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Abstract. An optimal modification of the classical 

LSC prediction method is presented, which removes 

its inherent smoothing effect while sustaining most 

of its local prediction accuracy at each computation 

point. Our ‘de-smoothing’ approach is based on a 

covariance-matching constraint that is imposed on a 

linear modification of the usual LSC solution so 

that the final predicted field reproduces the spatial 

variations patterns implied by an adopted covari-

ance (CV) function model. In addition, an optimal 

criterion is enforced which minimizes the loss in 

local prediction accuracy (in the mean squared 

sense) that occurs during the transformation of the 

original LSC solution to its CV-matching counter-

part. The merit and the main theoretical principles 

of this signal CV-adaptive technique are analytical-

ly explained, and a comparative example with the 

classical LSC prediction method is given. 
 

Keywords. Least-squares collocation, spatial ran-

dom field, smoothing, covariance matching. 

 

 

1 Introduction 
 
The prediction of the functional values of a contin-

uous spatial random field (SRF), using a set of ob-

served values of the same and/or other SRFs, is a 

fundamental inverse problem in geosciences. The 

mathematical model describing such a problem is 

commonly formulated in terms of the observation 

equation 

 

nivuLy iii  ..., ,2 ,1       ,)(                          (1) 

 

where )(Pu  denotes the primary random field of 

interest ( DP , with D being a bounded or un-

bounded spatial domain) that needs to be deter-

mined, at one or more points, using n discrete 

measurements }{ iy  which are taken on the same 

and/or other locations. The symbols )(iL  corre-

spond to bounded linear or linearized functionals of 

the unknown field, depending on the physical mod-

el that relates the observable quantities with the 

underlying SRF itself, while the terms }{ iv  contain 

the effect of measurement random noise. Typical 

examples that fall within the realm of the aforemen-

tioned SRF prediction scheme include the determi-

nation of the disturbing gravity potential on or out-

side a spherical Earth model using various types of 

gravity field functionals, the prediction of stationary 

or non-stationary ocean circulation patterns from 

satellite altimetry data, the prediction of atmospher-

ic fields (tropospheric, ionospheric) from the tomo-

graphic inversion of GPS data, the prediction of 

crustal deformation fields from geodetic data, etc. 

 

The predominant approach that is generally fol-

lowed in geodesy for solving such problems is 

least-squares collocation (LSC) which was intro-

duced by Krarup (1969) in a deterministic context 

as a rigorous approximation method in separable 

Hilbert spaces with reproducing kernels, and formu-

lated in parallel by Moritz (1970) in a probabilistic 

setting as an optimal prediction technique for spa-

tially correlated random variables and stochastic 

processes; see also Sanso (1986), Dermanis (1976). 

 

A critical aspect in LSC is the smoothing effect on 

the predicted signal values )(ˆ Pu , which typically 

exhibit less spatial variability than the actual field 

)(Pu . Consequently, small field values are overes-

timated and large values are underestimated, thus 

introducing a likely conditional bias in the final 

results and possibly creating artifact structures in 

SRF maps generated through the LSC process. Note 

that smoothing is an important characteristic which 

is not solely associated with the LSC method, and it 

is shared by most interpolation techniques aiming at 

the unique approximation of a continuous function 

from a finite number of observed functionals. Its 

merit is that it guarantees that the recovered field 

does not produce artificial details not inherent or 

proven by the actual data, which is certainly a de-

sirable characteristic for an optimal signal interpola-

tor. However, the use of smoothed SRF images or 



maps generated by techniques such as LSC provides 

a shortfall for applications sensitive to the presence 

of extreme signal values, patterns of field continuity 

and spatial correlation structure. While founded on 

local optimality criteria that minimize the mean 

squared error (MSE) at each prediction point, the 

LSC approach overlooks to some extent a feature of 

reality that is often important to capture, namely 

spatial variability. The latter can be considered a 

global field attribute, since it only has meaning in 

the context of the relationship of all predicted val-

ues to one another in space. As a result of the 

smoothing effect, the ordinary LSC solution does 

not reproduce either the histogram of the underlying 

SRF, or the spatial correlation structure as implied 

by the adopted model of its covariance (CV) func-

tion.  

 

In this paper we present an ad-hoc approach that 

enhances LSC-based field predictions by eliminat-

ing their inherent smoothing effect, while preserv-

ing most of their local prediction accuracy. Our 

approach consists of correcting a-posteriori the op-

timal result obtained from LSC in the inversion of 

(1), in a way that the corrected field matches the 

spatial correlation structure implied by the signal 

CV function that was used to construct the initial 

LSC solution. Similar predictors have also appeared 

in the geostatistical literature by constraining the 

usual unbiased kriging-type solution through a co-

variance-matching condition, thus yielding new 

linear SRF predictors that match not only the first 

moment but the second moment of the primary SRF 

as well (Aldworth and Cressie 2003, Cressie 1993). 

