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IN NONLINEAR FERROMAGNETIC SHEATHS OF THREE-PHASE POWER CABLES
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ABSTRACT - This paper presents a new method for
a finite element computation of the losses in a three
phase power cable. The phase conductors carry
sinusoidal, steady-state and balanced currents and the
sheath is made of a nonlinear ferromagnetic material. A
new concept for an effective equivalent magnetic
permeability is introduced that allows calculations in
the complex domain. As an example, sheath losses are
presented and discussed for a symmetrical configuration.
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1. INTRODUCTION

As the energy density of power transmission is
increasing, the eddy current problems are becoming
important in various fields. One of these problems is
the calculation of eddy current sheath losses in i)
protective steel pipes, which are used in conventional
power cables and 1i) pressure retaining steel pipes,
which are used in gas and cryogenic cables.

The nonlinearity of the sheath material
introduces a great complexity in the electromagnetic
field analysis. Even in the steady-state ac operation,
time has to appear as an explicit variable in the
diffusion equation. The problem has been approached in
[1] assuming a constant relative permeability of the
sheath and using a value of Hpg = 200 that gave good
results for a given geometry and load. However, this
value of .o was determined by previous loss
measurements and if the currents or the conductor's
lTocation changed, the need for another estimation of Hps
would arise. Other authors have introduced new concepts
for an effective permeability, based on the average
magnetic energy density [2] to obtain a constant
permeability or based on the flux density [3] to
obtain an rms reluctivity.

In [4] a new method for the eddy current loss

calculation in an one-dimensional problem has been
presented. This method has Jled to accurate loss
computations, introducing an equivalent material with

non time varying permeability but with different value
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from point to point. This value was related to the
nonlinear B-H curve of the real material with the help
of the stored magnetic coenergy density at every point.
As a result, time effective calculations were made by
solving the diffusion equation in the complex plane with
phasor quantities. The purpose of this work is the
extension and application of the method presented in [4]
in two-dimensional nonlinear diffusion problems. Results
are presented for the eddy current loss computation in
the ferromagnetic sheath of a three phase power cable.

Cross section of the three-phase cable

Fig.1.

2. THE MODEL

The cable consists of three tubular phase
conductors in equilateral configuration within a tubular
shell, as shown in Fig.1. The following assumptions are
made:

1)  The cable is assumed to be infinitely long and the
problem becomes a two-dimensional one.

2) Charges and displacement currents are neglected.

3) The conductors have constant conductivities and
relative permeabilities.

4) The sheath has constant conductivity but its
relative permeability has a constant in time but
different from point to point value, as it will be
explained in section #5 of the paper.

5) The phase currents are sinusoidal and balanced.
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The last assumption allows to introduce complex
functions for the time variation of the phase currents,
so that

I} = V2 I pg 39t
IZ =2 Ims ej(ot-?n/3) (1)
I3 = V2 Ippg ed(wt-4n/3)

where I.ns is the only measurable quantity in the cable.

3. THE ELECTROMAGNETIC FIELD EQUATIONS

The assumptions made lead to a piecewise
linear, steady-state, time harmonic, electromagnetic
field. Following the analysis presented in [5], the two-
dimensional diffusion problem is described by the system
of equations

1 82a 92 _
HoHr [ 0l oyl Yook ¥ s = 0 e
- juoA + Jg =4 (2b)
and the appropriate boundary relations, i.e. the

continuity of the normal components of the flux density
B and the continuity of the tangential components of the
magnetic field H across the boundary between two media.

In this system of equations the unknowns are
the magnetic vector potential A and the source current
density Jg, while the  total current density J is
specified in the integral form

SI'J ds = Ips

S

(2c)

where I..o is the current flowing in a conductor of
cross-section S.

