
algorithm has been developed for the original discre-
tization.

o An jteratively adaptive mesh generation algorithm [25]
has been used, based on the continuity requirement for
the magnetic field on the interface between neighboring
elements.

¢ Bundled conductors are treated as a single conductor of
arbitrary shape, by assigning the same material identity to
all conductors in the bundle.

e ACSR conductors are treated as tubufar conductors.

e Overhead ground wires are assumed to be segmented, in
order to eliminate the losses associated with circulating

(12)
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currents magnetically induced to them [10], [11]. There-
fore, these wires are treated as individual conductors with
no current applied to them. This results in a zero voltage
drop per unit length, which is the case for all conductors
with no current applied, in two-dimensional problems.

¢ Existing symmetries in the geometry of the problem are
properly utilized to improve the computational efficiency
of the method.

V. NUMERICAL RESULTS

Two line configurations have been investigated, namely a
single circuit medium voltage distribution line (Fig. 1a) and a
double circuit high voltage transmission line (Fig. 1b), taken
from [14] with all dimensions converted to Sl units. For the
double circuit line the following test cases have been
considered:

Single solid conductor per phase, no ground wires.

Single solid conductor per phase, two ground wires.

Four solid conductor bundle per phase, two ground wires.
Single tubular conductor per phase, two ground wires.
Single tubular conductor per phase, two ground wires, line
positioned next to mountain or in a canyon.

6. Single tubular conductor per phase, two ground wires, line
positioned parallel to a water region.
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Figure 1: Single (a) and double (b) circuit transmission line.
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The double circuit line of test case #4 was examined over
homogeneous earth with resistivities p=1, 10, 100, 1000,
10000 Qm respectively and over a frequency range from
50 Hz to 1 MHz. Figures 2 and 3 show the % difference
defined in (13), between FEM and EMTP results, concerning
the magnitude of the zero and positive sequence impedances
Zooand Zy; respectively, for the left circuit of the line.

In Table 1 a comparison between FEM and EMTP results
is shown, using the % difference defined in (13), as a function
of the number of finite elements. The details given
correspond to a case shown already in Fig.2, ie. to the
% difference concerning the zero sequence impedance Zo of
the left circuit of the line, for a frequency equal to 5000 Hz
and earth resistivity equal to 100 Qm. The EMTP result for
this case is Zy=6.001+j74.865 Q, Ieading to a magnitude
equal to 75.105 Q. :

ZomoHZ
Difference (%) = Zosel 12 rind 100

|Z gz

(13)
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TABLE 1
Comparison between FEM and EMTP results, as a function of the number of finite elements. Data are shown for the phase conductors of the left cir-
cuit of test case #4, as well as for the two ground wires and the earth. The continuity requirement of the magnetic field on the interface between neigh-
boring elements has been used as the criterion for the iterations. Frequency is'5 kHz and earth resistivity 100 Qm. The EMTP. result for this case is .
Zp=6.001+j74.865 Q. The fourth FEM iteration led to a final discretization mesh (including all regions) consisting of 26623 first order triangular

elements and 13347 nodes.

Number of elements '
Iteration Phase 1 Phase 2 Phase 3 Left Right Earth Zoo |Zoo| difference
conductor | conductor | conductor | ground wire | ground wire [Q] [Q] %
1 108 108 108 108 108 2376 6.225+i68.449 » 68.731 8.486
2 176 176 176 109 109 2557 6.002+j72.986 73.232 2.493
3 326 328 328 124 118 3046 6.006+{73.956 74.199 1.205
4 670 674 674 258 248 4266 6.015+{74.474 74.717 0.516

Additionally, the limiting case of a single conductor
transmission line with earth- return (Fig. 4) has been
examined, for various combinations of earth resistivities and
excitation frequencies. In Fig. 5 ~the corresponding
FEM-EMTP differences for the line impedance are shown, for
a wide range of values of Carson’s parameter k.

The results of all above investigations, i.e. of the single
circuit line of Fig. 1a, of test cases #1, #2, #3, #4 of the
double circuit line of Fig. 1b, as well as of the single
conductor line of Fig. 4, ensure that FEM and EMTP
calculations show insignificant differences for similar test
cases.

Next, the remaining test cases #5 and #6 were
considered, in order to examine the influence of certain
terrain irregularities on transmission line impedances. These
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Figure 4: Single conductor line with earth return.

cases can not be handled by the method implemented in
EMTP, which is based on Carson’s correction terms.

First the line is assumed to run parallel to the right of a
mountain side of variable slope, as shown in Fig. 6a. FEM
results for elements of the symmetrical components impe-
dance matrix are compared to FEM results corresponding to
semi-infinite earth. The % divergence, as a function of the
mountain side slope, is shown in Fig. 7. Fig. 8 shows the
corresponding results for the special case of a line inside a
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Figure 5: EMTP-FEM differences for various values of parameter k. ™

canyon, as in Fig. 6b. In both test cases earth resistivity was
©0=100 Om and excitation frequency =50 Hz.

