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Coupled magneto-thermal field computation 
in three-phase gas insulated cables 
Part 2: Calculation of ampacity and losses 

V. Hatziathanassion and D. Labridis, Thessaloniki, Greece 

Contents: The calculation of ampacity and losses of three-phases gas 
insulated cables based on the FEM formulation which was devel- 
oped in Part 1 is presented. Limitations of the common mesh for 
both problems (electromagnetic and thermal) are also presented. 
Comparisons with existing calculations are made. Results concern- 
ing the sensitivity of cable ampacity and losses to variations of design 
and environmental parameters (burial depth, ambient temperature, 
soil thermal conductivity, cable emissivities, heat transfer coefficient, 
sheath radius) are finally presented. 

Berechnung des gekoppelten magnetisch-thermischen 
Feldes dreiphasiger gasisolierter Kabel 
Tell 2: Bereehnung der Stromtragefiihigkeit nnd Verluste 

Ubersieht: Basierend aufdem in Tell 1 beschriebenen L6sungsansatz 
mit der Finite-Elemente-Methode wird die Berechnung der Strom- 
trageffihigkeit und der Verluste eines dreiphasigen gasisolierten 
Kabels angegeben. Dabei wird auch auf die Grenzen bei Verwendung 
eines f/Jr beide Problerne (elektromagnetisches und thermisches 
Feld) gemeinsamen Gitternetzes eingegangen und ein Vergleich mit 
existierenden Berechnungsverfahren gemacht. Abschliel3end werden 
Ergebnisse bez/iglich der Abh/ingigkeit der Stromtragef/ihigkeit und 
der Verluste von Koustruktions- und Umgebungsparametern (Ver- 
legetiefe, Umgebungstemperatur, W/irmeleitffihigkeit des Bodens, 
W/irmeabstrahlung des Kabels, W/irme/ibergangskoeffizient, Man- 
telradius) vorgestellt. 

1 Introduction 

The solution of the coupled magneto-thermal field in 
a three phase gas insulation cable is presented in this 
paper. The method used is the finite element formulation 
that has been analysed in Part 1. The proposed method 
takes into account the real geometry and the real 
electromagnetic and thermal properties of the involved 
materials. The given quantity is the rms of the measurable 
current flowing through each conductor and the result is 
the computation of the magnetic vector potential (MVP) 
and temperature field distributions. From the MVP 
distribution, the current density distribution and all the 
other performance quantities (losses, forces, inductances) 
of the cable may easily be obtained. From the temperature 
distribution, using a given maximum sheath temperature 
as a limitation, the ampacity of the cable is also easily 
determined. 

A general-purpose finite element program has been 
developed, using the same mesh for the two diffusion 
problems but with different boundary conditions on each 
one. Calculations have been made for different load 
conditions as well as for different material properties. The 
results have been compared with analytical and empirical 
approaches and with measurements. The accuracy of the 
proposed method is shown to be excellent. 

For  all the references made to Part  1 of the paper the 
suffix [P1] is used, e.g. Fig. 2 [P1]. 

2 Limitations of the discretization area 

Both the electromagnetic and the thermal field of an 
underground cable may be considered as unbounded 
fields. The boundary conditions (2b) [P1], (9) [P1], (10) 
[P1] and (11) [P1] prevail at infinity, i.e. the limit C of the 
two-dimensional region S in most cases is not in a finite 
distance from the field sources. The F EM has been used to 
solve unbounded field problems using two different 
approaches: 

a) Extension of the discretization area (direct solution), 
b) use of integral equations (Green's function). 

In the first method, the unbounded region S is always 
geometrically truncated into a bounded one. This is 
accomplished by the introduction of an artificial bound- 
ary C that lies at a finite distance from the field sources. 
In order to achieve an acceptable accuracy, this large 
selected area has to be tested by repeated solutions for 
regions of varying size. A second difficulty is that the 
number of nodal points of the FEM tends to be large, 
leading to the solution of a large system of equations. In 
the second method, the unbounded region S is usually 
divided into a bounded region and an unbounded one. 
With the help of a special form of Green's function, the 
problem is restated in the unbounded region in terms of 
an integral equation. The method has been used in 
electromagnetic [1] and thermal [2, 3] field problems and 
seems to lead to accurate results. However, there are some 
difficulties in finding the problem dependent Green's 
function and in making the discretization compatible with 
existing finite element techniques. There are also some 
restrictions concerning the unbounded region: it must be 
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homogeneous and isotropic. The previous direct F EM 
solution of the three-phase gas insulation cable electro- 
magnetic problem [4] and the presence in the literature of 
direct FEM solutions of thermal underground cable 
problems [5, 6] led to the adoption of the first method for 
the finite element discretization area. The disadvantage of 
the large number of equations that this method will 
introduce may be circumvented by the evolution of the 
speed and memory capabilities of the modern computers 
and by the mesh grading, i.e. by progressively increasing 
the size of the finite elements for areas further away from 
the field sources. 

