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Overview 

• Introduction to problem 

• Background to previous work 

• Choosing the ‘best’ model …   

• Assessing model performance 

• Testing parameter significance 

• Description of data 

– Switzerland 

– Canada 

• Discussion of results 

• Conclusions 
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Standard practice: Use of a corrector surface to model the datum 

discrepancies and systematic effects when combining GPS, geoid and 

orthometric heights 

Introduction (1/4) 

iiiii NNNHh levellingGPS                        0        / Theory: 

iiiiii NNlNHh levellingGPS                               / Practice: 

Model: iiiiii vNHhl                T  xa 

parametric ‘corrector’ 

model/surface 

residuals 
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• Profound reasoning for choosing a specific model is missing 

• Spatial modelling and analysis of the adjusted residual values over 

a network of GPS/levelling benchmarks are useful for a variety of 

applications: 

– External accuracy evaluation of spherical harmonic models of the 

Earth’s gravity field and regional gravimetric geoid solutions 

– Refinement of regional geoid solutions by eliminating long wavelength 

errors through ties to GPS/levelling benchmarks 

– Check and improve the accuracy of vertical datums through combining 

geoid, GPS and levelling data 

Introduction (2/4) 
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– Development of corrector surface models to be used with GPS 

and gravimetric geoid models for GPS-Levelling 

 

 

 

 

 

 

 

Prediction surface  aim is to derive a surface from data which is 

to be applied to new data 

xa ˆT
pppp NhH 

Introduction (3/4) 

ijiijiiji NNHHΔhh  ,,  , :modelGeoid:heightscOrthometri:GPS

Data 

known height data 

corrector surface 

orthometric height at new point 
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Objective:  To eliminate some of the arbitrariness in both  

choosing the model type and assessing its performance  

Introduction (4/4) 

General Pointwise Case: 

iiiii vNHh             T  xa

where, 

x

ia

iv

… vector of unknown parameters 

… vector of known coefficients (depend on horizontal coords) 

… residuals 
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• polynomial (order) ? 

• base functions (trig.) ?  

• “physical” meaning of  

   terms 

 

0NHh iii 
Data 

ijijij

iii

ΔN,ΔH,Δh

N,H,h

kx̂

• network geometry 

• pre-corrected  

• pre-adjusted 

• over constrained adjustment 

 

Final model selection 

Least-squares  

adjustment 

Classic Empirical Approach  

Statistics of adjusted  

residuals 

xaNHhv T
iiiii
ˆˆ 

0xaNHh T
iiii 

Corrector Models 
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• Selection of analytical model suffers from a degree of arbitrariness (Why?) 

– type of model (i.e. polynomial) 

– type of base functions (i.e. trigonometric) 

– number of coefficients  

• Need statistical tools to 

– assess choices made 

– compare different models 

• Factors for model selection/analysis may vary if  
– nested models 

– orthogonal vs. non-orthogonal models 

No straightforward answer, data dependent (geometry) 

Corrector Surface Model Selection  

0xaNHh T
iiii 

Corrector Models 
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Assessing the Goodness of Fit 
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n  … # of observations 

iiii NHh 

m  … # of parameters 

Statistics of adjusted  

residuals 

xaNHhv T
iiiii
ˆˆ 

Coefficient of  
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Cross-Validation 

• Use a subset of all points to compute the model parameters 

• Predict the residual values at a new point and compare the predicted 

value with the ‘known’ height value 

 

• Repeat for each point and compute  

 the average rms, 
p 

Additional Empirical Approach 

Cross-validation 

(empirical approach) 

x̂

xaNHhvΔ T
ppppp
ˆˆ 

 

n

1i
2
i

2
i σμ
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Reasons for reducing the number of model parameters 

• Simplicity, computational efficiency 

• Over-parameterization (i.e. high-degree trend models)   

  unrealistic extrema in data voids where control points are missing 

• Unnecessary terms may bias other parameters in model   

  hinders capability to assess model performance  

 

Parameter Significance 

Testing Parameter Significance 

Need for automated selection process 
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Backward Elimination Procedure 

• Start with highest order model 

• Eliminate less-significant terms one-by-one (or several at once) 

• Criteria for determining parameter deletion 

– Partial F-test 

– Level of significance,  

– Problem: correlation between parameters 

Forward Selection Procedure 

• Start with simple model 

• Add parameter with the highest coefficient of determination (or partial F-value) 

Stepwise Procedure 

• Combination of backward elimination and forward selection procedures 

• Starts with no parameters and selects parameters one-by-one (or several) 

• After inclusion, examine every parameter for significance (partial F-test) 

 

Stepwise Procedures 

nested  

models 

only 
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• Statistical tests are more powerful in pointing out inappropriate models 

rather than establishing model validity 

• Test if a set of parameters in the model is significant or not: 

 