 

In contrast to stochastic simulation schemes which 

provide multiple equiprobable signal realizations 

according to some CV model of spatial variability 

(e.g. Christakos 1992), the methodology presented 

herein gives a unique field estimate that is statisti-

cally consistent with a prior model of its spatial CV 

function. The uniqueness is imposed though an op-

timal criterion that minimizes the loss in local pre-

diction accuracy (in the MSE sense) which occurs 

when we transform the LSC solution to match the 

spatial correlation structure of the underlying SRF. 

 
 
2 Ordinary Least-Squares Collocation 
 

Denoting by )(  uLs ii   the signal part in the availa-

ble data, the system of observation equations in (1) 

can be written in vector form as 

 

vsy                                         (2) 

 

where y, s and v are random vectors containing the 

known measurements, and the unknown signal and 

noise values, respectively, at all observation points 

}{ iP . The signal and noise components in (2) are 

considered uncorrelated with each other (a crucial 

simplification that is regularly applied in practice), 

and of known statistical properties in terms of their 

given expectations and co-variances. 

 

Assuming that the spatial variability of the primary 

SRF u is described by a known CV function model 

)(P,QCu , the elements of the CV matrix of the 

signal vector s are determined according to the CV 

propagation law (Moritz 1980) 

 

),(    )(   jiuji PPCLLi,j sC                        (3) 

 

where iL  and jL  correspond to the functionals 

associated with the i
th

 and j
th

 observation. In the 

same way, the cross-CV matrix between the prima-

ry field values (at the selected prediction points 

}{ iP ) and the observed signal values is obtained as 

 

),(    )(  jiuj PPCLi,j usC                           (4) 

 

The CV matrix vC  of the data noise is also consid-

ered known, based on the availability of an appro-

priate stochastic model describing the statistical 

behavior of the zero-mean measurement errors. 

 

An additional postulate on the spatial trend of the 

primary SRF is often employed as an auxiliary hy-

pothesis for the LSC inversion of (1) or (2). In fact, 

various LSC prediction algorithms may arise in 

practice, depending on how we treat the signal de-

trending problem. For the purpose of this paper and 

without any essential loss of generality, it will be 

assumed that we deal only with zero-mean SRFs 

and signals ( 0}{ uE , 0s }{E ).  

 

Based on the previous assumptions, the LSC predic-

tor of the primary SRF, at all selected prediction 

points, is given by the well known matrix formula 
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                        (5) 

 

which corresponds to the linear unbiased solution 

with minimum mean squared prediction error 

(Moritz 1980, Sanso 1986). 

 

The inherent smoothing effect in LSC can be identi-

fied from the CV structure of its optimal result. Ap-

plying CV propagation to the predicted field û  in 

(5), we obtain the result 



T1
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
                      (6) 

 

which generally differs from the CV matrix uC  of 

the original SRF at the same set of prediction 

points, i.e. 

 

)(    ),(    )( ˆ i,jPPCi,j jiu uu CC                      (7) 

 

Moreover, if we consider the vector of the predic-

tion errors uue  ˆ  , it holds that 

 

euu CCC   ˆ                                  (8) 

 

where the error CV matrix is given by the equation 

 

T1
)(    usvsusue CCCCCC


               (9) 

 

The fundamental relationship in (8) conveys the 

meaning of the smoothing effect in LSC, which 

essentially acts as an optimal low-pass filter to the 

input data. The spatial variability of the LSC predic-

tion errors, in terms of their variances and co-

variances, is exactly equal to the deficit in spatial 

variability of the LSC predictor û  with respect to 

the original SRF u.  

 

   

3 Optimal “De-Smoothing” of the LSC  
solution 

 

Our objective is to develop a correction algorithm 

that can be applied to the optimal field prediction 

obtained from LSC for the purpose of removing its 

inherent smoothing effect, while sustaining most of 

its local prediction accuracy. In general terms, we 

seek a “de-smoothing” transformation to act upon 

the LSC predictor, )ˆ(  ˆ uu  , such that the CV 

structure of the primary SRF is recovered. This 

means that the transformation )(  should guaran-

tee that 

 

uu CC   ˆ                                  (10) 

 

where uC  is the CV matrix formed through the CV 

function ),( QPCu  of the primary SRF; see (7). 

 

In addition, the prediction errors uue  ˆ   associ-

ated with the field predictor uˆ  should remain small 

in some sense, so that the new solution can provide 

not only a CV-adaptive representation for the SRF 

variation patterns, but also locally accurate predict-

ed values on the basis of the given data. For this 

purpose, the formulation of the operator )(  

should additionally incorporate some kind of opti-

mality principle by minimizing, for example, the 

trace of the new error CV matrix eC  . 