One of the advantages of the finite element formula- 
tion of the problem presented in Part  1 of this paper, is 
that the boundary conditions of the thermal problem and 
the homogeneous Dirichlet condition of the electromag- 
netic problem have to be imposed on the same curve C. So 
it is possible to use the same finite element mesh for both 
diffusion problems and to define the appropriate bounda- 
ries for the problem that is currently solved. 

The thermal diffusion problem will be examined first, 
because the boundary conditions are more complicated 
here. As shown in Fig. 1, the three-phase cable is buried in 
depth D from ground surface. The soil around the cable 
sheath has a thermal conductivity ke and the region under 
consideration S is enclosed by curve C. This curve consists 
of the straight lines AB, BF, FA and AA, so that 

C = AB • BF vo FA vo AA (1) 

In the boundary AB the convective heat loss is specified, 
according to the boundary condition (11) [P1]. The 
parameters needed for the definition of this boundary 
condition are the ambient temperature T~ and the heat 
transfer coefficient h between soil surface and air. Accord- 
ing to the definition (11) [P1], the boundary CAB is of the 
type C3. On the other three boundary lines BF, FA and 
AA the temperature T is specified, i.e. a constant tempera- 
ture boundary is used according to (9) [P1]. However, this 
is an artificial boundary that lies at a finite distance from 
the field sources. This distance has to be determined so 
that the boundary CBr~A, which is of the type C1 accord- 
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Fig. 1. Definition of the boundary conditions and of the size of the 
discretization area of the problem 

ing to the definition (9) [P1], may be assumed unaffected 
by the heat sources of the problem. 

The method of repeated solution has been adopted for 
the determination of the mesh size. The heat flux q~ per 
unit area at the boundary CBr~A was computed in every 
new mesh, until this heat flux was equal to zero in every 
nodal point belonging to CBr~A. For this reason, a bound- 
ary condition of the type C2 of (10b) [P1] has been 
originally used for the curve CBraA and the temperature of 
every node on this curve has been compared to a specified 
soil temperature T~p. On the final mesh, a boundary 
condition of the type C1 of (9) [P1] has been used for 
CBr~A and the mean conductor and sheath temperatures 
T~ and T~ respectively were tested, as they were obtained 
with the use of the two different boundary conditions. 

A typical three phase gas cable carrying an rms current 
of 2000A has been considered buried at a depth 
D = 0.5 m and the quantities used for the boundary 
conditions were 

Too = 15~ 

rsp = 20 ~ (2) 

h = 11.36 W/~ m 2 

Because the points A and B lie on the ground surface and 
therefore their y-coordinates must be constant related to 
the buried cable (in the centre of which lies the origin of 
coordinates), the x- and y-coordinates of the other two 
points F and/1 so as the x-coordinates of the points A and 
B may vary. The repeated solutions along with the 
associated geometrical and physical data obtained are 
shown in Table 1. According to this table, the field was 
finally assumed to stretch 12 m on either side of the y axis 
and to a depth of 12 m below the x axis, in order to satisfy 
the zero heat flux condition on CBraA. Subsequently the 
same mesh was used with boundary condition of the type 
C1 on CBr~A and the results are shown in Table 2. This 

Table 1. Repeated solution for the determination of the optimum 
mesh size using boundary condition of type Ca on CBr~A and 
boundary condition of type C1 on CAB. The cable was buried in depth 
D = 0.5 m from soil surface as shown in Fig. 1. 

