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. Abstract - A three-phase busbar arrangement with straight
rigid conductors - carrying short-circuit currents is investigated.
Calculations are made assuming steady-state ac current with a
peak value equal to the peak value of the short-circuit current.
This assumption is used in the related IEC Standards 865/92. In
this paper, the electromagnetic forces and current densities are
calculated by solving the electromagnetic field diffusion equation
numerically, using finite elements. The results are compared with
results calculated according to the IEC Standards 865/86, as well
as with the corresponding technical revision IEC 865/92. The
comparison involves arrangements with rectangular cross-sec-
tions, as used in ac indoor installations of medium and low volt-
age. The forces calculated, especially in cases of multiple
sub-conductors per main conductor, were greater than those cal-
culated according to the above Standards. In older Standards this
difference is up to fifty per cent, while in the revision this differ-
ence is smaller. The differences are probably due to proximity
effects.

I. INTRODUCTION

Short-circuit currents may exert hazardous forces on
busbars, especially in compact indoor installations where dis-
tances are relatively small. Therefore a careful consideration
of electromagnetic forces and their effects is needed.in order
to avoid excessive stresses applied on the conductors and
bending moments applied on the supporting insulators. Effects
of short-circuit currents are analysed in Standards
IEC 865:1986 [1] and in a similar way in DIN VDE 0103:04.88
[2]. They cover installations with voltages up to 72.5 kV and
frequencies up to 500 Hz. In the corresponding recent techni-
cal revisions IEC 865:1992 [8] and DIN/VDE 0103:06.92 [91,
the voltage of the systems covered is up to and including 420
kV. The Standards are based on relations for the maximum
force presented by Lehmann in [3). These relations were es-
tablished on the well-known formula of force acting on filamen-
tary conductors, by making two assumptions. The first as-
sumption is the introduction of the effective conductor central
distance, a distance that has been introduced in order to take
into account the force dependence on the geometrical configu-
ration and the profile of the conductors and computed for DC
o current only. The second assumption is that the
sub-conductors, in arrangements with multiple conductors per
main conductor, are assumed to carry the short-circuit current

evenly distributed among them. However, due to the proximity
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effect, the current may differ among sub-conductors. A way to
obtain more accurate results is to solve the electromagnetic
diffusion equation, which gives the entire information for the
field, the current and the force distributions.

Therefore, it seems reasonable to compare resuits as
proposed by Standards [1]-[2] and by their revisions [8]-[9],
with calculations obtained from the solution of the electromag-
netic field diffusion equation using the finite element method
(FEM). In this paper a computation based on finite elements is
presented for arrangements of straight three-phase busbars,
as used in medium and low voltage substations. Each main
conductor consists in' generally of up to four rigid
sub-conductors, each sub-conductor having a rectangular

- cross-section. A steady-state three-phase symmetrical current

is applied. The geometry of the bus arrangement is taken into
account and the current flowing in every sub-conductor is
computed from the solution of the electromagnetic field.

Il. COMPUTATION OF SHORT-CIRCUIT FORCES

A. Assumptions

The conventional arrangement of conductors, as shown
in Fig. 1~ in parallel-and in a single plane - is taken as a basis
for the calculations. It is assumed that

-the fault examined is a three-phase symmetrical
short-circuit, because it causes the greatest dynamic stress

[51; ,

- the centre-line distance between busbars is much
smaller than the conductor length, so that the busbars can be
regarded as being of infinite length;

- the permeability is constant, since copper or aluminium
bars are used in installations;

- a steady state, balanced three-phase system is applied
to the three-phase busbars, with a crest value equal to the

" crest value of the short-circuit current.

These assumptions have also been used in the related
Standards. The balanced three-phase system may be calcu-
lated as follows:

The factor «, that is the ratio of the largest possible
asymmetric value of the short-circuit current to the largest
symmetric value of the short-circuit current is given by [6]

x =~ 1.02 +0.98e~3R/X (1a)
and the peak short-circuit current is assigned a value
ip3 = K‘\/E/k:s (1b)

Using the last assumption and (1b), the three-phase
currents applied are in phasor form

/ / . / »
ia =% .y =i =—j%e jan/3

(1c)
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Fig. 1. Cross-section of rigid busbars with:
a) one sub-conductor per main conductor;
b) four sub-conductors per main conductor.

in the above model, steady-state currents have been consid-
ered. It would be of interest to extent the present paper to
transient currents as well.

