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Introduction

� Minimally constrained (MC) network adjustment  

is a standard tool for geodetic frame realizations.

� Optimal weighting for the reference stations           � Optimal weighting for the reference stations           

(within the MCs) has not been dealt with.

� The aim of this paper is to resolve the reference 

station weighting problem in the MC framework          

based on an optimal statistical setting.
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Un-resolved issue: choice of the weight matrix P

   

ref( )− =E x x 0     

ref( )− =EP x x 0or, more generally

Minimal constraints on reference stations
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Example

Classic form of 

NNT/NNR conditions

ref ( )  i i

i

− =∑ x x 0

 

o ref ( )  i i i

i

× − =∑ x x x 0

Weighted form of 

NNT/NNR conditions

ref ( )  i i i

i

p − =∑ x x 0

o ref ( )  i i i i

i

p× − =∑ x x x 0

Simplified scheme: diagonal weight matrix with a single scalar              

weight for each reference station



Example

Classic form of 

NNT/NNR conditions
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Weighted form of 

NNT/NNR conditions

ref ( )  i i i

i

− =∑ P x x 0

( ) 

o ref ( )   i i i i

i

× − =∑ x P x x 0

Simplified scheme: block-diagonal weight matrix with a single             

weight matrix for each reference station



Frame optimality in classic

(un-weighted) MC adjustment

� The realized frame of the adjusted network is  

optimized at the stations participating in the MCs 

(what about the other network stations?)

� The optimality of the realized frame considers only           

the data noise effect in the estimated coordinates

(what about the “datum noise” effect?)

� Optimization of derived frame-dependent quantities  

(e.g. horizontal coordinates) is not guaranteed!



What do “classic” MCs optimize?

 

ref( )− =E x x 0MCs applied to reference stations:

Rank-deficient NEQs:     
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Covariance matrix of MC solution:

Data noise effect

Minimum trace

Minimization of data noise effect 

only at the reference stations!



What can “weighted” MCs optimize?

 

ref( )− =E x xP 0

Minimization of data noise over any station group

ˆ ˆ ˆ ′ x xxΣ Σ

    
 

= 
′ 

δx
N u
δx

reference stations

minimum trace

Minimization of data/datum noise over any station group
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What can “weighted” MCs optimize?

Minimization of data/datum noise on other derived                   

frame-dependent quantities
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frame-dependent quantities

e.g. horizontal coordinates, geometric heights
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Datum choice problem
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ref( )− =H x x 0

Rank-deficient NEQs
Arbitrary MCs

Optimization problem to be solved
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where S is a “station selection” matrix, a Jacobian matrix,                   

or a combination of such matrices

Total CV matrix                              

of MC solution



Problem solution

Frame/network optimality principle

           

ˆ ˆ ˆ

ˆ ˆ ˆ
min T

trace
′

′ ′

 
 
  H

x xx

x x x

Σ Σ
S S
Σ Σ

Optimal MC matrix (applied to reference stations)
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optimal weight matrix

(*) see Kotsakis (2013, JGeod)
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inner-constraint matrix 

for the entire network (NET=0)~

where:



Numerical tests

o EPN network  – EUR17807.SNX

o Obtain weekly NEQs + remove inherent datum info

 δx

o Compare the weighted and un-weighted                 

MC solutions (IGb08 frame)

    ,
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Comparison between weighted                   

& un-weighted MC solutions
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CRD differences STDs of estimated CRDs

5 reference stations, S = I
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Comparison between weighted                   

& un-weighted MC solutions

CRD differences STDs of estimated CRDs
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5 reference stations, S = I
Un-weighted MCs

Weighted MCs
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Comparison between weighted                   

& un-weighted MC solutions

CRD differences STDs of estimated CRDs
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20 reference stations, S = I
Un-weighted MCs

Weighted MCs
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Comparison between weighted                   

& un-weighted MC solutions

CRD differences STDs of estimated CRDs
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EAST

20 reference stations, S = I
Un-weighted MCs

Weighted MCs
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Conclusions

� Reference station weighting (within the MCs) can        

lead to different types of frame optimality

� Reference station weighting can be used to optimize    

the accuracy of a MC solution in terms of the accuracy of a MC solution in terms of 

- the data and datum noise effects

- the network stations over which these effects are 

considered

� Detailed numerical testing will be presented                            

in a forthcoming paper