According to the fourth assumption, the
relative permeability of the sheath u.g is different
from point to point. This value of p.g was connected in
[4] with the nonlinear curve B-H of the material using
the stored magnetic coenergy during a quarter of a
period T. A generalization for the two-dimensional
diffusion problem will be attempted here. From the
definition of the magnetic vector potential A as having
a curl equal to the flux density vector B and because
the problem is limited in the x-y plane of Fig.1, the x-
and y-components of the flux density in the point

P(xp,yp) will be
OA
By (xp¥p) = *g;" (1.5, (3a)
and
A
By(xp.¥p) =- '5;— (5p.%p) (3b)
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or in a phasor form

Joy
By(xp.¥p) = By rms © (4a)
and

oy
By(xp.¥p) = By s © (4b)

The corresponding time variation of the components of
the flux density will be

by(t) = V2 By yps cOS(0t+ay) (5a)
and
by(t) = V2 By rms cos(ot+ey) (5b)

and finally the time variation of the magnitude of the
flux density vector will be

1/2

2 2
|b(t)|=[2[8x rmsCos(ut+,)] +2[B, rncos(ut+ey)] ] (5¢)

|(t) |

0 T}4 /2

Fig.2. Variation of Ib(t)‘ during a half period T/2
for different values of phase ang]es 0% and Py

In Fig.2 this variation is shown during a half
period T/2 and for the two limiting cases where ¢x-oy=0
and 9,-9,=n/2. The maximum By,, and minimum Bpin values
of (5c) can be easily computed for the point P, provided
that the rms values and the phase angles are known for
this point.

4. FINITE ELEMENT FORMULATION

Following the analysis presented in [S], the
domain has been discretized into first order triangles
and the unknowns A and Jg were approximated in terms of
linear interpolation polynomials N(x,y) and Ng{x,y) as
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Alx,y) = N'A (6a)

T
Jslx,y) = Ngdg (6b)

Applying the Galerkin method to the system of equations
(2) and assembling in the usual way [8] the element
contributions, leads to the following matrix equation

1

S-jwoT - jwoQ A 0

Uollr

-juoQ" juoW 6 I

where the elementary matrices and vectors S,7,Q,I,W,A
and G are given in [5]. The solution of the system (7)
in a problem with M nodes and N conductors leads to M
nodal values of the magnetic vector potential A and to N
values of the source current density Js, which is known
to be constant over a cross-sectional area of a straight
conductor [6]. Inside a finite element 'e' of the
sheath, because of the linear approximation, the flux
density will be independent of the position and
therefore it is assumed to be only a function of time.
Thus the relations (5) for the point P are also valid
for the element 'e’, so for the following analysis this
finite element will be called a point.

5. MAGNETIC COENERGY DENSITY AND NONLINEARITY

In order to work in the complex domain with the
system of equations (7) and in the same time to take the
nonlinear relation B and H in the sheath material into
account, a fictitious material with a constant but
unknown relative permeability Hpf 1s assumed at every
point of the sheath. This permeability will be related
to the B-H curve through the unknown values of the
magnetic field intensity at every point, which in turn
will be derived by the unknown values of the flux
density at every point. The condition to be fulfilled is
that the linear fictitious material has the same eddy
current average loss density as the nonlinear material

has at every point. In order to approximate the
nonlinear B-H curve, the Frohlich representation
H
B=—- (8)
a+ﬁ|H|

has been used, because it is the best compromise between
accuracy and simplicity. However, this relation is not a
prerequisite and the method would work as well with any
other approximation. From (8) the relative permeability
is seen to be

1
b (H) = ————— (9)
' g (a+B|H])

thus at every point Hef Will be a function of H alone.
In Fig.3 three different B-H curves are shown, using a
coefficient B=0.59 and three different coefficients a.
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Fig.3. Frohlich representation of B-H curves with

coefficient B being constant and a varying.

At a point of the fictitious material, the
maximum and wminimum values Hfmax and Hemin of the
magnetic field intensity take place in a quarter of a
period T. This can be shown from (5¢c) and from the
linearity of the fictitious material at every point. If
it is assumed that H(t=0)=Hgp;, and H(t=T/4)=HfmaX, then
during this quarter of period a nonlinear material is
related with a magnetic coenergy density at every point
equal to

Hemax

wy = | bdh (10)

Hemin

Using (8) for the B-H relation and after integration,
{10) becomes

Hf -Hf ; a a+B Hf
wl - max min _ n max (11)

B g a + B Hepin

and this integral is shown in Fig.4a.

