

Development of a Semi-Automated Approach for Regional Corrector Surface Modeling in GPS-Levelling

G. Fotopoulos, C. Kotsakis, M.G. Sideris, and N. El-Sheimy

Presented at the

Annual Canadian Geophysical Union Meeting

Banff, Canada May 10 - 14, 2003

Overview

- Introduction to problem
- Background to previous work
- Choosing the 'best' model ...
- Assessing model performance
- Testing parameter significance
- Description of data
 - Switzerland
 - Canada
- Discussion of results
- Conclusions

Introduction (1/4)

Standard practice: Use of a corrector surface to model the datum discrepancies and systematic effects when combining GPS, geoid and orthometric heights

Theory:
$$h_i - H_i - N_i = 0$$
 \rightarrow $N_i^{GPS/levelling} = N_i$

Practice:
$$h_i - H_i - N_i = l_i \rightarrow N_i^{GPS/levelling} \neq N_i$$

Model:
$$l_i = h_i - H_i - N_i = \mathbf{a}_i^{\mathrm{T}} \mathbf{x} + v_i$$
 residuals

parametric 'corrector' model/surface

Introduction (2/4)

- Profound reasoning for choosing a specific model is missing
- Spatial modelling and analysis of the adjusted residual values over a network of GPS/levelling benchmarks are useful for a variety of applications:
 - External accuracy evaluation of spherical harmonic models of the Earth's gravity field and regional gravimetric geoid solutions
 - Refinement of regional geoid solutions by eliminating long wavelength errors through ties to GPS/levelling benchmarks
 - Check and improve the accuracy of vertical datums through combining geoid, GPS and levelling data

Introduction (3/4)

 Development of corrector surface models to be used with GPS and gravimetric geoid models for <u>GPS-Levelling</u>

orthometric height at new point

Data

GPS: h_i , Δh_{ij} Orthometric heights: H_i , ΔH_{ij} Geoid model: N_i , ΔN_{ij}

Prediction surface \rightarrow aim is to derive a surface from data which is to be applied to new data

Introduction (4/4)

Objective: To eliminate some of the arbitrariness in both choosing the model type and assessing its performance

General Pointwise Case:

$$h_i - H_i - N_i = \mathbf{a}_i^{\mathrm{T}} \mathbf{x} + v_i$$

where,

x ... vector of unknown parameters

 \mathbf{a}_i ... vector of known coefficients (depend on horizontal coords)

 v_i ... residuals

Classic Empirical Approach

Corrector Surface Model Selection

Corrector Models

$$h_i - H_i - N_i - a_i^T x = 0$$

- Selection of analytical model suffers from a degree of arbitrariness (Why?)
 - type of model (i.e. polynomial)
 - type of base functions (i.e. trigonometric)
 - number of coefficients
- Need statistical tools to
 - assess choices made
 - compare different models
- Factors for model selection/analysis may vary if
 - nested models
 - orthogonal vs. non-orthogonal models

No straightforward answer, data dependent (geometry)

Assessing the Goodness of Fit

Statistics of adjusted residuals

$$\hat{\mathbf{v}}_{i} = \mathbf{h}_{i} - \mathbf{H}_{i} - \mathbf{N}_{i} - \mathbf{a}_{i}^{\mathsf{T}} \hat{\mathbf{x}}$$

Coefficient of determination

 R^2

$$R^2 = 1 - \frac{\sum_{i=1}^{n} (\ell_i - \hat{v}_i)^2}{\sum_{i=1}^{n} (\ell_i - \overline{\ell}_i)^2}$$

$$\ell_i = h_i - H_i - N_i$$

$$n \dots \text{ m of observations}$$

$$\ell_i = h_i - H_i - N_i$$

Adjusted coefficient of determination

$$\overline{R}^2$$

$$\overline{R}^2 = 1 - \frac{\left[\sum_{i=1}^{n} (\ell_i - \hat{v}_i)^2\right] / (n-m)}{\left[\sum_{i=1}^{n} (\ell_i - \overline{\ell}_i)^2\right] / (n-1)}$$

m ... # of parameters

Additional Empirical Approach

Cross-Validation

- Use a subset of all points to compute the model parameters $\hat{\mathbf{x}}$
- Predict the residual values at a new point and compare the predicted value with the 'known' height value

$$\Delta \hat{v}_p = h_p - H_p - N_p - a_p^T \hat{x}$$

• Repeat for each point and compute the average rms, $\sum_{i=1}^{n} \sqrt{\mu_i^2 + \sigma_i^2}$