XB = Xr Yr = Y~ XA = X3 T -  ~p o n  CBF~A 
[m] [m] [m] [~ 

maximum minimum average 

-3.0 -3.0 3.0 15.4 1.0 9.3 
-6.0 -6.0 6.0 8.1 0.3 5.0 

-12.0 -12.0 12.0 4.2 0.1 1.9 

Table 2. Comparison of the results of the two FEM solutions using 
boundary condition of type C2 and of the type C1 on CBraA, 
respectively. The boundary condition on CAB is always of type 
C3 (convective) and the final mesh of 24 m width and 12 + D + R~ m 
depth has been used. 

boundary condition mean sheath mean conductor 
on CBraA temperature T~ temperature Tc 

[~ [~ 

type C2, using (10b) [P1] 41.9 56.0 
type C1, using (9) [P1] 41.6 55.7 



V. Hatziathanassiou and D. Labridis: Coupled magneto-thermal field computation. Part 2 

large mesh of a rectangular area of a width of 24 m and 
depth of 12 + D + R~ m (where R, is the external sheath 
radius) is the final mesh that was used for all the remaining 
calculations in this paper. In the literature similar large 
meshes have been used for underground cable thermal 
calculations and their dimension vary from 6.1 x 6.1 m in 
[5] to 30.4 x 16.4 m in [6]. 

The satisfaction of the boundary conditions of the 
electromagnetic diffusion problem is the next question 
concerning the finite element mesh. The boundary condi- 
tion that has to be imposed on C is the homogeneous 
Dirichlet condition obtained from (2b) [P1], i.e. using 
a zero value of Ao(x, y) on C. The possible cases that can 
be met on the solution of power cables are the t w o  
following: 

1. The cable sheath is made of a ferromagnetic material, 
for example steel sheaths, and 
2. the cable sheath is made of a nonmagnetic material, for 
example aluminium sheath. 

In the first case, due to the presence of the high permeabi- 
lity ferromagnetic material, the magnetic lines of flux are 
almost entirely confined to the cable sheath, so that the 
flux density is substantially zero outside the sheath. It is 
also known that in a 2dimensional problem the magnetic 
lines of flux are identical with the equipotentials of the 
magnetic vector potential (MVP). As a result, the artificial 
boundary C with a homogeneous Dirichlet condition may 
be located very near to the cable sheath without intro- 
ducing any problems. In the second case, due to the 
nonmagnetic sheath, the MVP has nonzero values on the 
exterior of the cable sheath. However, due to the very low 
electric conductivity of the soil surrounding the sheath, in 
a short distance from the cable the MVP may be again 
assumed to be zero. This distance has been estimated [4] as 
5 to 6 times a typical dimension of the cable, which on the 
case of a three phase gas cable may be assumed as the 
sheath radius Ri. Typical values for Ri are from 0.3 to 
0.6 m, so the finite element mesh that has been already 
chosen for the satisfaction of the boundary conditions of 
the thermal problem automatically satisfies the electro- 
magnetic boundary conditions. So in the boundary C of 
Fig. 1 the following conditions were imposed for the 
calculations: 

Electromagnetic problem." 

&[c = 0 

Thermal problem ." 

on CA~ 

o n  CBrAA 

I ~ T  ~T 1 k a x l ~ + ~ j y l r  + h ( T - V o ~ ) = O  

r [ c ~  = Tsp 

(3) 

3 C o m p u t a t i o n  o f  losses  and cable  a m p a c i t y  

The finite element iterative solution presented in Part 1 
leads to the computation of the nodal values of the MVP 
A and the temperature T, as well as of the source current 
density J,~ in conductor i (where in this case i = 1, 2, 3). 
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Using these values, all the other performance quantities of 
the cable may be computed. 

The total ac losses per unit length of the three phase gas 
cable are 

f~ = 3pc + Ps [W/m] (4) 

where Pc and P~ are the ac losses per unit length of anyone 
of the three conductors and of the sheath, respectively. 
Defining an ac resistance per unit length of the cable 
Rac such as 

Pt = 3I~,,,R~c (5) 

the ac/dc ratio will be 

R~c Pc P~ 
- + - -  (6) 

R~c P~c 3Pa~ 

where Rac and Per are the dc resistance and dc loss, 
respectively, per unit length of a conductor, equal to 

1 
Rdc -- 7T,(ra 2 __ ri2) Oc [g2/m] (7 a) 

and 

Pec=I2m~Rdc [W/m] (7b) 

