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Finite Element Computation of Field, Forces and
Inductances in Underground SF¢ Insulated Cables
Using a Coupled Magneto-Thermal Formulation

D. Labridis and V. Hatziathanassiou

Abstract—A finite element (FE) iterative formulation has been
used for the computation of the coupled magneto-thermal field
in underground SF¢ insulated high voltage cables. The formu-
lation takes into account the real geometrical and physical
properties of the involved materials. Using the field distribu-
tions, the cable ampacity and losses, the forces and the induc-
tances have been calculated for both isolated phase and three-
conductor arrangements. The influence of the operating pa-
rameters on these quantities is examined.

[. INTRODUCTION

HE concentration of load in large industrial and urban

areas and the installation of large power plants close
to this load leads to the transmission of higher electrical
power. Coupled with the expected increase of the load
and generation density is an increase of the continuous
current of the system. Values of 6300-8000 A for bus
bars in the voltage range up to 525 kV may be regarded
as typical [1], and the components of the transmission
system (bus bars, cables, circuit breakers) have to support
and control the normal and short circuit currents. SFg in-
sulated underground power cables may be used for the
transmission of this high electrical power for short station
getaways and underpasses, because they have advantages
compared with traditional oil-impregnated or oil-filled
pipe type cables [2], [3]. Therefore, the calculation of the
operating parameters of gas insulated cables (including
electromagnetic and thermal fields, losses, forces and in-
ductances) is of importance for the design and reasonable
operation of the transmission system.

The finite element method (FEM) has been used exten-
sively in the solution of thermal problems [21]-[22] in
underground cables as well as of eddy-current multicon-
ductor problems 4], [6], [11], [23]. The first attempts to
couple the two problems were made by approximating the
cable geometry and neglecting the skin and proximity ef-
fects in [24] or by assuming the electric conductivity in-
dependent of temperature in [7].

In [3] a FE iterative formulation has been presented for
the computation of the coupled magneto-thermal field in
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underground SF insulated cables. In this paper, the for-
mulation of [3] has been extended to model the electro-
magnetic and thermal steady-state diffusion problems in
both isolated phase and three-conductor gas insulated ca-
bles. As a result, the field distributions of the magnetic
vector potential (MVP) and of the temperature can be cal-
culated. The ac losses, the forces acting on the conductors
as well as their inductances are formulated, using the MVP
distribution. The cable ampacity is also estimated from
the temperature distribution, using a given maximum
sheath temperature as a limitation. The assumptions that
were used in the calculation are the following.

The cable is of infinite length, so that the coupled dif-
fusion problem becomes a two-dimensional one;

Charges and displacement currents are neglected;

The conductors and the sheaths have constant relative
magnetic permeabilities y,. and p,, respectively;

The electrical conductivities, o, and o, of the conductor
and sheath are functions of temperature;

The thermal conductivities of the conductors, sheaths,
soil and backfill (k,, k,, k, and k;, respectively) are
independent of temperature;

The air inside the tubular conductors is stationary,
therefore the thermal conductivity of air &, is used
in this region;

An effective thermal conductivity k. of SFg, including
the effects of free convection and radiation between
conductor and sheath, is calculated. Conduction
becomes the dominant mode of heat transfer in the
whole domain. This effective thermal conductivity
ke is a function of the mean temperatures of the
sheath and conductor. The phase currents are si-
nusoidal and balanced, therefore complex functions
for the time variation of the three conductor cur-
rents may be used.

II. THE ELECTROMAGNETIC FIELD PROBLEM
A. Electromagnetic Diffusion and Boundary Conditions

The assumptions made lead to a piecewise linear,
steady-state, time harmonic electromagnetic field in a two-
dimensional region § bounded by the curve C. Supposing
that the region § lies on the x-y plane and following the
analysis presented in [3], the two-dimensional electro-
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magnetic diffusion problem for the z-direction compo-
nents of the MVP, A_, and of the total current density
vector, J,, is described by the system of equations

1 [auz 3’4,
pow, L 0x*  8y*

:'—jwoA:+JSZ=0

—jwod, + J,, =J, (la)

the boundary conditions

Afc = Aox, y) (1b)
and the integral form

gg Jz ds = Irms’ (IC)

s

where p is the magnetic permeability of vacuum, g, is
the relative magnetic permeability, J,, is the z component
of the uniformly distributed source current density and 7,,,,
is the rms of the current flowing through each conductor.
The unknowns in the system of (la) are 4, and J,,, while
the values of A4, at the limit C of region S are specified by
the Dirichlet condition (1b) and the total current density
J. is specified in the integral form (1c).