Cross-validation (empirical approach)

Testing Parameter Significance

Reasons for reducing the number of model parameters

- Simplicity, computational efficiency
- Over-parameterization (i.e. high-degree trend models)
 - → unrealistic extrema in data voids where control points are missing
- Unnecessary terms may bias other parameters in model
 - → hinders capability to assess model performance

Need for automated selection process

Stepwise Procedures

Backward Elimination Procedure

- Start with highest order model
- Eliminate less-significant terms one-by-one (or several at once)
- Criteria for determining parameter deletion
 - Partial F-test
 - Level of significance, α
 - Problem: correlation between parameters

Forward Selection Procedure

- Start with simple model
- Add parameter with the highest coefficient of determination (or partial F-value)

Stepwise Procedure

- Combination of backward elimination and forward selection procedures
- Starts with no parameters and selects parameters one-by-one (or several)
- After inclusion, examine every parameter for significance (partial F-test)

Testing Parameter Significance

- Statistical tests are more powerful in pointing out inappropriate models rather than establishing model validity
- Test if a set of parameters in the model is significant or not:

$$x = \begin{bmatrix} x(I) \\ x_I \end{bmatrix}$$

 $X = \begin{bmatrix} X(I) \\ X_T \end{bmatrix}$ I ... set of parameters tested (I) ... remaining parameters (complement)

hypothesis
$$H_0: x_I = 0$$
 vs $H_a: x_I \neq 0$

test statistic
$$\tilde{F} = \frac{\hat{x}_I \, Q_{\hat{x}_I}^{-1} \, \hat{x}_I}{k \hat{\sigma}^2} \qquad k \dots \text{number of 'tested' terms}$$

$$Q_{\hat{x}_I} \dots \text{submatrix of } Q = N^{-1}$$

criteria

$$\tilde{\mathsf{F}} \leq \mathsf{F}_{k,f}^{\alpha}$$

$$\widetilde{\mathsf{F}} \leq \mathsf{F}_{k-f}^{\alpha} + \mathsf{H}_0 \text{ accepted } \checkmark$$

Testing Parameter Significance

• Test statistic (regardless of form) is a function of observations

$$\widetilde{F} = \frac{\hat{x}_{I} Q_{\hat{x}_{I}}^{-1} \hat{x}_{I}}{k \hat{\sigma}^{2}} \qquad \widetilde{F} = \frac{\left[\sum (\ell - \hat{v})_{partial}^{2} - \sum (\ell - \hat{v})_{full}^{2}\right] / k}{\left[\sum (\ell - \hat{v})_{full}^{2}\right] / n - m}$$

No need to repeat combined least-squares adjustment (first case)

Problems

- No unique answer (depends on initial selection, α)
- High parameter correlation may skew results
- Highly correlated parameters should be deleted (detection)

Stepwise Procedure

Description of Data

- 111 stations in Switzerland
- 343 km × 212 km region
- Form 'residuals':

$$\ell_i = h_i - H_i - N_i$$

Statistics of residuals before fit

min	-4.9 cm
max	19 cm
mean	1.1 cm
std	3.8 cm
rms	3.9 cm

GPS on Benchmarks (and residuals)

Description of Data

- 63 stations in Southern British Columbia & Alberta
- 495 km × 334 km region
- Form 'residuals':

$$\ell_i = h_i - H_i - N_i$$

Stats of residuals before fit

min	-17.1 cm
max	25.2 cm
mean	4.5 cm
std	8.1 cm
rms	9.3 cm

GPS on Benchmarks (and residuals)

