1326

IEEE Transactions on Power Delivery, Vol. 3, No. 4, October 1988

FINITE ELEMENT COMPUTATION OF FIELD, LOSSES AND FORCES IN A THREE-PHASE
GAS CABLE WITH NON-SYMMETRICAL CONDUCTOR ARRANGEMENT

D.Labridis

P.Dokopoulos

Power Systems Laboratory

Aristotelian University of Thessaloniki , Greece

Keywords:

Abstract - This paper presents a finite element
field computation in a three phase gas insulated power
cable. The phase conductors carry sinusoidal currents
in a steady-state and balanced condition. Both symmetri-
cal and non-symmetrical conductor arrangements are exa-
mined, taking into account the real geometrical and phy-
sical cable properties. Losses, forces, inductances and
current density distribution are calculated. Comparison
is made with theoretical and experimental results given
in the literature.

1. Introduction

Easy construction, good heat transfer through the
dielectrric, low losses and inexpensive terminations are
some of the advantages of the gas insulated cables.
They are now used for the transmission of high electri-
cal power and in SFg insulated substations.

Calculation of fiald, losses and forces are of
importance for the design and reasonable operation of
the transmission system. The first attempts for calcu-
lations were made by approximating the complex cable
geometry. The phase conductors were replaced by flat,
infinitesimally thin sheets [1] or with curvilinear
trapeziums [2] or with zero thickness tubes [3] . Also
the enclosure was assumed to be extended to infinity
[1]1, [2] . Another model [4] has taken into account the
real geometry introducing four ficticious current
sheets.

The approximating models did not allow the evalua-
tion of the current density distribution inside the
conductors and inside the enclosure. The investigations
were also limited to symmetrical conductor arrangements.

The purpose of this work is the analysis of field,
current density distribution, losses, inductances,
forces and flux density equipotentials for the general
non-symmetrical arrangement. ’

A general-purpose finite element computer program
has been developed treating the quasi-static current
density [5] or the so called source current density in
each conductor as an unknown. The given quantity is-the
rms measurable current flowing through each conductor.
By solving a coupled system of differential and alge-
braic equations, the vector potential and the current
density are determined. A1l the other performance quan-
tities are easily obtained from the finite element so-
lution, using symmetric quadrature formulae [6] .

The results have been compared with analytical so-
Tutions [1] , [2] , [4] and with measurements [ 7
Agreement with the measurements and with the more accu-
rate representation of [4] was excellent.
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Fig. 1. Cross section of the cable

2. The model

The cable consists of three tubular phase condu-
ctors non-symmetrically arranged within a tubular shell
as shown in Fig. 1. -

The following assumptions are made:
The cable is infinitely long, so that the problem
becomes a two-dimensional one.
Charges and displacement currents are neglected.
The conductors and the sheath have constant condu-
ctivities and relative permeabilities.
The phase currents are sinusoidal and balanced.
Based on the last assumption the following complex
functions for the time variation of the three conductor
currents are introduced

—
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T,= 21 ellut-2vd) (1)
T . J(wt-4n/3)

I3 = 4 Ir‘ms €

where Irms is the only measurable quantity in the cable.

3. The electromagnetic field equations

The assumptions made lead to a linear, steady-
state, time harmonic electromagnetic field which is
governed by Maxwell's equations

-> ->

v XH=J (2)
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> >

v xH=-ju (3)

v-E=o (4)
Ohm's law at a point

3=0E (5)
the continuity relation

v -3>= 0 (6)
and the constitutive relation

g = byl ; . (7)

Introducing the magnetic vector potential with
curl

-> ->
vxA=8 (8)
and divergence, according to Coulomb's gauge
>
v-A=0 (9)

(3) becomes
> >

vx (E+ juA) =0 (10)

Since the curl of the expression in the parenthe-
ses in (10) equals zero, it must be equal to the
gradient of a scalar function ¢, thus

> >

E+ juh= - Vo (11)
If the electric scalar potential is taken to be this
scalar function, (11) satisfies the requirements for
both static and time-varying situations.