B. Finite Element Formulation

The conductivity ¢ (T) of a material at 7°C, according
to the assumptions, is approximated by

Jo

7Y =
oD =117

@

where gy is the conductivity at 0°C and « is the temper-
ature coefficient of this material.

Applying the Galerkin method to the system of equa-
tions (1), assembling the element contributions in the
usual way [4] and taking into account the temperature de-
pendence of the conductivity, the following matrix equa-

tion iS Obtained
l: :|
I

3

where Sy and T are the usual FE matrices encountered in
the solution of eddy current problems [5], while the vec-
tors O, 1, and G and the diagonal matrix W are defined in
[6] for the multiconductor FE formulation.

Sk — jwo(T)Tg
Holkr

—jwo(NQ {A}
= juo (T)Q'

jwo(T)W | LG

III. THE TEMPERATURE FIELD PROBLEM

A. Gas Insulated Cables—Effective Thermal
Conductivity of the Insulation Gas

1) Isolated Phase Gas Insulated Cables: Explicit am-
pacity equations may only be derived when the radial tem-
perature drops are proportional to heat flux, as in thermal
conduction. In gas insulated cables the heat must be trans-
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ferred across two surfaces in series, i.e., the outside of
the conductor’s and the inside of the sheath’s surface. So
both free convection and radiation are important and the
ampacity must be determined by successive approxima-
tions. Conduction is the dominant mode of heat transfer
from the sheath outward. In order to define an effective
thermal conductivity that takes into account both free con-
vection and radiation from the conductor’s to the sheath’s
surface, the following formulae were used

If T, and T, are the mean temperatures of the conductor
and sheath, respectively, then the temperature drop across
a concentric fluid gap may be expressed as

QIn R/r,)
T. - T, = =12
¢ y 27rkeff

where Q is the heat flow per unit length (W/m), kg is the
effective thermal conductivity (W/m°C), R; is the inner
sheath radius (m) and r, is the outer conductor radius (m).
In order to calculate k.; from (4), the total heat flow per
unit length Q must be known. This total heat is the sum

0=0 + 0 &)

of the radiation and convection heat flows, Q, and Q.,
respectively.

The Stephan-Boltzman law for a coaxial line gives the
radiation heat flow Q, per unit length as

0, = 5.67 x 10712 x 27r,£'1(273

@

+ T) - 273 + T,Y] (62)

where [8]

_ £,
Es + (Ri/ro)(l - ES)EC’

The emissivities £, and £, of conductor and sheath that
appear in (6b) depend on their electrical conductivity. As-
suming that the conductors are made of EC grade alumi-
num and the enclosure pipes of some high-strength alu-
minum alloy, it is recommended to use the values £, =
0.3and & = 0.8 [2].

Considering now the convective heat flow Q. per unit
length, we must take into account its dependence on the
gas density and therefore on the gas pressure and temper-
ature. For an SFg insulated cable that has been filled to
345 kPa (50 psi) at 20°C, which is typical for isolated
phase systems, Doepken [9] recommends the following
formula for convection

_ 375 X 10T, = TY"’®, — r,)"*
- In (Ri/r,)

¢ (6b)

Q. )

2) Three-Conductor Gas Insulated Cables: When the
three conductors are inside the same gas-filled enclosure,
a further simplifying assumption has to be made about the
heat transfer through the gas insulation. For this reason
we may consider an imaginary cylindrical heat dissipation
surface of radius R,, as shown in Fig. 2(a). This is an
envelope of the three conductors and should be considered
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to consist of the same material as the conductors. Around
this envelope’s periphery the three conductors’ Joule
losses emanate uniformly. Using this assumption we deal
again with the heat transfer problem across a concentric
fluid gap, so the effective thermal conductivity k.g of this
gap may be calculated from the relations (4) to (6) if we
use the envelope’s radius R, instead of r,.

