

1st Joint IAG Commission II and IGFS Meeting

"International Symposium on Gravity, Geoid and Height Systems"

September 19-23, 2016, Thessaloniki, Greece

Realization aspects of the International Height Reference System

An exposure of some open problems

C. Kotsakis

Department of Geodesy and Surveying AUTH, Thessaloniki, Greece

International Height Reference System (IHRS)

Working definition:

(by Ad-hoc group on IHRS, Travaux de l' IAG, vol. 39)

The IHRS is a geopotential reference system co-rotating with the Earth in its diurnal motion in space.

The associated coordinates in that system are:

geopotential values W(X)

geocentric Cartesian coordinates X

(and their changes in time)

IHRS scientific objectives

- ☐ To merge Earth's geometrical and physical representations in a consistent and useful way.
- ☐ To provide an accurate (1 cm or better) and stable physical height frame that is accessible by space geodetic techniques.
- ☐ To facilitate the geophysical "predictability" and "interpretability" of:
 - vertical station motions
 - surface gravity variations
 - sea level rise

Heighting in the IHRS context

 The primary vertical coordinates are scalar potential differences.

$$C(\mathbf{X}) = W_O - W(\mathbf{X})$$

Physical heights are derived by suitable metrics.

$$H(\mathbf{X}) = \frac{W_O - W(\mathbf{X})}{\tilde{g}(\mathbf{X})}$$

The parameter " W_o " reflects the **vertical datum** of the IHRS and it needs to be clearly specified in its definition.

Conventions for the definition and the realization of IHRS

(IAG Resolution 1, Prague 2015)

- 1. The **vertical reference level** is an equipotential surface of the Earth's gravity field with the geopotential value W_o .
- 2. Parameters, observations, and data shall be related to the **mean tidal system** and the **mean crust**.
- 3. Unit of length is the *m* and unit of time is the *sec* (SI).
- 4. The **vertical coordinates** are the geopotential numbers with respect to the reference level W_o .
- 5. The **spatial reference** of the position P for the geopotential determination $W_P = W(\mathbf{X})$ is related to the ITRS.
- $W_o = 62 636 853.4 \text{ m}^2 \text{ s}^{-2}$ (datum realization).

Open problems ...

Correlating Earth's time-variable gravity field and its deforming geometry is a complicated task!

IHRS in the deforming Earth

	Geopotential representation	Frame definition	Remarks
"semi- dynamic" approach	$W(\mathbf{X}(t))$	GGM with fixed Stokes' coefs	Physical heights (& their temporal changes) given wrt. a mean gravity field that is linked to ITRF
		Time-dependent 3D Cartesian positions	
"fully- dynamic" approach	W(X (t),t)	GGM with time- dependent Stokes' coefs	Physical heights (& their temporal changes) given wrt. the actual gravity field that is linked to ITRF
		Time-dependent 3D Cartesian positions	

IHRS in the deforming Earth

	Geopotential representation	Frame definition	Remarks
"semi- dynamic" approach	$W(\mathbf{X}(t))$	Static geoid model	Physical heights (& their temporal changes) given wrt. a mean gravity field that is linked to ITRF
		Time-dependent 3D Cartesian positions	
"fully- dynamic" approach	W(X (t),t)	Time-dependent geoid model	Physical heights (& their temporal changes) given wrt. the actual gravity field that is linked to ITRF
		Time-dependent 3D Cartesian positions	

IHRS in the deforming Earth

	Geopotential representation	Realization tools	Key issues to consider
"semi- dynamic" approach	$W(\mathbf{X}(t))$	$C_{n,m}, S_{n,m}, N$ $\mathbf{X}(t_o), \dot{\mathbf{X}}$	Choice of geopotential representation Temporal evolution &
"fully- dynamic" approach	W(X (t),t)	$C_{n,m}(t_o), \dot{C}_{n,m}$ $S_{n,m}(t_o), \dot{S}_{n,m}$ $N(t_o), \dot{N}$	geoph "predictability" Alignment to ITRS/ITRF
		$\mathbf{X}(t_o), \dot{\mathbf{X}}$	Frame densification

IHRS realization

(semi-dynamic approach)

A mean (static) representation of the gravity field is used. Physical height changes in IHRS reflect true vertical displacements!

IHRS realization

(semi-dynamic approach)

but temporal variations of <u>observed</u> gravity cannot be fully attributed to the physical height changes in IHRS!

IHRS' temporal evolution

(semi-dynamic approach)

$$\dot{H}_{IHRS} = \dot{h}_{IHRS} \quad (\dot{N} = 0)$$

$$\dot{W}_{IHRS} = \vec{\mathbf{g}}(P) \cdot \dot{\mathbf{X}}_{IHRS} \neq \dot{W}_{true}$$

$$\mathbf{X}(P') = \mathbf{X}(P) + \dot{\mathbf{X}}_{IHRS}(t'-t)$$

Geophysical monitoring (linearized context)

$$\dot{g}_{true} \approx \frac{\partial g}{\partial H} \dot{H}_{IHRS} + (\partial g/\partial t)$$

$$\dot{g}_{IHRS} \qquad \qquad \text{Inferred from models}$$

$$Observed (GRACE)$$

$$\dot{W}_{true} \approx \vec{\mathbf{g}} \cdot \dot{\mathbf{X}}_{IHRS} + (\partial W/\partial t)$$

$$\dot{W}_{IHRS}$$

Geophysical monitoring (time series context)

e.g. evaluated by GRACE models at current point position

e.g. mass-transport & loading effects on the gravity potential

Two (more practical) questions

- 1) If IHRS will support the **unification of existing local/regional VDs**, then how are we supposed to deal with the different "potential scales"?
 - e.g. are we allowed to simply merge a leveling-based height frame with IHRS?
- 2) What will be the value of spirit-leveled data in the realization and temporal evolution of IHRS?

Some comments on W_o

- ☐ Same parameter different roles/meanings
 - conventional "zero" vertical level for IHRS
 - best estimate of global MSL from altimetry data
 - \circ $L_G = W_o/c^2$ (IAU 2000 Resolution)
 - \circ Earth reference model (i.e. $W_o \leftrightarrow U_o$)
- \Box Is there any profound reason to update W_o in the context of (future) IHRS realizations?
- Should " W_o " be tagged in the IHRS conventions? $(t_o, GM, ω, other)$

Conclusions

- ☐ IHRS is a much-needed tool to unify the three pillars of geodesy!
- ☐ Three crucial items need to be elucidated:
 - choice of geopotential representation
 - its alignment procedure to ITRS/ITRF
 - the time-dependent character of IHRS and its geophysical "predictability"
- ☐ and ...

Conclusions

Is the **mean tidal system** the best choice for the definition of the IHRS?