B. Field Equations

If the busbar cross-section shown in Fig. 1a-b lies on the
Xx-y plane, the linear two-dimensional electromagnetic diffusion
problem for the zdirection components of the magnetic
vector potential (MVP) vector A, and of the total current
density vector J, is described [7] by the system of equations

2
1 | 5%A, %A,
Ho by | ox? 5_}/2

J—jaJO'AZ +dJgy =0
(24)
—jocA; +dg; =J,

where the z-direction component of the total current density
J is defined by the integral

[[4za5 =1;
S,

7

i=a b, c (2b)

The finite element formulation of equations (2a-b) follows the
procedure described in [4] and leads to a similar matrix equa-
tion, that is solved using the Crout variation of Gauss elimina-
tion. From the solution of this system, the values of the MVP
in every node of the discretization domain as well as the un-
known source current densities in each busbar are calculated.
Consequently, the eddy current density Je of element e is
obtained from the relation [7]
Je,(x,y) = = jwoAS (x,y) (3a)
and the total element current density J¢ will be the sum of
the phase-/ busbar source current dendity Jg, j and of the
element eddy-current density Je given by (3a), i.e.

J2(x,y) = (3b)

Integration of (3b) over a sub-conducter cross-section will give
the total current flowing through this sub-conductor.

szi®

oy
JEZ(X,y)+J

C. Force Computation

In order to compute the forces acting on every
sub-conductor, the flux density in element e must be calcu- -
lated from the MVP element distribution using the relations

56 - o’?A‘Z’

X : ' 4
BE &)Ag

YT

If the interpolation functions chosen in the finite element formu-
lation are linear polynomial of x and y , then the flux density
will be constant on the cross section of every finite element.
This simplifies the elementary computations that concern
quantities deriving as first derivatives without introducing -any
error, providing that the finite elements are small enough in
order to follow the possible step discontinuities.

The force dF on the volume element dv at which the
total current density is J is
of =(J x B)av (5a)
where the flux density vector B will be entirely on the x-y
plane, because the current density. vector has component only
in the z-direction. Also, due to the symmetry, the direction of
the force will be only in the x-direction. As a consequence, the
force per unit length actlng on finite element e of conductor 7
will be equal to
£e s e '

FP=xF; ‘ (5b)7
where the x-direction force per unit length of this element will
be equal to

FS=- j j J2(x,y)BS axdy ®)
¢

Because the flux density components.in (6) are. constant
on the cross section of element e, the integral is easily ex-
pressed using symmetric quadrature formulae of first d%gree
if now the phasors related to the total element current /7 and
to the flux density component B are
1°=18se%

@)

e pe i
.By—Byfmse v

the x-direction force per unit length time functlon in_this ele-
ment will be
re(t)=-1° _ B®

ms = yrms

[cos(ee - q)f,) +cos(20t+6° + q:f,)] (®)

and the total force time function, that defines the total force
acting on conductor / will be derived as the assembly of the
elementary force contributions of this conductor

ll) = 7200 ©



TABLE 1
RATED VALUES AND DIMENSIONS OF THE Two TypicaL BusaarR
ARRANGEMENTS

i
Un | k3 pT; b d a am

Arrangement VI | [kA] | [KA] | [m] [m] [m] | [m]
Low

| votage 380 1755 | 28.08 | 0080 | 0010 | o160 | 0.1662
Medium
v 15000 | 962 | 1424 | 0050 | 0005 | 0.235 | 02367

leading to a total force per unit length vector
F(t) = xf(t) (10)