The average value of the slope dB/dH during the
same quarter of the period will be

H,
dB 1 b
“—> =z b 4h (12)
dH Hfmax'Hfmin dh
fmin

which after integration and with the help of (8) becomes

dB a
> = (13)
dH (a+BHemay) (a+BHepin)

<




This average slope is equal to the magnetic permeability
given by the straight 1line that passes through the
points (HgminBmin) and (Hfmax+Bmax) in the H-B plane of
Fig.4b, where (8) is used again to relate B and H. The
magnetic coenergy density of a material having this
average slope during the same quarter of period will be

1
wo = T (Hfmax~Hfmin) (Bnax*Bmin) (14)

as shown in Fig.4b. With the help of (8) this integral
becomes

1 Hfmax Hemin
= —(Hfmax- ) + ) (15)
w2 , fmax"Hfmin B B

The 1linear fictitious material, that has a
constant relative permeability u.s and the same minimum
and maximum values of H at the same point, is related to
a magnetic coenergy density during the same quarter of
the period equal to

1 1
wf = T |"Ol’r'i’(”frnax)2 - 7 "Ol‘rf“"fmin)2 (18)

The integrals w; and wp, in the analysis
presented in [4] can be considered as an upper and lower
bound correspondingly in the estimation of the losses in
an one-dimensional diffusion problem. Assuming that this
identity still holds for the two-dimensional problem in
the cable sheath, the same estimation may be considered
for the magnetic coenergy density of the fictitious
material that has been used with success in [4], i.e.
the average of wy and wp in every point, given by

W + w
Wf=——l—2—"2— (17)

and shown in Fig.4c. Using (16) and (17) the relative
permeability of the fictitious material can be related
at every point to the unknown values Hpy,, and Hp, at
this point as

Vll + w2
Hrf = > > (18)
o [(Hfmax) - (Hemin) €]

where w; and w, are given from (11) and (15)
correspondingly. Thus u.¢ is a function of Hep,, and
Hfmin alone for a given nonlinear curve B-H and because
these values are also unknown at every point, the
solution will be based on an iterative procedure.

6. THE ITERATIVE PROCEDURE

The solution of the system of equations given
in matrix form by (7) is based on an iterative
procedure, since this system contains at every point of
the nonlinear material tree unknowns, i.e. the magnetic
vector potential A, the source current density Jg and
the relative permeability p. of the fictitious material.
The iterative procedure contains five steps that will be
explained in detail.
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Fig.4. Magnetic co-energy densities during a quarter
of period T using (a) the actual B-H curve,
(b) the average value of the slope dB/dH and
(c) the equivalent fictitious material

Step 1: The system of equation (2) is solved
with the finite formulation (7) for the computation of
the unknown values of A and Jg at every point of the
fictitious material. In the first iteration the relative
permeability of the fictitious material is set equal to
an initial value, which is a function of the cable load.

If I.ne is the rms current flowing in a conductor, a
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corresponding rms field intensity approximation may be
set equal to

I
s (19a)
2nr,

and the initial value of the relative permeability of
the fictitious material will be equal to

1

Mpf = (19b)

Hg(a+BHrms)

and hence it has the same value at every point. For all
the next iterations Hrf will be obtained from step #5
and it will be different from point to point.

Step 2: Using the values of A from the solution
at step #1 and the relations (3), (4) and (5), the
maximum Bepay and minimum Beni, values are calculated.
Finally, the maximum and minimum values Hemax and Hemin
of the magnetic field intensity at every point are
calculated as

1
Hemax = Bfmax (20a)
Hokrf
and
1
Hemin = Bfmin (20b)
Hourf
Step 3: Using (16), the magnetic coenergy

densities ws of the fictitious material are calculated
at every point.

Step 4: Using (14) and (15), magnetic coenergy
densities w; and wp are obtained, respectively, and the
average

Wl t W
W= ——
2

is computed at every point.

Step 5: At every point of the fictitious
material, the values w and wg are tested whether they
differ more than a small quantity wg... If WWe | <Wepp
at every point, the iteration procedure is terminated.
If |w-ws >Werp at point ‘e’, a new relative permeability
is related to this point, equal to

2w

Upf = (21)

“OE(Hfmax)z'(Hfmin)z]

This new value will be used at step #1 of the next
iteration.