B. Thermal Diffusion and Boundary Conditions

Under steady-state conditions, the differential equation
governing the heat conduction is

2T 2
_k|:a +§_T} zq

a gy (®

where g is the rate of heat generated per unit volume per
unit time and k is the thermal conductivity. The corre-
sponding boundary conditions are

T, = Tolx, y) (8b)

and

T oT

k[g_x I+ a—yly] +q, +h(T—-T,) =0 onC, (8¢)
where C, is the boundary on which a prescribed temper-
ature To(x, y) is specified, /; and /, are the direction co-
sines of the outward normal to the surface and C, is the
boundary on which both the heat flux g, due to conduction
and the convective heat loss /2 (T-T,) are specified, where
A is the convection heat coefficient and T, is the ambient
temperature.

C. Coupled Finite Element Formulation

According to the assumptions, the effective thermal
conductivity k.r of SFg is a function of the mean conduc-
tor and sheath temperatures, T, and T, respectively. The
internal heat generation ¢ is also a function of tempera-
ture. In order to calculate g for the typical finite element
e we may use the relation {6]

Je Je*

== o)

where J° and ¢° are the total current density and the elec-
tric conductivity of element e, respectively. The follow-
ing remarks are made:

1) o°is explicitly dependent on temperature due to (2).

2) The MVP approximation of this element, 4°(x, y),
and the corresponding source current density, J¢, as
they will be derived from the solution of (3), are
implicitly dependent on temperature. If we assume
a first-order triangular element e with local MVP
nodal values A, A5 and A$, then the total current
density J¢ may be calculated from [3]

_ Jwe®
3
Therefore J¢ is also temperature dependent.

Je =

(A7 + A5 + A + J,;. (10)
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The above analysis, using the FEM formulation of the
two-dimensional heat conduction problem, leads to the
matrix equation

2 KT + KT = 2 [P + P§) (1

where the matrices K, P and T are given in [3].

IV. INCORPORATION OF THE BOUNDARY CONDITIONS

The electromagnetic and thermal fields of both isolated
phase and three-phase gas insulated cables may be con-
sidered unbounded. The FEM has been used to solve un-
bounded field problems using several different ap-
proaches, such as the extension of the discretization area
(direct solution), the use of integral equations (Green’s
function) [16], the ‘‘window frame technique’’ [17], the
boundary element method [18], the ‘‘infinitesimal scal-
ing’’ [19] as well as the newer ‘‘hybrid harmonic/finite
element method’’ [20].

For the reasons explained in [10], the first method was
adopted here. Because the boundary conditions of the two
diffusion problems have to be imposed on the same curve
C, it is possible to use the same finite element mesh for
both by simply defining the appropriate boundary condi-
tions for the problem that is currently solved.

As shown in Fig. 1(b) and Fig. 2(b), the cables are
buried in depth D from ground surface. The solution re-
gion § is bounded by the curve C, where C = AB U BT
U T'A U AA. The boundary conditions (8b) and (8¢) of
the thermal diffusion problem will be examined first.
Boundary lines BI', T'A and AA are of type C,, while
boundary line 4B is of type C,. The method of repeated
solution of [10] leads to the conclusion that a mesh of
24 m width and 12 + D m depth (for both isolated phase
and three-conductor gas cables) leads to zero heat flux in
every point belonging to Cpp 4. This mesh is practically
unaffected by the heat sources of the problem and conse-
quently satisfies both (8b) and (8c), corresponding to the
imposed conditions

TlCBl"M = Txp

(12a)

(12b)

I

T
]: 0 on CAB

k L+ 0Tl } + n(T - T
x Ty h ( )
where T, is the specified soil temperature.