It must be noted that the sum defined in (9) may be confined
to a sub-conductor of a main conductor, if the integration is
over this sub-conductor cross-section, or it may be extended
to the main conductor of phase / if the integration is over the
total cross-section of the main conductor S;. In every case,
the locus of the force vector defined in (10) in the £-f, plane
and for a time variation equal to the half current period is a
line segment with its centre located at

fre = “z Itms B}e;rms cos(@e “‘Pf/) s fyc =0 (11)

e

lll. PARAMETRICAL ANALYSIS OF FORCES

Two typical busbar arrangements, one for low voltage
and one for medium voltage indoor installations respectively,
have been used as a reference for the calculation performed
with the finite element procedure. The low voltage busbars are
connected to a 630 kVA, 15 kV/380 V Dyn5 transformer with
rated short-circuit voltage 6% and copper losses 6500 W. This
results to /3 = 17.55 kA and to R/X ratio equal to 0.175, lead-
ing through (1a) to x = 1.6 and through (1b) to iz = 39.71 KA.
The medium voltage busbars are connected to a typical 15 kV
network with 2560 MVA short-circuit capacity (fault level) and

with R/X ratio equal to 0.25, so that /s = 9.62 kA, k=148
and /g = 20.14 KA. The rated and geometrical data of the two .

cases are shown in Table 1.

A. Calculations according to Standards

The maximum force per unit length F,; acting on the
central conductor (phase b) of Fig. 1a-b is given in [1]-[2] by

_to V3 2

(12a)
2za 2 P3

mb

assuming that the dimensions of the busbar cross-sections are
smaller than the distance a between the conductor centres,
i.e. assuming the formula of filamentary conductors. Maximum
force per unit length values F,; and F, for the outer conduc-
tors (phases a and ¢ respectively) are omitted in [1]-[2], be-
cause they are smaller than F,,. However, they may be
calculated according to [5] as follows:

Ho 3+2~/§i2

2zra & P3 (25)

Fra =Fme =

795

The assumption of filamentary conductors on which
(12a-b) are based, is corrected in the revisions [8]-[9]. Instead
of the centre-line distance a, a new effective distance &, has
been introduced. This may be computed from Fig. 1 of [8] or
alternatively from an equation given in Annex A of [8], in
which a typographical .error has been detected (factor 2 that
multiplies the last arctan function in the last line should be
omitted). On the last column of Table 1 of the present work,
values of this effective distance a, are shown for both ar-
rangements. The maximum force per unit length £, acting on
the central conductor (phase b) of Fig. 1a-b is now given in [8]-
[9] as a function of a,, by

__Ho 3

= xo (13a)
mb = ora, 2 P

Maximum force per unit length values for the outer conduc-
tors, which for the same reason are omitted also in [8] and [9],
may be written following again [5] and using the new effective
distance a,, as

My 3+243 .2

= 5 ip3 (13b)
m .

FITIE" mc

Finally, for multiple sub-conductors per mail conductor, a
maximum force acting on the outer sub-conductors of phase i
main conductor is given in [1], [2], (8] and [9] by

N2

1

Fois = Mo (pSJ (14)
2zag | ng

where a; is the effective distance between sub-conductors.

It must be noted that this maximum force (although not
clearly stated in [1], [2], [8] and [9]) is only the maximum of
the force component that acts on the outer sub-conductor due
to the current of phase / main conductor only. In order to
compute the total force acting on an outer sub-conductor, the
corresponding total force components (13a-b) must be divided
by ng and the result must be added or subtracted from the
value given by (14). However, because there are no times
attached to (13a-b) or to (14) and on the other hand the
corresponding maxima arrive at different times, an exact
calculation of the. total maximum force using the Standards is
impossible. In [1], [2], [8] and [9] this problem is eluded by:

- the limitation of the bending stress caused by forces
between sub-conductors at Ry 2;

- the limitation of the bending stress caused by forces
between the main conductor and the sub-conductors at
q Rpo2-

i It must be also noted that in (14) the effective distance
a, is introduced, in order to take into account the geometrical
configuration and the profile of the arrangement of each main
conductor. In [1], [2], [8] and [9] values of & are tabulated for
the most common busbar profiles, while for other cases a
relation for ag is provided based on Lehmann calculations [3].
As stated in the Standards, (14) is valid only for the first and
last sub-conductor, i.e. [1], [2], [8] and [9] do not supply force
relations for the inner sub-conductors of every mail conductor.
However, this is not required, since the maximum forces are
those acting on the outer sub-conductors.