Using (2), (7). (8) and (11) the linear diffusion
equation is derived as follows

1 - ->

(vxvxA) = -jwoh-ove

12
TR (12)

The current density J is now separated into two

components
> -> >
J= 9t (13)
>

where J_ is related to the variation of the magnetic

vector %otentia], called eddy current density and Jg is
related to the gradient of the electric scalar potenti-
al, called source current density. (5) and (11) Tead to

J = -jwoA - ave (14)
so that

> ->

Je = - jwoA (15)
and

>

dg = - 00 . (16)

Supposing the current density vector is in the z
direction, the two-dimensional diffusion problem is de-
scribed by the system of equations

1 ( A %A
HoHp % ax ay

[
o

5t A )—jmoA + JS = (17a)

n
[

-juohA + JS (17b)

and the appropriate boundary relations,that are the con-
tinuity of the normal components of the flux density B
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and the continuity of the tangential components of the
magnetic field H across the boundary between two media.

In equation (17) A and Jg are the unknowns and J
is specified in the integral form

ffads =1 (17)
S

rms

where I,g¢ is the measurable current flowing in a con-
ductor OF cross-section S.

4. Finite element formulation

It has been shown [ 8] that for a straight condu-
ctor the source current density Jg is constant over its
cross-sectional area. So the unknowns A and Js are ap-
proximated in terms of linear interpolation polynomials
N(x, y) and Ns(x, y) (see Appendix I) as

AGx, v) = N"A

a6 ) = NG S
where, in a problem with M nodes and N conductors,
N=[ A Ay e ) e s [ 951 93 - ] s (192)
N[ N e M) o NG R 1. (on)

Applying the Galerkin method to the system of equa-
tion (17) and assembling in the usual way [5] the ele-
ment contributions, leads to the following matrix equa-
tion

(18a)

(18b)

-juo() A 0
= (20)
Juol G I

1 $-;
-juwa T
HoHp
EN] onT

where § and T are the usual finite element square ma-
trices encountered in the solution of eddy current pro-
blems [10] and

UT: [ql LD qN] , where q; = £§Nd5 s (21a)
i
"1, 1, . 1y ], where I, = gSst , (21b)

1

“Fdiag[wl Wy en Wy ], where W, ifds =s; 5 (2lc)

1

S; is the area of the cross-sectional surface of condu-
ctor i and

G- 11 .

. s
juwo

(21d)

The total coefficient matrix in (20) is symmetri-
cal of order M+N, with M unknown nodal vector potenti-
als Aj and N unknown conductor sourse current densities
Js-i .

Due to the special structure of the matrix in (20)
the conventional band solutions are not effective.
Nevertheless care has been taken to reduce the band-
width of the upper left sub-matrix with automatic node
venumbering. Further storage requirement reduction has
been accomplished by storing and computing only within
the non-zero profile of the equations. The Crout varia-
tion [ 9] of Gauss elimination has been used to obtain
a direct solution of (20).
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The cable domain has been discretized into 3057
triangles with 1534 nodes. The total coefficient matrix
has been reduced to a vector with about 160000 non-zero
terms.

It is of interest that in the discretization of
the sheath the physical properties of the material have
been considered. So the discretization was a function
of the skin depth 35 of the sheath. This led into a bet-
ter approximation of the current density decay and of
the tangential boundary relation.

5. Losses

In the general non-symmetrical arrangement the ac
losses per unit lenght of the cable are

Py =P tPyt Pzt P . (22)
Defining an ac resistance such as
~ 2
Pp=31 rms Rac (23)
the ac/dc ratio will be

R P P .. P P

ac =é_( el _e2 c3)+_s (24a)
Rdc Pdc Pdc Pcd 3Pdc

In the symmetrical case the ac/dc ratio becomes

Rac PC PS

Rdc Pdc 3P

(24b)
dc

From the solution of the system in (20) it is pos-
sible to calculate both sides of (24) and therefore to
make a verification.