From the conductivity definition as a function of 
temperature in (5) [P1], it is obvious that the dc quantities 
defined in (7) cannot be assigned a value before the end of 
the iterative solution. However, in order to have a con- 
stant quantity for reference, after the calculation of the 
mean temperature T,, ~ of element e given by (15b) [P1], 
a mean temperature T~ of the three conductors is calcu- 
lated. Using this temperature and (5) [P1], a mean con- 
ductor conductivity is defined by 

O'Oc 
ac - [1/~Qm] (8) 

1 + c~Tc 

and it is used for the definitions in (7) in every iteration. 
Both sides of (6) may be calculated and therefore 

a verification of the accuracy of the solution may be 
accomplished. If a complex voltage drop per unit length of 
conductor i is defined as 

V~ = J*~ [V/m]  (9) 
O-c 

then the corresponding impedance per unit length of this 
conductor will be 

z , -  ~.~ In/m] (lO) 

The real part of Zi will be the ac resistance per unit length 
of conductor i, i.e. 

Roci = Re {Zi} [n/m] (11) 

and because the conductors are symmetrically arranged, 
the ac resistance R~c of the left side of (6) will be 

3 

E Raci 

R~c - i=~ - Raci, i = 1, 2, 3 [f~/m] (12) 
3 
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For  the evaluation of the quantities in the right side 
of (6) a distinction must be made between the conductor 
and the sheath losses. Consider first a typical finite 
element e lying on the cross-section of conductor i. 
The eddy current density J~ is given [4] in terms of the 
MVP A by 

J~=- jco~rA [A/m 2] (13) 

so the relation between the corresponding element quan- 
tities will be 

J~i(x, y) = -jo)aA~(x, y) (14) 

and the total current density distribution of element e may 
be obtained from 

J~e(x, y) = Jet(x, y) + J~ (15) 

4 Results 

4.1 Comparison with existing calculations 

Graneau [8] presented an approximate ampacity compu- 
tation of the 345kV, 2020A three phase gas cable 
proposed by Doepken [9]. In order to compute the 
maximum permissible current, he assumed a fixed sheath 
temperature of 60 ~ and he used an iterative analytical 
and graphical method. The same cable has been examined 
with the FEM procedure presented in this paper and the 
results are shown in Table 3. 

Table 3. Comparison of the loss and ampacity values of the FEM 
procedure with the corresponding values given in [8], for a specified 
mean sheath temperature T~ of 60 ~ 

T~ P~/Q~ P,/3Pd~ Z Lms 
[oc] [oc] [A] 

Computation of [8] 60.0 1.18 0.13 72.2 2148 
FEM procedure 56.6 1.11 0.17 72.6 2148 
(this paper) 60.0 1.11 0.17 77.5 2250 

Using (15) and symmetric quadrature formulae [7] of first 
degree it is easy to verify (16a) [P1]. Consider next 
a typical finite element e lying on the cross-section of the 
sheath. Then the source current density will be equal to 
zero, because the sheath carries no source current but only 
induced eddy currents and (16b) [P1] is obtained. So the 
average loss density contribution 0 ~ of the typical element 
e defined in (14) [P1] can be easily calculated. 

The mean value of the losses per unit length of element 
e will be obtained by the integration of 0 ~ of this element 
S e as 

pe = ~ 0~ dx dy [W/m] (16) 
S ~ 

The integral in (16) can be expressed [4] using symmetric 
quadrature formulae of second degree. The total loss per 
unit length of conductor i is finally obtained from the 
summation of the element loss contribution of this 
conductor 

Pc~ = ~ pe ,  i = 1, 2, 3 [W/m] (17a) 
e 

and the total loss per unit length of the sheath from the 
summation of the element loss contribution of the sheath 

Ps = ~ P,e [W/m] (17b) 
r 

So the evaluation of the quantities in the right side of (6) is 
completed. 

The mean temperatures of the conductors and of the 
sheath T~ and T~, respectively, are calculated using the 
corresponding mean element values defined in (15 b) [P1] 
and performing a summation over the conductors and 
sheath elements. The comparison of the values of T~ and 
T~ given by the FEM solution with the maximum 
permissible conductor and sheath temperatures leads to 
the estimation of the cable ampacity. Finally the MVP 
equipotentials of the electromagnetic field as well as the 
equitemperatural of the thermal field may be easily 
calculated and plotted, using the corresponding nodal 
values. 