B. FEM Calculations - One sub-conductor per main conauctor

The two busbar arrangements of Table 1, having origi-
nally one sub-conductor per main conductor, were solved with
the FEM formulation of this paper and the maximum forces
acting on the three conductors were compared with those
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Fig. 2. Forces acting on the main conductors in the low and medium
voltage arrangements of Table 1 for a time variation equal to a half
period, with one sub-conductor per main conductor:

a) low voitage and b) medium voltage arrangements.

given by (12a-b) and (13a-b). The forces acting on the main
conductors and the resulting maximum force values are shown
in Fig. 2 and Table 2 respectively. These results lead to the
following conclusions: .

- force maxima computed by (12a-b) seem to be on the
safe side;

- force maxima computed by (13a-b) are also on the safe
side but they approach better the maxima computed by FEM;

- force maxima computed by the FEM approach those -
computed by (12a-b) and (13a-b) as the cross-section of the
busbars decreases and the distance between main conductors
increases. . o

In order to clarify the last conclusion, the next two com-
putations had as a parameter the busbar height b and the cen-
tre-ine distance between main conductors a. The results
concerning the low voltage arrangement are shown in Ta-
bles 3-4, where the parameters not explicitly defined are again
taken from Table 1. in Table 3 the FEM maximum forces are
shown to decrease strongly as the busbar height increases
from b/ 2 to 8b, since the increase of the busbar height leads
to smaller current density values in the busbar cross-section
and finally to smaller forces. The corresponding maximum
force relations (12a-b), which are independent of b, lead to a
constant value for all cases. On the other hand, the maximum
force relations (13a-b), which are a function of b through their
dependence on a,, are shown to be almost equal to the cor-
responding FEM values. In Table 4 the differences between
the FEM maximum forces and the corresponding values com-
puted from (12a-b) and (13a-b) are shown to decrease as the
distance between main .conductors a increases, because in
this case the assumptions in which (12a-b) and (13a-b) are
based are better approximated. Values obtained from (13a-b)
are again almost equal to the corresponding FEM maxima.

: TABLE 2 .
) Low voltage arrangement Medium voltage arrangement

FEM (12a-b) Difference | (13a-b) Difference FEM (12a-b) Difference | ' (13a-b) - |- Difference
, [N/m] [N/m] % [N/m] % [N/m} [N/m] % [N/m] %
Frma 1506.6 1592.8 5.7 15331 1.8 264.7 278.9 54 276.8 -4.6
Frb 16321 17071 -4.6 1643.2 -0.7 296.4 | 2989 -0.8 296.7 -0.1
Fre 1506.4 1592.8 5.7 1633.1 -1.8 267.9 278.9 -41 276.8 -3.3

Maximum forces applied on the busbars of Table 1 calculated by FEM and compared fo (12a-b) and: (13a-b) respectively.
) TABLE 3 ) .
F ‘ma £ 'mb’ .

b FEM (12b) Difference (13b) Difference FEM (12a) Difference (13a) Difference
[m] [N/m] [N/m} % [N/m] % [N/m] [N/m] % [N/m] %
0.04 1512.7 1592.8 -5.3 1577.6 4.3 1724.4 1707.1 1.0 1690.8 19
0.16 1388.3 1592.8 .47 1398.4 -0.7 1447.8 1707.1 -17.9 14988 3.5
0.32 1106.8 1592.8 -43.9 1122.8 -14 1134.9 1707 1 -50.4 1203.4 - -6.0
0.64 ‘ 782.3 1592.8 -103.6 773.9 11 785.5 17071 7.3 8294 - -5.6

Finite element maximum force computation of the low voltage arrangement of Table 1, with varying busbar height b. The differences refer again to

the force values given by (12a-b) and (13a-b).

TABLE 4
a=0M1m ] : g=021m )
FEM (12a-b) Difference (13a-b) “Difference FEM (12a-b) Diﬁerence _(13a-b) Difference
[N/m] [N/m] % [N/m] % [N/m] [N/m] % [N/m] %
Frma 2104.1 2316.8 -10.1 2148.6 2.1 1161.0 1213.5 4.5 1186.2 2.2
Fob 2252.0 2483.1 -10.3 2302.8 -2.3 12735 1300.7 =21 1271.3 0.2
Fc 2058.5 2316.8 -12.5 21486 4.4 1186.7 1213.5 2.3 1186.2 0.0

Finite element maximum force computation of the low voltage arrangement of Table 1 with varying centre-line distance between main conductors a.