A complex voltage drop per unit lenght for the
conductor i can be defined from the source current den-
sity Jsi as

V., = Jsi / a

; (25)

The corresponding impedance per unit lenght is

Zi = Vi / Irms (26)
The real part of Zi will be the ac resistance of
conductor i, i.e,

R...=1

ac (27)

i real
so the three conductors will have a total ac resistance

Rac - (Racl * Racz * Rac3) /3 (28a)
or in the symmetrical case
R..=R ., i=1,2,3 . (28b)

ac ac 1

For the evaluation of the quantities in the right
side of (24) let us examine a typical element e that
lies on the cross-section of the conductor i, as shown
in Fig.2. The element is a first-order triangle with
lTocal nodes numbered from 1 to 3 and mid-side nodes
numbered from 4 to 6. The nodal potential values A?,AS
and A§ and the source current density Jgi of the con-
ductor i are known from the solution of zZO).

eFrom the definition of Je (15) the relation betwe-
en Aa(x, y) and J&(x, y), i.e. for the typical element
e, will be

€ (X y) = -juoh®(x, y) (29)

Je i
and the total current density distribution of element e
can be obtained from

e . e
Ji(xs y) =90 5 (% y) + g,

S1 (30)

The eddy current IZ of the element e can be compu-
ted from

e

Io i = 1o Ig (% ¥) dxdy (31)

S

The integral in (31) can be expressed using symme-
tric quadrature formulae [6] of first degree, so

= -jwo.gf(Af + A+ AY) (32)
while the source current IS of the element e is

1§ iS¢ (33)
and the total element current I? is

=15, +15, . (34)

The average loss density (w/m3) contribution of
element e is given by

*
U(x, ¥) = %0, ) 0% (x, y) / o (35)
and the losses per unit lenght will be

Pe =0, U¥(x, y) dxdy . (36)
S

The integral in (36) can be expressed using symmetric
quadrature formulae of second degree, so

e
e_S L2 O
Pci—g—(]dsi-onA4l +[ g4 -JuoAc | +[9g;-duohg ) . (37)

Because of the linearity of the interpolation functions
N(x, y) {see Appendix I) the mid-side vector potential
values are

A = (A? + Ag) /2

4

e _ e e

Ag = (A, + A3) / 2 (38)
e _ e e

Rg = (A +A)) /2

Fig.2. First-order triangular element




If the typical element e is not on a conductor but
on the sheath cross-section, the source current density
will be equal to zero because the sheath carries no
source current but only induced eddy currents. So (37)
changes to

e
P = o (I« Al A ) (39)

The total loss per unit length of conductor i is
obtained from the summation of the element loss contri-
butions of this conductor

- e P
Py =ZP,» 1=1,2,3 (40)
e
and the total loss per unit length in the sheath
_ e
Pe -g Pe (41)

where now the summation is over the elements of the
sheath.

In the same way the total conductor current is
given by

=21 , i=1,2,3 (42)
e

It }s easy to verify this result with the values given

in (1).

6. Inductances

The skin and proximity effects and the presence of
the sheath reduce the flux-carrying capacity of the
three conductors and therefore reduce their inductance.
The total impedance per unit length of conductor i is
given by (26) and the reactance per unit length is the
imaginary part of Zi’ i.e.

Xi - Zi imag (43)
and the inductance per unit length is
Ly =% /w (44)

The conductor inductances can be also obtained
from the evaluation of the stored magnetic energy,
given by

W= % [ 3-A av (45)
v

The mean value of this energy per unit length of condu-
ctor i is given by

wmi=Ret% {g A(x,y)J*(x,y)dxdyI
i

(46)

and after separating J(x,y) with the help of (13), W ;
becomes m

wm1=-% Re‘dz %& A(x,y)dxdyl . (47)

The stored magnetic energy is connected through L _.
with the relation ¢

1 IZ

mi T2 Lci rms (48)
and the inductance can be calculated from
Lci=-§l_ Reld* §1 A(x,y)dxdy (49)
I 5 7S,
rms i
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If we consider the inductance per phase of a sym-
metrical arrangement consisting of three solid circular
conductors with radius ry being at a distance m and wi-
thout a sheath
U
oy m, L

b= ng - ) (50)

a
as a base inductance, we can have a relative-magnitude
information of the operational inductance examining the
ratios Lci/Ls'

