Assessment of weighted and un-weighted inner constraints on multi-session solutions for estimating station velocities in regional GNSS networks

C. Kotsakis and M. Chatzinikos

Department of Geodesy and Surveying
Aristotle University of Thessaloniki
Thessaloniki, Greece

26th IUGG General Assembly
“Earth and Environmental Sciences for Future Generation”
Prague, Czech Republic, June 22 – July 2, 2015
Introduction

- Datum definition in geodetic networks is often implemented by unweighted inner constraints (ICs) over selected reference stations.

- This study investigates the application of optimal weighting to the reference stations that are used for datum definition in GNSS network adjustment:
  - choice of optimal weight matrix
  - behavior of optimal weight matrix
  - effect of weight matrix on the results
  - tests on multi-year GNSS network solutions
The rationale of the study

Unconstrained NEQs

\[ \mathbf{N} \begin{bmatrix} \mathbf{x} - \mathbf{x}^O \\ \overline{\mathbf{x}} - \overline{\mathbf{x}}^O \end{bmatrix} = \mathbf{u} \]

Datum definition

\[ \mathbf{E} \mathbf{P} (\mathbf{x} - \mathbf{x}^{\text{TRF}}) = 0 \]

\[ \hat{\mathbf{x}}, \overline{\mathbf{x}} \]

\[ \mathbf{E} (\mathbf{x} - \mathbf{x}^{\text{TRF}}) = 0 \]

\[ \hat{\mathbf{x}}, \overline{\mathbf{x}} \]

Can we get an **improved solution** through a justified choice of the weight matrix \( \mathbf{P} \) ?

reference stations

other stations
ICs and network accuracy in the target frame

<table>
<thead>
<tr>
<th>Minimize data noise effect?</th>
<th>Unweighted ICs</th>
<th>Weighted ICs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes (at the reference stations)</td>
<td>Yes (at all stations)</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minimize datum noise effect?</th>
<th>Unweighted ICs</th>
<th>Weighted ICs</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optimization of network COV matrix</th>
<th>Unweighted ICs</th>
<th>Weighted ICs</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sum \hat{x} = \sum^{obs} \hat{x} + \sum^{mc} \hat{x}$</td>
<td>$\sum^{obs} \hat{x} = \begin{bmatrix} \text{min} \ \infty \end{bmatrix}$</td>
<td>$\sum \hat{x} = \begin{bmatrix} \text{min} \ \infty \end{bmatrix}$</td>
</tr>
</tbody>
</table>
Analytical computation of the optimal weight matrix

1. Unconstrained NEQs: \[
N \begin{bmatrix}
\vec{x} - \vec{x}^O \\
\vdots \\
\vec{x} - \vec{x}^O
\end{bmatrix} = \mathbf{u}
\]

2. Weighted ICs at the reference stations: \[
\mathbf{E P} (\mathbf{x} - \mathbf{x}^{TRF}) = \mathbf{0}
\]

3. Optimal weight matrix: \[
\mathbf{P} = \left( \mathbf{\Sigma} + \mathbf{\Sigma}_{x}^{\text{TRF}} \right)^{-1}
\]

where: \[
\left( \mathbf{N} + \mathbf{G}^T \mathbf{G} \right)^{-1} = \begin{bmatrix}
\mathbf{\Sigma} & * \\
* & *
\end{bmatrix}
\]

Note: \( \mathbf{E} \) and \( \mathbf{G} \) are the usual inner-constraint matrices for the ref stations and for the entire network, respectively.

see Kotsakis (2013 JGeod, 2015 IAG Symp)
Numerical tests

- Comparison of **weighted & unweighted IC-based solutions** (i.e. NNT alignment to IGS08) obtained by a multi-year (2007-2014) adjustment of weekly NEQs in a Hellenic GNSS network.

- Particularly, we look into the following aspects:
  - accuracy improvement for the estimated positions of each station in IGS08
  - differences of the estimated positions between the two solutions
  - behavior of the weight matrix for the reference stations
Test GNSS network
8 REF stations, 34 other stations
Per-station **accuracy improvement (%)** of the estimated positions from the weighted IC solution

**Coordinates**

- X (%)
- Y (%)
- Z (%)

**Velocities**

- X (%)}
- Y (%)
- Z (%)
Per-station accuracy improvement (%) of the estimated positions from the weighted IC solution

(IGS08 datum noise is omitted in the weighting)
Per-station differences of the estimated positions from the weighted and unweighted IC solutions

**Coordinates**

- **X (m)**
  - **2.2 mm**
  - **1.2 mm**
  - **2.0 mm**

- **Y (m)**
  - **2.2 mm**
  - **1.2 mm**
  - **2.0 mm**

- **Z (m)**
  - **2.2 mm**
  - **1.2 mm**
  - **2.0 mm**

**Velocities**

- **X (mm/yr)**
  - **-0.6 mm/yr**
  - **-0.4 mm/yr**
  - **-0.5 mm/yr**

- **Y (mm/yr)**
  - **-0.6 mm/yr**
  - **-0.4 mm/yr**
  - **-0.5 mm/yr**

- **Z (mm/yr)**
  - **-0.6 mm/yr**
  - **-0.4 mm/yr**
  - **-0.5 mm/yr**
Weights for the 8 reference stations

For their coordinates

For their velocities
Weights for the 8 reference stations
(note the **intra-station** weight variation)

For their coordinates

For their velocities
Weights for the 8 reference stations
(note the **inter-station** weight variation)

For their coordinates:
- X: ~400, ~100, ~250
- Y: ~950, ~100
- Z:

For their velocities:
- X:
- Y:
- Z:
Weights for the 8 reference stations
(note the inter-station weight variation)

For their coordinates

For their velocities
Reference station weighting vs. IGS08 accuracy

Optimal coordinate weights for the ref stations

IGS08 coordinate variances
Reference station weighting vs. IGS08 accuracy

Optimal velocity weights for the ref stations

IGS08 velocities variances
Conclusions

- Optimal weighting of reference stations can provide a significant improvement of the estimation accuracy in GNSS network solutions with respect to a desired reference frame.

- The weighting approach presented herein is based on the minimization of the data and datum noise effects over all network stations. Other optimal weighting schemes are also possible!

- The optimal weight matrix captures the significance of the reference stations for the datum definition in the underlying network (in terms of geometry, data quality and prior position accuracy). It may also be sensitive to hidden outliers within the reference stations (see next presentation).