The value of Worpr is related to the precision
of the iterations and it is a function of the cable
load. If a characteristic magnetic coenergy density W
is defined as

1

Wp = 'E- “Oprf(Hrms)z (22)

using the initial value of Hpg defined in (19b), the
quantity wg.. may be calculated from the relation

Werpr = € W (23)

where € is a positive number less than 1.

7.RESULTS
The three phase gas cable presented in [7] has
been considered, with geometrical and physical data
given by
ry = 0.06858 m de = 0.01270 m
Rj = 0.38100 m dg = 0.01270 m
m = 0.33655m (24)

oc = 2.725:107 1/0m oy = 2.857-106 1/0m

Hpg = 1 and f = 60 Hz

using the representation of Fig.1. The B-H curves of the
ferromagnetic sheath material has been approached using
Frohlich relation (8). The power loss ratio of the
sheath was calculated as a function of the rms conductor
current using the three B-H curves of Fig.3. and the
results are presented in Fig.5. It can be seen that the
maximum losses appear for load currents 20-100 kA, a
range that is of no practical interest due to thermal

problems. On the contrary, in the region 1-5 kA, in
which gas cables usually operate, sheath losses rise
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Fig.6. Power loss ratio of the sheath as a function of

sheath thickness for five different load
currents (curve #1 with Irms = 0.5 kA, curve #2°
with Irms = 1 kA, curve #3 with Irms = 2 KA,
curve #4 with Irms = 4 kA and curve #5 with
Irms = B kA). Frohlich coefficients are 0=270
and §=0.59.

significantly. With the losses for Irms=1 kA taken as a
reference, sheath losses increase from 20% for the hard
(0=900) and up to 62% for the soft sheaths (a=79.5).

In Fig.6. the sheath of the gas cable with the
data given in (24) has been considered consisting of a
material whose B-H curve is approximated by Frohlich
constants a=270 and P=0.59. The power loss ratio of the
sheath was calculated as a function of sheath thickness
dg and for five different load currents. The maximum of
the losses appears in the region 1.5<d<3.0 mm, while
for thicker sheaths the losses depend only on the load
current and not on the sheath thickness.

Finally, in Fig.7. the sheath power loss ratio
of a cable with the data given in (24) was calculated as
a function of the sheath conductivity o5, for five
different load currents. The B-H curve of the sheath is
approximated again by Frohlich constants a=270 and
B=0.59 and in all cases the maximum losses appear for
conductivity values between 5:10/ and 1-10% 1/0m. For
usual steel conductivities in the region 2-106 - 3-106
1/0m and for rms conductor currents between 0.5 kA - 8
kA, the power loss ratio of the sheath is between 0.7
and 1.4.

The convergence of the iterative procedure,
using for the calculation of the quantity wep,. of (23) a
value of €=0.001, was very fast. The number of the
required iterations is, as it can be easily seen from
(22) and (19b), a function of the rms load current. The
majority of the tested cases needed less than 10
iterations.

1065

ol
)
1
1
b

[ T T

1.0

;%?bf

TN ATTTTTTL ST

0.80F -~ ===tV -

TR
JEO S G P

o
[=]
T

10" 10"

og [1/0m]

Power loss ratio of the sheath as a function of
sheath conductivity for five different load
currents (curve #1 with Irms = 0.5 kA, curve #2
with Irms = 1 kA, curve #3 with Irms = 2 kA,
curve #4 with Irms = 4 kA and curve #5 with
Irms = 8 kA). Frohlich coefficients are a=270
and B=0.59.

Fig.7.

8.CONCLUSIONS

The iterative procedure presented in [4] for a
one-dimensional nonlinear diffusion problem has been
extended and applied in this paper for a two-dimensional
eddy current loss computation in nonlinear ferromagnetic
materials, using a finite element procedure that treats
the source current density as un unknown.

An equivalent material with non-time varying
permeability is introduced and it is related to the
nonlinear B-H curve of the nonlinear material with the
help of the stored magnetic co-energy density in every
finite element of the discretization. This allows the
use of complex phasors for the time variation and makes
the proposed method considerably simple and fast.

Results for the sheath loss ratio of a three
phase gas cable have been presented, using a variety of
nonlinear materials for the cable sheath. The method can
easily handle other cases of two-dimensional nonlinear
diffusion problems, when the computation of the losses
and not of the actual field is of importance.