TABLE 5
phase a phase b phase ¢
Force Current Force Current Force Current
[N/m] [kA] [N/m] [kA] [N/m] [kA]
ng=2
Sub-conductor 1 (FEM) 175.4 13.452-9.1° 2283.4 17.31£229.1° 2651.2 16.14.4121.8°
Sub-conductor 2 (FEM) 2635.6 14.95.,8.1° 2039.7 11.56.2256.5° 1203.5 1.96..117.6°
Main conductor (FEM) 1575.3 28.08.20.0° 1685.7 |  28.08.£240.0° 1519.3 28.08.£120.0°
Main conductor (12a-b) 1592.8 28.08.20.0° 17071 28.08.£240.0° 1592.8 28.08.£120.0°
Main conductor (13a-b) 1539.8 28.08.£0.0° 1650.4 28.08.£240.0° 1539.8 28.08.£120.0°
ng=3
Sub-conductor 1 (FEM) 870.7 9.054-5.1° 2168.3 14.09.£225.2° 2331.3 13.91.£126 .8°
Sub-conductor 2 (FEM) 192.3 7.28/-27.6° 300.2 7.132212.1° 116.6 7.00.£93.0°
Sub-conductor 3 (FEM) 2288.5 13.29./18.3° 17231 10.71.,280.4° 811.0 8.18.£130.7°
Main conductor (FEM) 1665.6 28.08.20.0° 1761.4 28.08.£240.0° 1588.1 28.08.£120.0°
Main conductor (12a-b) 1592.8 28.08.£0.0° 17071 28.08.2240.0° 1592.8 28.08.2120.0°
Main conductor (13a-b) 1553.6 28.08.£0.0° 1665.2 28.08.2240.0° 1553.6 28.08.2120.0°
. ng=4 !
Sub-conductor 1 (FEM) 609.1 7.49.,-2.8° 21M.9 13.33£222.8° 2197.4 13.48 £128.7°
Sub-conductor 2 (FEM) 45.6 4112-35.7° 118.1 5.18..192.8° 1911 5.27.£90.8°
Sub-conductor 3 (FEM) 245.9 5.54,-23.4° 240.3 4.59.2231.6° 69.4 3.73.£96.3°
Sub-conductor 4 (FEM) 2191.5 13.15.,22.2° 1672.8 1.13.2289.1° 559.3 7.04.£136.9°
Main conductor (FEM) 1811.2 28.08.£0.0° 1903.1 28.08.2240.0° 1706.8 28.08.£120.0°
Main conductor (12a-b) 1592.8 28.08.£0.0° 1707 1 28.08.2240.0° 1592.8 28.08.£120.0°.
Main conductor (13a-b) 1575.3 28.08.2£0.0° 1688.4 28.08.£240.0° 1575.3 28.08.£120.0°
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Finite element computation of maximum forces and of rms current distribution in the low voltage arrangement described in Table 1 with 2, 3 and 4
sub-conductors per main conductor. The maximum forces acting on the main conductors and obtained from (12a-b) and (13a-b) for the three cases

respectively are also shown.

TABLE 6
phase a phase b phase ¢
Force Current Force Current Force Current
[N/m] [kA] [N/m] [kA] [N/m] [<A]

ng=2
Sub-conductor 1 (FEM) - T718.7 7.16.2-1.35° 885.5 ' 7.46.£239.3° 976.4 7.25.2421.0°
Sub-conductor 2 (FEM) 956.5 7.07.£4.37° 846.8 6.78.2240.8° 713.6 6.99.419.0°
Main conductor (FEM) 271.3 14.24.,0.0° 307.8 14.24.,240.0° 278.8 14.24£120.0°
Main conductor (12a-b) 278.9 14.24.,0.0° 298.9 14.24 2240.0° 278.9 14.24 £120.0°
Main conductor (13a-b) 277.0 14.24,0.0° 296.9 14.24 £240.0° 277.0 14.24.2120.0°