Analytical Models

Nested bilinear polynomial series

 $1 \ \mathrm{d}\varphi \ \mathrm{d}\lambda \ \mathrm{d}\varphi \mathrm{d}\lambda \ \mathrm{d}\varphi^2 \ \mathrm{d}\lambda^2 \ \mathrm{d}\varphi^2 \mathrm{d}\lambda \ \mathrm{d}\varphi \mathrm{d}\lambda^2 \ \mathrm{d}\varphi^3 \ \mathrm{d}\lambda^3 \ \mathrm{d}\varphi^2 \mathrm{d}\lambda^2 \ \mathrm{d}\varphi^3 \mathrm{d}\lambda \ \mathrm{d}\varphi \mathrm{d}\lambda^3 \ \mathrm{d}\varphi^4 \ \mathrm{d}\lambda^4$

Classic trigonometric-based polynomial fits

 $1 \cos\varphi\cos\lambda \cos\varphi\sin\lambda \sin\varphi$

 $1 \cos\varphi\cos\lambda \cos\varphi\sin\lambda \sin\varphi \sin^2\varphi$

Differential similarity transformation

 $\cos\varphi\cos\lambda \ \cos\varphi\sin\lambda \ \sin\varphi \ \frac{\sin\varphi\cos\varphi\sin\lambda}{W} \ \frac{\sin\varphi\cos\varphi\cos\lambda}{W} \ \frac{1-f^2\sin^2\varphi}{W} \ \frac{\sin^2\varphi}{W}$

where,
$$W = \sqrt{1 - e^2 \sin^2 \varphi}$$

Analytical Models (polynomials)

Other Analytical Models

Notes

- all values shown in m
- GPS BMs in Switzerland used
- Full models shown (no parameters omitted)

Example - Coefficient of Determination

- **A** 1st order polynomial
- **D** 2nd order polynomial
- **G** 4th order polynomial

- **B** Classic 4-parameter
- E Differential Similarity
- **C** Classic 5-parameter
- **F** 3rd order polynomial

Empirical Testing

Conclusions

Residuals after fit

→ 4th order polynomial

Prediction (external test)

→ Any model except 4th order polynomial

Not enough of a difference between models to justify statistical parameter significance testing

→ use lowest order model

Results - Southern BC/AB

Differential Similarity Fit (7-parameters)

 $\cos\varphi\cos\lambda \ \cos\varphi\sin\lambda \ \sin\varphi \ \frac{\sin\varphi\cos\varphi\sin\lambda}{W} \ \frac{\sin\varphi\cos\varphi\cos\lambda}{W} \ \frac{1-f^2\sin^2\varphi}{W} \ \frac{\sin^2\varphi}{W}$

Selection criteria

R^2	0.4805
\overline{R}^2	0.2311
$\sqrt{\hat{v}^T\hat{v}}$	53 cm
condition number	1.52×10 ¹²
rms after fit	6.7 cm
rms (prediction)	7.9 cm

Results - Switzerland

Classic 4-parameter fit

 $1 \cos\varphi\cos\lambda \cos\varphi\sin\lambda \sin\varphi$

Selection criteria

R^2	0.5668
\overline{R}^2	0.5181
$\sqrt{\hat{v}^T\hat{v}}$	24.5 cm
condition number	2.77×10 ⁷
rms after fit	2.4 cm
rms (prediction)	2.4 cm

Conclusions

- Semi-automated procedure for comparing corrector surface models and assessing model performance was presented
- Semi
 - no unique straightforward solution
 - some user intervention required
- In most cases, the best test is cross-validation (prediction)
 - independent 'external' test
 - depends on quality of data
- When model parameters are highly correlated (as is the case with polynomial regression), statistical testing may not be conclusive
- Use orthogonal polynomials to eliminate problems with high correlation between parameters (i.e. Fourier Series)
- Procedure should include a combination of empirical <u>and</u> statistical testing

