Comparison of frame alignment strategies in GNSS coordinate time series

Department of Geodesy and Surveying Aristotle University of Thessaloniki Thessaloniki, Greece

26th IUGG General Assembly "Earth and Environmental Sciences for Future Generation" Prague, Czech Republic, June 22 – July 2, 2015

Objective:

The comparison of four different **ITRF-alignment strategies** for generating coordinate time series in geodetic networks:

- Constrained weekly adjustment directly to the target frame using unweighted MCs
 - using weighted MCs
- Helmert transformation of weekly "free" solutions to the target frame using the "standard" approach using a "revised" approach

Unweighted vs. Weighted MCs

unconstrained weekly NEQs: N

 $\begin{array}{|c|} \hline \delta x \\ \hline \delta z \\ \hline \delta z \end{array} \begin{array}{|c|} \hline reference stations \\ = u \\ \hline u \end{array}$

Datum conditions applied to the reference stations without any weighting:

$$\mathbf{E}\left(\mathbf{x}-\mathbf{x}^{\mathrm{trf}}\right)=\mathbf{0}$$

<u>Optimal property</u>: minimization of data noise effect only at reference stations!

Datum conditions applied to the reference stations with an optimal weight matrix:

$$\mathbf{E} \mathbf{P}(\mathbf{x} - \mathbf{x}^{\text{trf}}) = \mathbf{0}$$

$$(\mathbf{\Sigma} + \mathbf{\Sigma}_{-\text{trf}})^{-1} \text{ weight matrix}$$

<u>Optimal property</u>: minimization of data & datum noise effect at all network stations! (see Kotsakis 2013, JGeod)

Standard vs. Revised Helmert Transformation (applied on a free-net solution)

$$\hat{\boldsymbol{\theta}} = \left(\mathbf{E} \left(\boldsymbol{\Sigma}_{\mathbf{x}^{\text{trf}}} + \boldsymbol{\Sigma}_{\mathbf{X}'} \right)^{-1} \mathbf{E}^{\text{T}} \right)^{-1} \mathbf{E} \left(\boldsymbol{\Sigma}_{\mathbf{x}^{\text{trf}}} + \boldsymbol{\Sigma}_{\mathbf{X}'} \right)^{-1} \left(\mathbf{x}^{\text{trf}} - \mathbf{X}' \right)$$

Standard approach:

Transformed coords are obtained by forward implementation of the HT model, after the initial estimation of the frame transformation parameters.

 $\hat{\mathbf{x}}^{\text{st}} = \mathbf{X}' + \mathbf{E}^T \hat{\mathbf{\theta}}$ common stations

 $\hat{\mathbf{z}}^{\text{st}} = \mathbf{Z}' + \tilde{\mathbf{E}}^T \hat{\mathbf{\theta}}$ other stations

Revised approach:

Transformed coords are simultaneously estimated with the frame transformation parameters in a single least-squares adjustment step.

 $\begin{vmatrix} \hat{\mathbf{x}} \\ \hat{\mathbf{z}} \end{vmatrix} = \begin{vmatrix} \hat{\mathbf{x}}^{\text{st}} \\ \hat{\mathbf{z}}^{\text{st}} \end{vmatrix} + \begin{vmatrix} \boldsymbol{\Sigma}_{\mathbf{X}'} \\ \boldsymbol{\Sigma}_{\mathbf{Z}'\mathbf{X}'} \end{vmatrix} (\boldsymbol{\Sigma}_{\mathbf{x}^{\text{trf}}} + \boldsymbol{\Sigma}_{\mathbf{X}'})^{-1} (\mathbf{x}^{\text{trf}} - \hat{\mathbf{x}}^{\text{st}})$

(see Kotsakis et al. 2014, JGeod)

correction term

Processing Scheme

Comparison of weekly coordinate time series (for the period: 2007-2014) generated by:

- Unweighted MCs (NNT to IGS08)
- Weighted MCs (NNT to IGS08)
- Standard 6/7-parameter HT to IGS08
- Revised 6/7-parameter HT to IGS08

(*) all strategies used the same reference stations.

Our evaluation looks at the following: sensitivity to existing outliers at the ref stations RMS of coordinate time series differences of estimated station velocities

Sensitivity to existing outliers at the used reference stations

Residuals after linear trend removal (GRAS ref station)

Time series of the HT correction term for GRAS ref station

Time series of the **computed weights** for GRAS ref station

(as used in the weighted MCs)

Diagonal elements of the optimal weight matrix **P** for the used reference stations (day 112/2007)

Residuals after linear trend removal (ZIMM ref station)

Time series of the HT correction term for ZIMM ref station

Time series of the **computed weights** for ZIMM ref station

(as used in the weighted MCs)

Residuals after linear trend removal (NOA1 station)

Time series of the HT correction term for NOA1 station

RMS behavior of the residual coordinate time series

RMS of coordinate time series after linear trend removal **MCs** vs. **WMCs**

RMS of coordinate time series after linear trend removal 6-parameter HT vs. RHT

RMS of coordinate time series after linear trend removal 7-parameter HT vs. RHT

Differences of estimated station velocities among the frame-alignment schemes

Differences of estimated station velocities (MCs vs. WMCs)

Differences of estimated station velocities 6-parameter HT vs. RHT

Differences of estimated station velocities 7-parameter HT vs. RHT

Conclusions

- The weighted MCs and the revised HT model seem to be **more robust** to existing outliers of the reference stations, than the unweighted MCs and the standard HT model, when generating coordinate time series in a geodetic network.
- In terms of the RMS for the derived coordinate time series (after trend removal):
 - standard vs. revised HT model: the former model gives higher RMS values at the reference stations by 1-3 mm.
 - standard vs. revised HT model: both give similar RMS values at the non-ref stations, except in the 6-parameter case for the NORTH component.
 - unweighted vs. weighted MCs: the former generally give smaller RMS values by 1-3 mm than the latter, especially in the UP component.
- The consideration of the target frame noise (i.e. taking into account the CV matrix of the reference stations coordinates in the weighted MCs and in the HT-based frame alignment) amplifies the RMS of the derived coordinate time series by 0.5 1 mm.

Conclusions

- In terms of the estimated velocities at the network stations:
 - the unweighted and weighted MCs give practically the same velocities in all stations (their differences are smaller than 1mm/year).
 - the standard and revised HT models give the same velocities at the non-ref stations.
 - the standard and revised HT models give velocity differences at the reference stations up to 2 mm/year.
- The differences of the estimated velocities among the different frame-alignment methods are more significant in the UP component.
- More work needs to be done in order to assess the performance of the four frame-alignment strategies for the analysis of (unmodeled) loading signals in geodetic coordinate time series.

Thank you for your attention!!!

email: mchatzin@topo.auth.gr

26th IUGG General Assembly "Earth and Environmental Sciences for Future Generation" Prague, Czech Republic, June 22 – July 2, 2015