Finally, the same line is examined, parallel to a water
region of variable depth. The first water region, starting at a
distance of 250 m from the tower axis, was considered to
have a depth of 150 m and a length equal to 750 m, while the
second region has a’depth equal to 1000 m and an infinite
length. Fig. 9 presents the equipotential lines (A=const) when

- the above transmission line is energized by a zero sequence .

system of currents, in cases of homogeneous ground and
variable depth water. Earth and water resistivities were taken
=100 and p=0.25 Om respectively. The excitation frequency
was f=50 Hz. Results for the elements of the symmetrical
components matrix for the above case are compared to those
corresponding to semi-infinite earth. The % divergence for
certain elements is shown in Fig. 10.

Both test cases revealed that terrain irregularities have
negligible influence on positive, while they may affect up to
11% the zero sequence impedances.
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Figure 6: Transmission line located (2) parallel to mountain side and
(b) inside a canyon.
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Figure 7: Matrix element divergence from semi-infinite earth solution
vs mountain slope as in Fig. 6a.

VI. CONCLUSIONS

The scope of this paper is to present a new technique by
which the output of the Finite Element Method (FEM) may be
used for the direct calculation of the symmetrical components
impedance matrix of overhead transmission lines.

The proposed method was applied in cases of single and
double circuit lines, consisting of single or bundled conduc-
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Figure 8: Matrix element divergences for of a transmission line in a
canyon.

Figure 9: Equipotentials of transmission line. Black lines correspond to

homogeneous earth and white lines to the case of neighbouring water,
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tors, either solid or ACSR, with or without ground wires.
Results show excellent agreement with those obtained by
classical computation methods over a wide frequency range
and for varying earth resistivities.

Furthermore, the new method is able of handling
successfully cases of terrain irregularities, where classical
methods can not be applied, taking into account a more
realistic current distribution for the return current. The authors
finally believe that an analysis showing the variations of the
line parameters with terrain irregularities in the direction of
the line, i.e. a three-dimensional analysis, must be a next and
necessary step in this area.

VII. APPENDIX

Considering a three phase a, b, ¢ transmission line, if Vi
is the complex voltage across the conductor of phase b, when
a positive sequence of currents is applied to the line, then

Vi = Zog Loy + Zyy - Loy + Zyo 1 (A1

cl

In the above equation subscript letters indicate the referring
phase, while subscript numbers indicate the type of current
system applied (1.for positive, 2 for negative and 0 for zero
sequence system of currents).

If all currents are of equal magnitude |7], then dividing

(A.1) with |1} yields:

Vbl Z

Vi I, I
I

Ial cl
+Zy, 'W+Zbc W

Rt 5 A2
ba {1| ( )

V ,
!Tbll = Ly 14 Zy 1< =120+ Z, - 1< 240°  (A3)

|4

bl

(A4)
W

=7, + 2y @ +7, -a
where a=1<120°.

Similar equations may be derived for all phase voltages
by applying the positive, negative and zero sequence
currents. The matrix equation linking the voltages resulting

from FEM and the impedance matrix of the line may be
written

11 212 Z'I3 1 1 1 1 VaO V;] VaZ
Z21 Zzz Zzs 1 a° a meo‘ Vb] Vbz (A5)
Zy Zy Zyn|l a @ Vo Va Va
or
1
Z- A= mVOlZF'EM (A.6)

where A is the symmetrical components transformation
matrix [17] and Vggrem is the matrix containing the voltages
‘across line.conductors, as calculated by FEM.

Applying the inverse transformation to equation (A.6)
yields

o1
Z,,=A : 'mVOnFEM (AT)
where Zy12 is the symmetrical components impedance matrix
of the line.

In the case of a double circuit line consisting of phases a,
b, cand a’, b’, ¢’ similar equations apply

[-Zn Zy Zy Ly Zgs Zig||l 1 1 00 01
Zy, Zy, Zyy Loy Zis Zys |11 a> a 00 O
Zy Zy Zy Zy, Zss Zy (|1 a a 00 0 _
Zy Zyg Zyp Ly Zis Zyg 00 0 11 1
Zs Zs Zsy, Zs, Zss Zss||0 0 0 1 a’ a
LZsl Zo Ze Ly Zg Zgs LO 0 0 1 a az_
Vo Var Vea Ve Ve Vo |
Ve Vo Vie Ve Ve Vi
:i Vco I/cl ch VcO’ Vc]' .Vcl' (A8) .
\I\ Vo Vi Vaz Vae Var Via
V:b'o Vo Voo Vio Vor Vi
o Vie Vor Vew Ve Via
1 (A.9)
Z-A,= mVDIZFEM ’
or ,
L
Zy, = Azl '|—]_|V012FEM (A.10) /

In this case, A, is the extension of A for a double circuit
line. Matrix Vonrem consists of FEM results, which are
obtained by applying sequentially a positive, zero and
negative system of currents to each circuit of the line.

Assuming unit currents, the above results may be further
simplified leading to

Z,, = (A11.2)

-1
A ‘szFEM

Z012 :Agl 'VOJZFEM (A11b)
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