7. Forces

The force per volume element of a conductor in
which the current density is J is given by the Lorenz
relation

-

F=Jdx8B

Because we have assumed that the problem is a two-di-
mensional one, we shall have J = 2J and B = xBx+yBy.
The force per unit length of each conductor's element
will be given by

>

FE=xF+yF (51a)
where

e _ e e

Fr —-fsje J7(x.y)B, dxdy

Fo = [, 9%(xy)BS dxdy (51b)

y 78

It can be shown using (31) that the time functions fy
and fy will be obtained as (see Appendix II)

(t)=-1° 8¢

e e e, e
- - +
M sBy rms cos(© @y)+cos(2mt+e wy)

(52)
€/,.\_,& o€ e_.e e, e

fy(t)-IrmsBX s cos (0 wx)+cos(2wt+9 +wx)

Finally the total force functions will be derived from
the summation of the element contributions of this con-
ductor

e
£, = TA(L) )
fy(t) = T F(t)

and the total force vector will be
HE) = % F(t) +y f(L) (54)

X Yy

Using the expressions in (52), the force components
will be obtained as

fo(t) =-aX[BX +cos(2wt +vx)]

X (55a)
= + +
fy(t) ay[By cos (2wt vy)}
where
ay =§xl * ZxZ Oly - zyl +2y2
BX =§X0 /a By = Zyo /ax (55b)

X
Yx © ta"-l(le/EXZ) Vy - tan-l(zyl/zyZ)

and
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- e = € -
Exo—%}fxocos(e—wy) Zyo ngyocos(e npx)

P € s
§x1‘§fxo$‘“(e‘”“’y) zyl %}fyosm(e cpx)

e e (55¢)
2X2=§fxocos ( S+q;y ) 2y2=§fyocos (9+(px)
e _.e e e _e e
fxo_IrrnsBy rms fyo Ir'msBx rns

It can be shown that the locus of the force vector in
(54) for a time variation equal to the half period is a
real ellipse with center at the point

fre = -0y By

(56)
fyc ayBy .
The forces are related to the force f, which appli-

es between two straight parallel conductors carrying a
current Irms and being at a distance m/v/3 apart

uIrms

2nm/ V3

f,

(57)

8. Flux_and current density distribution

It is well known that for a two-dimensional pro-
blem the curves A=constant are the lines of the flux
density. The approximation (18) for the vector potential
is linear, so that the flux density whithin each element
will be constant. Such vector equipotentials, formed
from Tine segments inside each element, have been plot-
ted for uniform increments bound flux tubes containing
the same flux. e

A real function a (x,y,t) for the vector potential
in the element e can be obtained (see Appendix II) and
this ailows the calculation and plotting of the flux 1i-
nes for any given time and not only at the time where
the current is at its maximum or minimum value.

The current density distribution in the conductors
can be obtained from (30). The sheath has no source cur-
rent and therefore the current density for a sheath's
element will be obtained from (29).

9. Results

A three phase gas cable has been considered with
geometry given by

Ry =15 1in =10.381m .
d. =0.54n=00127m ,
m - r
—=0.51 , —% -0.18
V3R, R;

and physical properties

Upe = 1 >

0. = 2.725-107/0m ,

o, = 2.875-10%am )

The power loss ratio of the sheath was calculated

as a function of relative permeability upg, for three
different wall thicknesses dg. Comparison of the results
obtained in this paper with those obtained in Fig.5 of
[1] and in Fig.4 of [2] is presented in Fig.3. It can
be seen that the wall thickness is an important parame-
ter and the assumption of a sheath filling all of the
outside space {i.e. infinite wall thickness dg) may

lead to an underestimation of the losses, when

1 : Fig. 5 of [1]

i 2 : Fig. 4 of [2]