ns=3
Sub-conductor 1 (FEM) 577.7 4.86.20.9° 727.5 5.41..240.8° 770.5 5.15,126.1°
Sub-conductor 2 (FEM) 80.1 4.62./-9.6° 13.2 4.62.,230.4° 671 4.612110.4°
Sub-conductor 3 (FEM) 739.0 4.87.,8.2° 624.8 4.33,249.2° 5564.2 458.122.7°
Main conductor (FEM) 265.0 14.24.20.0° 302.4 14.24.£240.0° 274.9 14.24.£120.0°
Main conductor (12a-b) 278.9 14.24.£0.0° 298.9 14.24.£240.0° 278.9 14.24.,120.0°
Main conductor (13a-b) 277.3 14.24.20.0° 297.2 14.24.2240.0° 277.3 14.24 £120.0°

' ns=4
Sub-conductor 1 (FEM) 433.7 3.7724.5° 601.8 4.50£242.6° 6271 4.31£131.8°
Sub-conductor 2 (FEM) 87.6 3.36.,-14.6° 127.8 3.59.2224.9° 179.9 3.49.£108.5°
Sub-conductor 3 (FEM) 194.9 3.40.2-10.0° 187.8 3.16.2230.7° 109.6 3.24.,106.8°
Sub-conductor 4 (FEM) 5911 4.05.,16.4° 469.2 3.40.,261.6° 408.6 3.49.,129.3°
Main conductor (FEM) 2815 14.24.20.0° 307.1 14.24.£240.0° 279.4 14.24./120.0°
Main conductor (12a-b) 278.9 14.24.,0.0° 208.9 14.24.2240.0° 278.9 14.24./120.0°
Main conductor (13a-b) 277.8 14.24.,0.0° 297.8 14.24 £240.0° 277.8 14.24 .2120.0°

Finite element computation of maximum forces and of rms current distribution in the medium voltage arrangement described in Table 1 with 2, 3 and
4 sub-conductors per main conductor. The maximum forces acting on the main conductors and obtained from (12a-b) and (13a-b) for the three

cases respectively are also shown.
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Fig. 3. Forces acting on the middle main conductor in the low voltage
arrangement with a) two, b) three and ¢) four sub-conductors per main
conductor.

C. FEM Calculations - Mu/tiple sub-conductors
per main conductor

The next computation concerns arrangements with more
than one sub-conductor per main conductor. With their ge-
ometry shown in Fig. 1 and described in Table 1, three cases
with ns = 2, 3 and 4 sub-conductors in every main conductor
respectively are solved with the FEM. The results are shown
in Fig. 3 and in Table 5 for the low voltage and in Fig. 4 and in
Table 6 for the medium voltage arrangement respectively. A
comparison with the corresponding partial force values ob-
tained from (14) for the outer sub-conductors cannot be made,
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Fig. 4. Forces acting on the middlé main conductor in the medium voltage
arrangement with a) two, b) three and c¢) four sub-conductors per main
conductor.

for the reason explained above: Anyway, the comparison with
the eorresponding main conductor maximum forces obtained
from (12a-b) and (13a-b), as well as the current distribution
among the sub-conductors of every main conductor shown in
Tables 5-6, lead to the following conclusions: =

- maximum forces computed according to (12a-b), which
are independent of ny, are in many cases smaller than those
computed by the FEM solution, i.e. [1] and [2] are not always
on the safe side;

- maximum forces computed according to -(13a-b), which
are a function of ng (because as stated in [8] and [9], the ef-
fective distance a, may be computed in this case by setting
d = dy,), are still in some cases smaller than thése computed -
by the FEM solution;

- the low voltage arrangement, due to the smaller dis-
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Fig. 5. Magnetic vector potential and total current density distribution in
the low voltage arrangement with one sub-conductor per main conductor:
a)at wf=0°and b) at w £=120°,

tance between main conductors and to the larger conductor
profile, leads to considerably stronger deviations from [1], [2],
[8] a;nd [9] as compared with the medium voltage arrange-
ment;

- the assumption of [3] that the ns sub-conductors of
phase / main conductor carry the short-circuit current evenly
distributed among them cannot be justified (the rms value of
the current flowing in every sub-conductor as well as its corre-
sponding phase angles present significant differences).