The boundary conditions of the electromagnetic diffu-
sion problem are the subject of the next question concern-
ing the finite element mesh. A homogeneous Dirichlet
condition obtained from (1b) has to be imposed on C. The
distance of curve C from the cables has been estimated
[6] as 5 to 6 times a typical dimension of the cable ar-
rangement. This typical dimension is the sheath radius R;
in the case of a three phase gas cable and the distance 28
of the outer cables in the case of an isolated phase cable.
Typical values for R; are from 0.3 to 0.6 m and for S from
0.5 to 1.6 m, so the finite element mesh that has been
already assumed for the satisfaction of the boundary con-
ditions of the thermal problem automatically satisfies the
electromagnetic boundary conditions. So along the
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Fig. 1. Isolated-phase gas insulated cable: (a) Cross section of the three
conductors, (b) Cable in trench and discretization area of the problem.
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Fig. 2. Three conductor-one sheath gas isolated cable: (a) Cross section
of the cable, (b) Cable in trench and discretization area of the problem.
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boundary C of Fig. 1(b) and Fig. 2(b) the condition im-
posed is
Al. =0 (13)

V. THE ITERATIVE PROCEDURE

The computation of the MVP 4 and of the source cur-
rent density J, from (3) requires the determination of the
rms current [, in order to define the vector 1. For the
calculation of the electrical conductivity o, the tempera-
ture distribution on the conductors and sheaths is also nec-
essary. On the other hand, the computation of 7 from (11)
requires the determination of the average loss density g,
to define the vector P,. The effective thermal conductivity
k.q is also calculated using the mean temperatures of the
conductors and of the sheaths, 7, and T, respectively.
This problem is solved by an iterative procedure, con-
sisting of the following 4 steps:

Step 1: The solution of (3) leads to the unknown val-
ues of MVP A at every node and of the source current
density J; at every conductor.

In the first iteration, the temperatures of the conductors
and of the sheaths are set equal to arbitrary and constant
values. For all the next iterations, the temperature values
at every point will be obtained from step #4 and they will
be different from point to point.

Then the electrical conductivities ¢° at every element e
that lies on the cross-section of the conductors and of the
sheaths are computed according to (2).

Step 2: Using the values of 4 and J; from the solution
at step #1, the total element current density J* is com-
puted from (10), if element e lies on the cross-section of
conductor i having source current density J;, or from

Jwo®

3
if element e lies on the cross-section of the sheath. Using
(10) or (14) and (9), the average loss density §° of element
e is calculated.

Step 3: Using the values of T from the solution in step
#4, the mean conductor (7,) and sheath (7;) temperatures
are calculated. Then, the effective thermal conductivity
k. of SFg is computed from (4).

Step 4: The solution of (11) leads to the unknown val-
ues of T at every node. The values of i iteration Tj;, are
compared with the values T}; _ , of the previous iteration.
If [Ty — Ti-1y| = T, at every node, where T, is a
small temperature, the iterative procedure is terminated.
The value of T, used in the calculations of this paper was
1°C and the iterations needed in all cases were three or
less.

Je =

A5 + A5 + A43) (14)

VI. CALCULATION OF CABLE OPERATING PARAMETERS
A. Losses and Inductances

The total ac losses per unit length of an isolated phase
cable are equal to

3
P, = 2 (P + Py (1)
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where P; and Pj; are the phase i (i = 1, 3) conductor and
sheath losses per unit length respectively, while the total
ac losses of a three-conductors one-sheath cable will be

3
P=2P;+P, (16)

i=1

where P, are now the ac losses per unit length of the single
sheath. The ac cable effective resistance R,

P, = 3[R, (17)
leads to ac/dc ratios corresponding to (15) and (16)
3 3
Rac 1 Z Pci Psi >
= —L 4 2 18
Rie 3 (r=1Pdc, 2 P (19
and
Rac _ l 2 Pci + Ps 19)
R 3\ZR,) T (
Z Pdu

respectively, where Ry and Py are the dc resistance and
dc loss, respectively, per unit length of a conductor. The
coupled electromagnetic diffusion equations provide the
final MVP and temperature nodal values as well as the
final source current densities of the three conductors. Us-
ing these values it is possible [10] to calculate the average
loss density contribution of element e, given by (9). The
mean value of the losses per unit length of this element
will be obtained by the integration of ¢° over the element

cross section S¢ as
S S q° dx dy.