0.0 T T T
1 10 100 1000y, 10000

Fig.3. Comparison of sheath losses calculated with
finite element method (solid lines) and
with approximating models (dashed lines)

dg/Bg<1. This is the case where the eddy currents in
the sheath are restricted by lack of space (resistance-
limited) and happens when Lps<40 for the case with
dg/ds=0.5 and when ups<10 for the case with ds/d¢=1.0.
wﬁen ds/8g>1 the extent of the current density distri-
bution is limited by the effect of its own field (indu-
ctance-limited). It can be seen that the assumption of
line conductors with uniform current density (ignoring
the skin and proximity effects) may now lead to an over-
estimation of sheath's losses. This was also expected,
because the current density in the conductors is maxi-
mum on the sides facing the centre of the cable, so
that the induced eddy currents in the sheath (and also
the losses) are Tower. )

The maximum Tosses in the case dg/dg=1.0 appears
when Ups=150. Taking this point as a reference, a non-
symmetrical conductor arrangement has been examined.

The phase conductor+1 has been moved in the x- and N
directions (as shown in Fig.1) and the losses, inductan-
ces and forces have been calculated. The displacements
my_and my from the original symmetrical position are
related to the conductor radius ry in order to have a
relative information about the position of this condu-
ctor.

In Fig.4 the loss ratios defined in (24a) are shown
vs the x-direction ratio my/ra. Taking as a reference
the losses in the symmetrical position (when my/r3=0.0),
the sheath losses vary from -27% (when my/ra=-1.0) to
37% (when Mx/ra=1.0) while the losses of the phase con-
ductors vary up to 8%.

In Fig.5 the inductances of the three phase condu-
ctors related to the inductance Ls defined in (50) are
shown vs the ratio my/ry. The indiuctance Le1l of condu-
ctor +1 varies from -16% (when myx/ra=-1.0) to 12%

(when my/ra=1.0), taking as- a reference the inductance
of this conductor in the symmetrical position.

In Fig.6 the forces acting on the three conductors
vs ratio my/r, are shown. The forces are related to the
force fp, defined in (57) and they are plotted for a ti-
me variation equal to a half period. It can be seen
that the outward force acting on conductors %2 and+3
increases when conductor #1 is moving to the center of
the cable while the contrary seems to happen on condu-
ctor #1. The center of the ellipses defined in (56) fol-
low the movement of conductor #1.
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Fig.7. Sheath and conductor losses vs conductor #1
y-direction displacement
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In Fig.7, 8 and 9 the losses, inductances and for-
ces vs the y~-direction displacement are shown. It can be
seen that the effect of the y-direction displacement of
conductor #1 on the losses and inductances is small, but
the forces acting on the three conductors vary conside-
rably.

In Fig.10 the magnetic vector equipotentials are
plotted in the case with asymmetry of conductor #1 given
by my/ra=1.0 and My/ra=0.0 (when the losses are higher).
The plots have been made for four different times (wt=09,
309,609 and 90°) and with a constant potential increment
equal to 0.08-10-3 Wb/m.

Fig.10. Magnetic vector equipotentials with asym-
metry of conductor #1 given by my/ra=1.0
and my/ra=0.0

The validity of the finite element method was con-
firmed for the symmetrical case by comparing in detail
with the results of the analytical solution [4]) and with
the measured data given in Table I of [7] . In both ca-
ses the agreement was excellent and the differences we-
re between 0% and 4%.

10. Conclusions

The finite element procedure that treats the source
current density as an unknown leads to valuable and ac-
curate solutions of the steady-state field problem in a
three-phase cable, taking into account the real geome-
try and assuming linearity. There are no other restri-
ctions Tike asymmetry in the load currents or in the
geometry.

Current densities, losses, inductances and forces
can be calculated. Comparisons with published theoreti-
cal and experimental results, concerning the symmetrical
case, give a satisfactory agreement. A non-symmetrical
conductor. arrangement leads to significant changes in
the losses and forces.