The differences encountered between the two solution 
originate from the approximations made by Graneau in 
order to accomplish a simple solution of the problem. For  
example, in order to compute the conductor ac-dc ratio, 
Graneau ignored the fact that the current distribution 
over the conductor cross section depends on the sheath 
induced eddy currents. He also considered the sheath 
eddy currents to be approximately half of the conductor 
currents. Due to the above approximations, his method 
leads to a total ac-dc ratio equal to 1.31, while the FEM 
coupled solution gives a total value of 1.28 and a lower 
sheath temperature T~ for the same rms current of 2148 A. 
In order to have the same sheath temperature of 60 ~ the 
FEM solution led to an ampacity of 2 250 A. 

For  the next comparison of the FEM procedure the 
manufacturing data presented by Bolin et al. [10] have 
been used and the results are shown in Table 4. The 
current ratings used in [10] in order to achieve a 35 ~ 
sheath temperature rise in soil of thermal conductivity 
k e =  1.11 W/m~ were used as input for the FEM 
procedure. The agreement of the ac-dc ratios as well as of 
the sheath temperature are excellent and the maximum 
difference in all tested cases is 4.9% in the losses and 
11.1% in the temperature rise, 

4.2 Parameter study of ampacity and losses 

A three-phase gas insulated cable with geometrical and 
physical properties given by 

r, = 0.063 50 m 

Ri = 0.34290 m 

m = 0.299 72 m 

#pc = 1 

aco = 3.86- 107 1/f~m 

:~c = 3 .96.10 -3 1/~ 

dc = 0.012 70 m 

d~ = 0.01270 m 

#,~ = 1 

o-~,o = 3.75 - 107 1/f~m 

~ = 3 .96.10 -s 1/~ (18) 
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Table 4. Comparison of the total loss and temperature values of 5 different three-phase gas cables as obtained by the FEM procedure, with the 
corresponding manufacturing data of Bolin et al. [10]. The current ratings in [10] were measured for 35 ~ sheath temperature rise above 
ambient temperature and with soil conductivity k~ = 1.11 W/m ~ In all cases the conductor wall thickness de was 0.0127 m and the ambient 
temperature Too was 20~ (see Fig. 1 [P1] and Fig. 2 [P1] for symbols). 

Voltage /~m= R~ d= r~ D 6 Pt T=- T~ 

from [10] from FEM procedure 
[kV] [A] [m] [m] [m] [m] [W/m] [W/m] [~ l 

145 1450 0.247 6 0.006 4 0.044 5 0.8310 114.4 113.6 31.5 
242 1650 0.285 6 0.006 4 0.0510 0.775 0 121.6 126.4 32.7 
362 2 000 0.347 9 0.007 6 0.063 5 0.736 5 137.7 144.5 33.7 
550 2550 0.4901 0.0114 0.0890 0.666 5 154.8 150.8 31.1 
800 2 900 0.557 5 0.0140 0.1015 0.627 5 167.9 166.4 31.6 

~c = 0.3 G = 0.8 120 

k< = 150 W/m ~ k= = 150 W/m ~ 1 1 0 

ka = 0.028 W/m ~ ke = 1.11 W/m ~ (18) 100 

Too = 20 ~ T= v = 20 ~ ~ 90 

h = 11.36 W/m 2 ~ D = 0.50 m I 8o 

(where all the symbols have been defined in Part 1) has _oU' 
been considered as a reference. For the calculations that 
follow, all the values of(18) are constant unless that single 
parameter which is explicitly declared. 

In Figs. 2a, 2b the mean sheath and conductors 
temperatures Ts and T~, respectively, have been calculated 
vs. rms current for 6 different depths D (from 0.25 to 
1.50 m). As was expected, the cable ampacity decreases as 
the cable burial depth increases. If the sheath temperature 
has to be limited to 60 ~ the cable ampacity varies from 
2190 A to 2900 A for a depth variation D from 1.50 m to 
0.25 m respectively. Obviously, the ampacity sensitivity 
on burial depth variation is very strong. 

In Figs. 3 a, 3 b mean sheath and conductors tempera- 
tures Ts and T~ have been calculated vs. rms current for 
different emissivity coefficients of sheath and conductors. 
For the same emissivity variations, the mean sheath 
temperature T= is practically unaffected, while the mean 
conductors temperature Tc varies slightly. 