Se

Pe = (20)

The total losses per unit length of conductor or sheath i
are finally calculated as the summation of the element loss
contributions of the corresponding conductor or sheath.
To compute the conductor i inductance L ;, we use the
mean value W,, of the stored magnetic energy per unit

length of this conductor
Wi = 3 Leil . @

Using the integral form of this energy and taking its mean
value [6], it becomes

W, = 3 Re gl?? H A(x, y) dx dy} (22)
Si

and the inductance of conductor i may be calculated using
(21) and (22) as

L, = L Re {J}f Sg Ax, y) dx dy}. (23)

5
Iﬁ
ms S,

This inductance is related to the mean inductance of the
isolated phase arrangement of Fig. 1(a)

sV2 1)

Ho
L, =_—11 + —
g 27r<rl r, 4

(24)
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or to the mean inductance of the three-conductors one-
sheath arrangement of Fig. 2(b)
m 1
LS bo <ln — + “>

= — 25
27 r, 4 25)

B. Electromagnetic Forces

The force dF on the volume element dv at which the
current density is J is given by

dF = (J x Bydv (26)

where, according to the assumptions, the flux density vec-

tor B will be on the x-y plane. The force per unit length
acting on element e of conductor i will be equal to

F{=%F% + 9F5 @7
where
F¢ = —sgje(x, Y)BY dx dy (28a)
sy
and
Fy = H J*(x, y) BS dx dy (28b)

S§

It should be noted that in (28) the flux density as well as
the force components are assumed to be constant on the
cross section of element e. This assumption implies that
the interpolation functions used in the FE formulation are
linear polynomials in x and y (i.e., first-order shape func-
tions). This simplifies the elementary computations that
concern quantities deriving as first derivatives without in-
troducing any error, providing that the finite elements are
small enough to follow the possible step discontinuities.

Defining the phasors of the element current 7¢ and of
the flux density B{ and B; as

e _ ge Jjoe
1 - Irmse
;e
Bi = B)e(m]sejvx

»
BS = Bi e

29

the products of the corresponding force per unit length
time functions in this element will be

Fr@) = —IBymslcos (0° — &%)
+ cos Qut + 0° + ¢})]

F3@0) = It Bimg[cos (0° — ¢f)
+ cos Qwt + 6° + 7). 30)

The total force time functions, that define the total force
acting on conductor i, will be derived as the assembly of
the elementary force contributions of this conductor

ﬁm=§ﬁm

L= §f;(t). (1)
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These forces are related to a base force f, equal to

2

B g
= 2
Jo 2wl 32
which applies between two straight parallel conductors
carrying a current /.,; and being at a distance / = § (for
the isolated phase arrangement) or at a distance [ =
mi\3 (for the three-conductors one-sheath arrangement).

C. Ampacity

The ampacity of a gas insulated pipe-type cable is lim-
ited only by the maximum sheath temperature. This is the
result of good heat transfer through the gas insulation,
that leads to a small temperature drop between conductor
and sheath. This maximum sheath temperature has only
to be limited so that it will not dry out the soil near the
cable.

The mean temperatures of element e are used to cal-
culate the mean temperatures T,; and T,; of conductor i
and sheath i respectively. After the termination of the it-
erative procedure these mean temperatures may be plotted
against the cable current. If we define the maximum con-
ductor and sheath temperature that is allowed, the cable
ampacity is estimated. It should be noted that due to the
thermal proximity effect in the isolated phase arrange-
ment, the temperatures of the central conductor and sheath
cable will be higher than those of the other two cables.
So, these temperatures determine the cable ampacity.

VII. REsuLTS
A. Comparison with Approximate Calculations

Doepken presented in [12] the first comparison between
an isolated phase and a three conductor gas cable, both
having nominal voltage 230 kV. To calculate the cables
ampacity, he used a thermal conductivity of the earth of
1.11 W/m°C, a sheath temperature rise of 35°C above a
25°C ambient, a load factor of 100%, sheath and con-
ductor emissivities of 0.95 and SF¢ at 345 kPa (50 psi).
The ampacities obtained in {12] were used as input in the
FEM formulation of this paper and the results are shown
in Table I. The difference in the total loss estimation be-
tween the two approaches in the isolated case as well as
the lower sheath temperature rise obtained from FEM in
both cases are due to the approximations used by Doep-
ken. These approximations involve a loss estimation of
conductor and sheath losses based on Dwight’s formula
[13], suffering from the assumption of a uniformly dis-
tributed current over the conductors cross-section, as well
as an ampacity estimation based on [14], suffering from
geometrical assumptions.