APPENDIX I
Basic formulae for first-order triangular elements

Consider the typical first-order triangular element
e shown in Fig.2, with local potential nodal values

Using the first-order shape functions
a1+b1x+cly
e T —
N (x,y) o a2+b2x+c2y
a3+b3x+c3y

where the coefficients aj,b; and ci are well known from
the literature [11] and S® ° the area of element e, we

shall have the space approximation of the vector poten-
tial as a phasor

A0 NET A=A o (Y )R (%0)

Suppose the element e Ties on the conductor i, at which
the sourse current density is Jsi. Because Jsi is a con-
stant over the cross-section of this conductor, the
phasor of the element e source current density will be

e _
I = g (A2)

(A1)

Assembling the element contributions over the who-
le domain,the space approximation for the vector poten-
tial will be obtained as in (18a). Likewise, assembling
the conductor contributions the space approximation for
the source current density will be obtained as in {18b).

Using the well-known [11] local area coordinate
system for the first-order triangle L1, L2 and L3, is
easy to see that the area coordinates for the midside
nodes 4,5 and 6 are (1/2, 1/2,0), (0,1/2,1/2) and (1/2,
0,1/2) respectively. According to the relation between
Li and N§(x,y)
=1,2,3

_— 5
Il-.i - N.](X;y) s 1

is easy to verify the relations (38).

APPENDIX II
Relations between phasors and real functions

The complex function

Y _ Jj{wt+a) .
A(t) = VZA_ e (A3)
is related with a phasor
_ Ja_ .
A= Arms &= Apear * JAimag (A4)
and with a real function of time
a(t) = RelKkt)}=Re‘/?Aej(wt+a)’
= /?’Arms cos(wt+a) (A5)
The product of two real functions of time is
a(t)b(t) = Re‘A B*I+RelA B ermt|=
= ArmsBrms[cos(a—B)+cos(2wt+a+B)] (A6)
and the mean value of this product is
<a(t)b(t)> = RelA B*l =
= ArmsBrms cos(a-8) (A7)

If we consider the typical element e in Fig.2 with
the nodal potential value

Am = Am real +3

the corresponding real function of time will be

A > m=1,2,3

m imag

am(t)=/?'Am s cos(wt+am) (A8)



1
- 2 2|?
where Am rms [(Am rea]) * (Am 1'mag) ]

_ -1
and o= tan (Am /A

imag’"'m rea])

Likewise the phasors for the total element current
I° and for the flux density components B§ and BS will be

e

e _ (e jo

I xrms e (A9a)
. e

e _ qe Jo

BX Bx rms e X (A9b)
. e

e _ @ jo

BY = By s &Y (A9c)

and the products of the corresponding time functions
Yit? the help of (A6) will give the force relations in
52).
Finally the space-time real function of the vector
potential in the element e will be obtained from (Al)
and (A8) as

a®(x,y,t)=vZ Aims(x,y) cos[wtw*oe(x,y)} (A10)
where
1
e _|{ e 2.(e 2172
Arms(x,y)—[(ﬁ\ma](x,y)) +(Aimag(x,y)) }
and
e _ -1
a(x,y) = tan”t ( Ay (eay)/A gy (xy) )
Glossary of symbols
A : magnetic vector potential (Wb/m)
de,dg : thicknesses of conductor and sheath
wall respectively (m)
dg : skin depth of sheath (m)
e (superscript) : element
fx,fy : x and y components of the force per u-

nit length acting on a conductor (N/m)
f . frequency (Hz)

J : imaginary unit
Jasdg : eddy current density and source cur-
rent density respectively (A/m2)
Lej : inductance per unit length of
conductor i (H/m)
Ly : area coordinate of local node i
m : distance between conductor centers in
the symmetrical case (m)
My sy : x and y direction displacements of
conductor #1 from the symmetrical po-
sition (m)
UpcaHprs : relative permeability of conductors
and sheath respectively
Pac : dc Toss per unit length of a conduc-
tor (W/m)
PeisPs : ac loss per unit length of conductor
i and sheath respectively (W/m)
ra . outside radius of conductors (m)
Rac : ac resistance per unit length of the
three phase cable (Q/m)
Ryc : dc resistance per unit length of a
conductor (Q/m)
R : inside radius of the sheath (m)
0.»0¢ : conductivities of conductors and
sheath respectively (1/0m)

T Esuperscript)
XsYsZ

: transposed (matrix or vector)
: unit vectors in a Cartesian coordina-
te system
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