Our previous work [4] in a thick steel plate
showed that the method used leads to results which are
in agreement with experiments. Unfortunately, we could
not find experimental results or calculations to compare
our present work. Therefore, experiments in this
direction may be valuable.



GLOSSARY OF SYMBOLS

SLU2>ARY OF SYMBOLS
A : magnetic vector potential (Wb/m)
a,B : coefficients of Frohlich relation (8)
B : magnetic flux density (T)
dc'ds : thickness of conductor and sheath
wall respectively (m)
[ : skin depth of sheath (m)
f : frequency (Hz)
f (subscript) : fictitious material
H : magnetic field intensity (A/m)
Irms : rms conductor current (A)
M : imaginary unit
J : total current density (A/mz)
Je,Js : eddy current density and source cur-
rent density respectively (A/m?)
m : distance between conductor centers (m)
Hp : permeability of free space
Hpe © :relative permeability of conductors
Hrf : relative permeability of the fictiti-
ous sheath material
Pdc : dc loss per unit length of a conduc-
tor (W/m)
Py : ac loss per unit length of the
sheath (W/m)
Ta : outside radius of conductors (m)
Ry : inside radius of the sheath (m)
Oc,0g : conductivities of conductors and
sheath respectively (1/0m)
T (superscript) : transposed (matrix or vector)
" : angular frequency = 2nf (sh)
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DISCUSSION

L. W. PIERCE (General Electric Company, Rome,
Ga.) In Figure 5 why does the loss ratio
decrease between 100 and 1000 amperes? Is
this a computation error?

Manuscript received August 22, 1991.

D.LABRIDIS and P.DOKOPOULOS: The authors wish to thank
Mr. L.W.Pierce for his interest in the paper. We
appreciate the opportunity to enhance our work by
answering the discusser’s question.

In the paper, the cable sheath is supposed to be
made of a nonlinear ferromagnetic material, having a
constant in time but different from point to point
value of relative permeability pps. The total loss per
unit length in the sheath is obtained [5] from the
summation of the loss contribution of every point of
the sheath. Considering a single point, the loss will
be a function of ppg alone, which in turn is a
function of the local magnetic field intensity. This
intensity is a function of the induced eddy current at
this point, being finally a function of the conductor
rms current. As the rms current increases, the point
moves closer to saturation and hence decreases its fipg
value.

In order to explain better this behaviour of the
loss ratio curve in Fig.5 of the paper in the region
between 100 and 1000 A, we calculated the power loss
ratio of the same three-phase cable, but with a sheath
made of a linear material. The Toss ratio is presented
in Fig.Al as a function of the relative permeability
ups of the Tinear sheath and for four different sheath
conductivities. The results of Fig.Al have been
obtained with the method presented in [5] and are in
agreement with analytical solution [11,07),[A1],[A2].
Curve #2 of Fig.Al, obtained from a cable with the
data given in (24), shows that the power ratio of the
sheath decreases as jypg decreases from 150 to 10,
while this ratio increases for pps<10 as well as for
Ups>150. So, the losses of the nonlinear sheath
presented in Fig.5 of the paper are not expected to be
a continuously increasing function of rms current.

The loss ratio value as a function of rms
current will actually depend on the distribution at
Ups values of every point of the nonlinear sheath. For
example, if the cable rms current is 50 A, the
majority of the sheath points will lie on the linear
portion of B-H curves of Fig.3. With Frohlich
coefficient 6=79.5, this majority of points will have
a value of yps almost equal to 1/uga = 10000. Fig.Al
showes for this value and according to curve #2 a,loss
ratio equal to 0.65, while Fig.5 gives the same loss
ratio for current 50 A. As the rms current increases,
the majority of points will move to lower values of
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Fig.Al. Power loss ratio of a linear-sheath cable as

a function of sheath relative permeability
pps for five different sheath conductivities
(curve #1 with 0g/05=0.05, curve #2 with
0s/0s=0.1, curve #3 with 0g/05=0.2 and curve
#4 with o0g/0g=1.0). Conductor conductivity
and the cable geometry are given in (24).

Ups. If these ppg values l1ie in the region between 10
and 150 of Fig.Al, then the loss ratio is expected to
decrease slightly, before it begins to rise again.
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