The influence of the soil thermal conductivity ke is 
shown in Figs. 4a, 4b. Both the sheath and conductors 
temperatures vary very strongly, as ke changes from 
0.5 W/m ~ (dirt soil, clay, gravel) to 2.5 W/m ~ (lime- 
stone, concrete). If the sheath temperature has to be 
limited to 60 ~ the cable ampacity varies from 1 830 A to 
3000 A for a soil thermal conductivity ke from 0.5 to 
1.5 W/m ~ 

The sensitivity of the cable ampacity on the ambient 
temperature Too is shown in Figs. 5 a, 5 b. As the ambient 
temperature varies from 10 to 30 ~ the cable ampacity 
decreases from 2900A to 2310A, for the same limit 
T= = 60 ~ The ampacity sensitivity on ambient tempera- 
ture is also strong. On the contrary, the influence of the 
specified temperature T=p on the cable ampacity is very 
weak. As shown from the corresponding Fig. 6, while 
T=p varies from --5 to 20 ~ the temperature variation in 
both sheath and conductors is about 3.5%. 

In Fig. 7 the effect of the heat transfer coefficient h 
between ground and air is shown. The sheath and 
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Fig. 2 a, b. Sheath (a) and conductor (b) mean temperatures T= and T~, 
respectively, vs. rms load current for different depths D 

conductor temperatures change rather slightly. With 
a change in h from 5 to 25 W/m 2 ~ the corresponding 
temperature variation is from 6% for low values of 
current to 11% for high values of I,.,,s. 

The ac-dc loss ratio of the cable for all the cases 
examined in Fig. 2 to Fig. 7 is slightly influenced by the 
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parameter  under investigation. The calculated values of 
the conductors and sheath loss ratios are about  1.12 and 
0.17, respectively. Their variation, for all tested currents 
and depths, is less than 4%. 

The sheath radius R~ is the next parameter,  of which 
the influence on cable ampaci ty and losses is examined. In 
Figs. 8 a, 8 b the mean sheath and conductors temperatu- 
res Ts and T~ of the cable defined in (18) have been 
calculated vs. rms current for 6 different sheath radii 
R~ (from 0.26 to 0.36 m). The cable ampacity decreases 
strongly as the sheath radius decreases. For  the same 
limitation of T~ = 60 ~ the cable ampacity varies from 
2680 A to 2080 A when the sheath radius decreases from 
0.36 m to 0.26 m, respectively. This is also expected, 
because the sheath losses increase strongly as the sheath 
approaches the conductors. The effect of sheath radius on 
ac-dc loss ratio of the cable is shown in Fig. 9, where the 
loss ratio defined in (6) is plotted vs. rms current for the 

same variation of sheath radius R~. To conclude, both the 
ampacity and losses sensitivity on sheath radius variation 
is very strong. 

4.3 Computational remarks 

The convergence of the iterative procedure presented in 
Part  1, used for the calculation of the quantity Ter~ a value 
of 1~ was very fast. The number  of the required 
iterations is a function of the rms load current and of the 
original sheath T~, and conductors T~ temperatures 
chosen. All the tested cases needed at most  3 iterations. 
The discretization of the region S of Fig. 1 into finite 
elements is made automatically using Delaunay triangu- 
lation. Mesh grading has been used, in order to reduce the 
computer  resources (computational time and memory) 
required for the iterative solution. 
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5 Conclusions 

The iterative procedure using the finite element formulation 
presented in Part 1 has been used for the calculation of the 
ampacity and losses of a three-phase gas insulated cable. The 
validity of the method was confirmed by comparing with 
existing solutions as well as with measured data and the 
agreement was found to be excellent. Results for the sheath 
and conductors mean temperatures and loss ratios have 
been presented, using a variety of physical and geometrical 
data. The most important parameters that influence the 
cable ampacity are soil thermal conductivity, burial cable 
depth and ambient air temperature, while other parameters 
such as emissivities of cable materials or ambient soil 
temperatures have confined influence. The a c  cable losses 
depend mainly on the geometrical and not on the thermal 
parameters. The method is capable to take into account any 
configuration of underground cables (using any geometrical 
and physical properties), surrounded by materials with 
different thermal conductivities as well as the effect of forced 
and seasonal cooling. 
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