Graneau presented in [2] a more accurate method for
the loss and ampacity calculation of both isolated phase
and three phase-one sheath gas cables. Using his method,
three different isolated phase cables were calculated and
the ampacities obtained were used again as input to the
FEM formulation of this paper. The results, appearing in
Table II, show an excellent agreement between the two
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approaches. The small differences encountered here are
mainly due to the 1:1 conductor-sheath current trans-
former assumption used by Graneau in the calculation of
the sheath equivalent resistance.

B. Parameter Analysis

The large number of operational parameters involved
in buried cables prevents the development of generalized
charts concerning all cases. However, the FEM formu-
lation of this paper is capable to investigate any particular
arrangement. In order to illustrate this, one case referring
to three-phase one-sheath cable and one referring to an
isolated-phase cable were examined. In both cases the fol-
lowing geometrical and physical properties were common
(using the notation of Fig. 1(a-b) and Fig. 2(a-b):

Bre =1 Brs = 1

0.0 = 3.86 + 10’ S/m 00 = 3.75 - 10’ S/m

a, =3.96-10721/°C  «, =396 107%1/°C
£ =03 £, =08

k. = 150 W/m°C k, = 150 W/m°C

k, = 0.028 W/m°C k., = 1.11 W/m°C

T, = 20°C h = 11.36 W/m*°C

d. = 0.01270 m (33)

The geometrical properties of the three-conductor gas
cable were:

r, = 0.06350 m
m = 0.25765 m

d, = 0.01270 m
D =085m

while the sheath radius R; varies from 0.22 to 0.36 m. The
ambient temperature T,, was 25°C and the cable was bur-
ied in a homogeneous soil system, i.e., the thermal con-
ductivity of the trench backfill k, was set equal to k,. In
Fig. 3(a) the mean temperatures of conductors and sheath
are shown. The parameter is the cable rms current, rang-
ing from 1500 A to 3000 A. This plot may give implicitly
the ampacity of the cable, if the allowable sheath temper-
ature is determined. Taking for example as an upper limit
for T, a value of 60°C, a maximum current of 2000 A for
a minimum sheath radius of 0.243 m is determined. In
Fig. 3(b) the ac/dc losses of the conductors and sheath
defined in (19) versus R; are shown. As it was expected,
only the sheath losses present an essential variation and
they also tend to a constant value as the sheath moves
away from the conductors. In Fig. 3(c) the inductance of
the conductor #1, for the same range of rms current, is
shown. The inductances are related to the inductance L
defined in (25). The current variation has negligible influ-
ence on the inductance, confirming the identity that in-
ductance is only a function of geometry and p,. Finally
in Fig. 3(d) the forces acting on the same conductor for
rms current 2000 A are presented. The forces are related
to the force f, defined in (32) and they are plotted for a
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TABLE I
Ampacity R, r, P, P, T, — Ty
from [12] from FEM Procedure
Cable
Arrangement [A) [m] [m]} [W/m] [W/m] [°C]
Isolated phase 1550 0.14478 0.05080 124.7 111.4 229
Three-conductor 1480 0.22860 0.04064 111.5 i11.3 29.9

Comparison of the total loss P, and mean sheath temperature rise between an isolated phase gas cable
and a three conductor gas cable as obtained by the coupled FEM procedure, with the corresponding cal-
culation of {12]. The ampacities in [12] were calculated for a 35°C sheath temperature rise T, above a
25°C ambient temperature To,. In both cases the conductor wall thickness d. was 0.01270 m, the sheath
wall thickness d, was 0.00762 m and the depth of burial of cable axis below ground level D was
0.91440 m. The spacing S of the isolated phase cables was 0.45 m while the distance between conductor
centres m of the three conductor case was 0.19558 m.