Testing Parameter Significance 









I

I

x

)(x
x

I    … set of parameters tested 

(I) … remaining parameters (complement) 

hypothesis 

test statistic 

0x:aHvs0x:0H  II

2

1
x

σk

xQx
F

ˆ
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~ I

I
I ˆ




k ……… number of ‘tested’ terms 

 

       …... submatrix of Q = N-1  
Ix̂

Q

criteria  
fk ,

~
FF  H0 accepted   
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• Test statistic (regardless of form) is a function of observations  

 

 

 

• No need to repeat combined least-squares adjustment (first case) 

Problems 

– No unique answer (depends on initial selection, ) 

– High parameter correlation may skew results 

– Highly correlated parameters should be deleted (detection) 

 

Testing Parameter Significance 
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Stepwise Procedure 

Enter parameter  

Perform regression 

Re-compute partial 

F-values for each  

model parameter 


outFF 

~

Delete parameter 

Compute partial F-values, 

choose the highest one 


inFF 

~

     Start  

Select regression model 

Least-squares adjustment 

Terminate 

yes 

no 

Backward elimination 
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Longitude 

• 111 stations in Switzerland 

• 343 km  212 km region 

• Form ‘residuals’: 

 

 

Statistics of residuals before fit 

 

 

 

  

iiii NHh 

GPS on Benchmarks (and residuals)  

L
a

ti
tu

d
e

 

   6°E 

 30'  

 30'  

 30'  

 30'  

   7°E    8°E    9°E    10°E    11°E 
   45°N 

   46°N 

   47°N 

   48°N 

Description of Data 

min -4.9 cm 

max 19 cm 

mean 1.1 cm 

std 3.8 cm 

rms 3.9 cm 
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116°W 
Longitude 

L
a

ti
tu

d
e

 

124°W 122°W 120°W 118°W 

49°N 

50°N 

51°N 

52°N 

• 63 stations in Southern 

British Columbia & 

Alberta 

• 495 km  334 km region 

• Form ‘residuals’: 

 

Stats of residuals before fit 

 

 

 

  

iiii NHh 

min -17.1 cm 

max 25.2 cm 

mean 4.5 cm 

std 8.1 cm 

rms 9.3 cm 

Description of Data 

GPS on Benchmarks (and residuals)  
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Analytical Models 

Nested bilinear polynomial series  

Classic trigonometric-based polynomial fits   

443322332222 dλddλddλd ddλddλddλddλddλddλd1  d

 sinsincoscoscos1

 21 sinsinsincoscoscos

Differential similarity transformation   

WW

f1

WW

222 


sinsincoscossinsincossin
sinsincoscoscos



22e1W sin, where
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Analytical Models (polynomials) 

3rd order  

1st order  2nd order  

4th order  
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Other Analytical Models  

Classic 5-parameter  Classic 4-parameter  

Notes 

–  all values shown in m 

–  GPS BMs in Switzerland used 

–  Full models shown (no parameters omitted) 

7-parameter differential similarity  
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A  1st order polynomial B  Classic 4-parameter C  Classic 5-parameter  

D  2nd order polynomial E  Differential Similarity F  3rd order polynomial  

G  4th order polynomial 

-0.1 
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0.1 
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0.6 

0.7 

2R

2R

2R

2R

Switzerland 

Canada 

A B D C F G E 

Example - Coefficient of Determination 

10 2  R

model 

performance 
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Switzerland Canada 
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prediction 

prediction 

residuals after fit 

residuals after fit 

Conclusions 

Residuals after fit 

   4th order polynomial 

 

Prediction (external test) 

   Any model except 4th         

 order polynomial 

 

Not enough of a difference 

between models to justify 

statistical parameter 

significance testing 

  use lowest order model 

 

 

Empirical Testing  
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Results - Southern BC/AB  

Differential Similarity Fit (7-parameters)  

0.4805 

0.2311 

53 cm 

condition number 1.52×1012 

rms after fit 6.7 cm 

rms (prediction) 7.9 cm 

2R

2R

vvT ˆˆ

Selection criteria 

WW

f1

WW

222 


sinsincoscossinsincossin
sinsincoscoscos



cm 
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Results - Switzerland  

Classic 4-parameter fit  

0.5668 

0.5181 

24.5 cm 

condition number 2.77×107 

rms after fit 2.4 cm 

rms (prediction) 2.4 cm 

2R

2R

vvT ˆˆ

Selection criteria 

 sinsincoscoscos1

cm 
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• Semi-automated procedure for comparing corrector surface models 

and assessing model performance was presented 

• Semi 

– no unique straightforward solution 

– some user intervention required 

• In most cases, the best test is cross-validation (prediction) 

– independent ‘external’ test 

– depends on quality of data 

• When model parameters are highly correlated (as is the case with 

polynomial regression), statistical testing may not be conclusive   

• Use orthogonal polynomials to eliminate problems with high correlation 

between parameters (i.e. Fourier Series) 

• Procedure should include a combination of empirical and statistical  

 testing 

 

Conclusions 