Finally, in Fig. 5a-b the lines of constant A, and of
constant J, for the arrangement of Fig. 1a are plotted: when
the short-circuit current is at its maximum in phase a (wt = 0°)
and in phase b (wf = 0°) main conductors respectively, and in
Fig. 6a-b for the arrangement shown Fig. 1b. In both Figures
the lines of MVP differ bg 0.5110"3 Wb/m, while those of cur-
rent density differ by 2108 A/m2. The lines of constant A, in a

‘A : magnetic vector potential (MVP)
a

799

two-dimensional problem are the lines of magnetic flux, so the
distribution of the field in the cross-section of the busbar may
be estimated from Fig. 5a and Fig. 6a. The symmetry of the
magnetic field justifies the fact that the forces are always on
the x-direction. On the other side, the distribution of the cur-
rent density as obtained from the FEM solution takes into
account both the skin and proximity effects. From the current
density lines shown in Fig. 5b and Fig. 6b is concluded that the
current is strongly influenced by the busbar geometry and in
every case unevenly distributed in the sub-conductors of every
main conductor. ’

V. CONCLUSIONS

The Finite Element Method (FEM) calculation of field and
forces for three-phase rigid busbars presented in this paper
leads to significant differences as compared with |[EC and
DIN/VDE Standards [1]-[2]. Moreover, the assumption of [1}-[2]
that the partial currents in sub-conductors of each main con- -
ductor are equal cannot be justified, as FEM leads to differ-
ences up to 1:3. Although in the revisions [8]-[9] of the Stan-
dards the introduction of an effective distance between the
main conductors leads to maximum force values almost equal
to the FEM solution in arrangements with one sub-conductor
per main conductor, this does not always happen when the
arrangement has two or more sub-conductors per main con-
ductor. The results suggest that a further consideration of [8]-
[9] may be useful, especially in cases with multiple
sub-conductors per main conductor.

V. LisT oF SymBOLS

(Wb/m)
: centre-line distance between main conductors (Fig. 1)
m
an, . effective distance between main conductors (deﬂned( in)
2.2.1.4 of [8]) : (m)
as : effective distance between sub-conductors (Table 1 of
[1] and [2]) (m)

B : flux density (M
b : sub-conductor dimension perpendicular to the force
direction (Fig. 1) (m)
by, : main conductor dimension perpendicular to the force
direction (Fig. 1) (m)
d  :sub-conductor dimension in the force direction (Fig. 1)
(m)

dy, : main conductor dimension in the force direction (Fig. 1)
(m)

e : finite element (superscript)
F; : total force per unit length acting on phase / main
conductor during a balanced three-phase short-circuit
{N/m)

Fis : total force per unit length acting on sub-conductor s of
phase / main conductor during a balanced three-phase
short-circuit (N/m)

Fmi  : maximum total force per unit length acting on phase 7
main conductor during a balanced three-phase
short-circuit . (N/m)

Fmis : maximum force per unit length of the force component

that acts on sub-conductor & of phase /main conductor
and is due to current of this main conductor only,
during a balanced three-phase short-circuit ~ (N/m)
fe fy - X- and y-direction components of the force per unit
length (N/m)
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Fig. 6. Magnetic vector potential and total current density distribution in
the low voltage arrangement with four sub-conducters per main
conductor: a) at w £=0° and b) at w £=120°.

f : frequency

i : phase sequence index (/= a, b, ¢)
ks - rms three-phase symmetrical short-circuit current (kA)
i peak short-circuit current in case of a balanced

(Hz)

three-phase short-circuit (kA)
J  :total current density (A/m?)
Jo @ eddy current density (A/m?)
Js  :source current density (Afm?)

ns  : number of sub-conductors per main conductor
g factor of plasticity
R :resistance . Q)

Ry, - stress corresponding to the yield point (N/m2)

rms : root mean square (subscript)

S; . total cross-section of ng sub-conductors of phase / main
conductor (m?)

s : sub-conductor index (s=1, 2,3, . . ., ng)

t : time (s)
Uy : nominal line-to-line voltage (rms) ’ V)
X  :reactance ’ Q)
6 : current phase angle (rad)
kx :factor for peak current

4 relative permeability of conductor material . :

g : relative permeability of vacuum (400m nH/m)
@ : flux density phase angle ' (rad)
w : circular frequency (s
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