TABLE II
Ampacity P, P, T,

from FEM

Voltage r, R, d, N from [2] procedure
kV} [m] [m] [m] [m] [A] [W/m] [W/m] [°C]
145 0.0445 0.1141 0.0064 0.34 1560 141.0 138.9 59.0
362 0.0635 0.1829 0.0076 0.56 2313 187.5 187.4 61.2
550 0.0890 0.2476 0.0064 0.71 2940 227.4 228.5 62.9

Comparison of the total loss and temperature values of 3 different isolated-phase gas cables as obtained
by the coupled FEM procedure, with the corresponding approximating method of Graneau [2]. The am-
pacities shown in the table were calculated for 40°C sheath temperature rise above a 20°C ambient tem-
perature and with soil conductivity X, = 1.11 W/m°C. In all cases the conductor wall thickness d, was
0.0127 m and the depth of burial D was .91 m.

1.4
| 1500|4
1.2 =
. 10 3000]A
o
>
B o’ 08 -
k4 . i\ 1500 A
3 N
B PN N
ot D06 | e
5 < NN
o . \\1\\\
0.4 3000 AN

022 024 026 028 030 032 034 0.36
R; [m)

(@

La/Ls

-0.6

@

Fig. 3. (a) Conductor (solid lines) and sheath (dashed lines) mean temperatures T, and 7T, respectively versus sheath radius R;.
(b) Conductor (solid lines) and sheath (dashed lines) ac/dc loss ratios versus sheath radius R;. (c¢) Conductor #1 inductance
versus sheath radius R;. (d) Conductor #1 forces versus sheath R;, for I, = 2000 A.
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backfill thermal conductivity k,, for the isolated-phase arrangement.
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Fig. 5. Temperature contours of the 145 kV isolated-phase gas insulated
cable for [, = 1560 A buried in a trench that is filled with three different
backfill materials: (a) Homogeneous soil system, i.e., k, = k, = 1.11
W/m°C. (b) k, = 0.4 W/m°C. (c) k, = 2.0 W/m°C. The contours are
plotted with step equal to 5°C and the soil T, and ambient T, temperatures
are both equal to 20°C.

IEEE TRANSACTIONS ON MAGNETICS, VOL. 30, NO. 4, JULY 1994

time variation equal to a half period. It is known [15] that
the locus of the force vector for this time variation is a
real ellipse. There is always a lower limit of sheath radius
(in this case 0.29 m) below which the forces have a sub-
stantial negative x-component. This component is dan-
gerous and has to be avoided, because during short circuit
conditions it may cause deflection and vibration of the
conductors.

The isolated-phase gas cable that was examined has the
geometrical properties and the ampacity of the 145 kV
cable of Table II and the ambient temperature T, was
20°C. In this case a trench of variable thermal conductiv-
ity k, was considered, with dimensions given by ¥ = 1.23
m and W = 1.10 m (see Fig. 1(b)). The top 0.30 m of
this trench was assumed to be filled with native soil, hav-
ing the same thermal conductivity as the rest of the out-
side domain, i.e., k.. In Fig. 4 the temperatures of the
conductor and sheath located in the middle (cable #2) as
well as one of the outside cables (cable #1) are shown as
a function of k,. The gain in the allowable heat input and
hence in the cable’s ampacity is very significant when the
backfill’s thermal conductivity rises. This figure shows
clearly the potential benefits to be achieved through de-
velopment of backfill materials with high thermal con-
ductivity. Finally, in Fig. 5(a-c), the temperature con-
tours of the same cable with rms current 1560 A and for
three different backfill materials are shown, illustrating the
previous conclusion.

VIII. CONCLUSIONS

The FE formulation presented in this paper leads to an
efficient computation of the coupled magneto-thermal field
in both isolated phase and three-phase gas insulated ca-
bles. The calculation of an equivalent thermal conductiv-
ity of SF¢ leads to a conduction based thermal diffusion
equation. There are no other approximations concerning
the cable geometry and the electromagnetic and thermal
properties of the involved materials. The problem is
solved using a very fast iterative procedure. From the field
computation, the cable losses and ampacity along with the
forces and conductor inductances are easily obtained.
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