 

Let us now introduce a straightforward linear ap-

proach to modify the LSC predictor û , through 

 

uRu ˆ   ˆ                                                      (11) 

 

where R is a square filtering matrix that needs to be 

determined according to some optimal criteria for 

the new predictor uˆ , including its CV-matching 

property given in (10). 

 

The predicted field obtained from (11) should re-

produce the CV structure of the primary SRF, in the 

sense that uu CC   ˆ   for the given spatial distribu-

tion of all prediction points }{ iP . Hence, the filter-

ing matrix R has to satisfy the constraint 

 

uu CRRC   
T

ˆ                                 (12) 

 

where uC  and uC ˆ  correspond to the CV matrices 

of the primary and the LSC-predicted SRFs. 

 

The assessment of the prediction accuracy of the 

new solution uˆ  can be made through its error CV 

matrix  

 

})ˆ( )ˆ{(  
T

uuuuCe  E                         (13) 

 

which, taking (11) into account, yields 

 

TT
ˆˆˆ         RCRCCRRCC uuuuuue               (14) 

 

Using (8) and the following relation that is always 

valid for the LSC predictor û  (assuming that there 

is zero correlation between the observed signals s 

and the measurement noise v)  

 

uuu CC ˆˆ                            (15) 

 

the new error CV matrix can be finally expressed as 

 

T
)()(    ˆ RICRICC uee                         (16) 

 

where eC  is the error CV matrix of the LSC solu-

tion. Evidently, the prediction accuracy of the modi-

fied solution uˆ  will always be worse than the pre-

diction accuracy of the original LSC solution û , 

regardless of the form of the filtering matrix R. This 

is expected since LSC provides the best (in the 



MSE sense) unbiased linear predictor from the 

available measurements, which cannot be further 

improved by additional linear operations. Neverthe-

less, our aim is to determine an optimal filtering 

matrix that satisfies the CV-matching constraint in 

(12), while minimizing the loss of the MSE predic-

tion accuracy in the recovered SRF, in the sense 

that 

 

minimum  )δ(  )(   eee CCC tracetrace         (17) 

 

where 
T

)()(δ ˆ RICRIC ue   represents the 

part of the error CV matrix of the new predictor uˆ  

which depends on the choice of the filtering matrix. 

 

The determination of the filtering matrix R that (i) 

satisfies the CV-matching constraint (12), and (ii) 

minimizes the loss in the MSE prediction accuracy 

of the predictor uˆ  according to (17), is analytically 

described in Kotsakis (2007). Due to space limits, 

we will only present the final result herein, without 

going into any technical details regarding its math-

ematical proof. The optimal filtering is 

 

2/12/12/12/12/1
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
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or equivalently (see Appendix) 
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Note that the above result was originally derived in 

Eldar (2001) under a completely different context 

than the one discussed in this paper, focusing on 

applications such as matched-filter detection, quan-

tum signal processing and signal whitening.  

 

 

4 Numerical Test 
 

A numerical example is presented in this section to 

demonstrate the performance of the CV-adaptive 

predictor uˆ , in comparison with the classical LSC 

predictor û . The particular test refers to a standard 

noise filtering problem for a set of simulated grid-

ded gravity anomaly data. The image shown in Fig. 

1(a) is the actual realization of a free-air gravity 

anomaly field which has been simulated within an 

50×50 km
2
 area and with a uniform sampling reso-

lution of 2 km, according to the following model of 

the spatial CV function 

 

2)/(1
  )(

ar

C
P,QC

PQ

o
u


                                    (20)        

             

where 2mgal 220  oC , PQr  is the planar distance 

between points P and Q, and the parameter a is se-

lected such that the correlation length of the gravity 

anomaly field is equal to 7 km.  

 

The noisy data grid is shown in Fig. 1(b), with the 

underlying noise level being equal to 15 mgals. 

Note that the additive random errors have been 

simulated as a set of uncorrelated random variables, 

thus enforcing a white noise assumption for the 

gridded data. In Fig. 1(d) we see the filtered signal 

as obtained from the classical LSC algorithm (i.e. 

Wiener filtering), whereas in Fig. 1(c) is shown the 

result obtained from the CV-adaptive solution uˆ . It 

is seen that, although LSC provides in principle the 

most accurate (in the MSE sense) filtered signal, the 

result obtained from the CV-adaptive predictor 

clearly looks more similar to the original SRF that 

is depicted in Fig. 1(a). The emulation of the spatial 

variability of the primary SRF by the CV-adaptive 

solution uˆ , in contrast to the smoothed representa-

tion obtained by the LSC predictor û ,  can also be 

seen in the histograms plotted in Fig. 2, as well as in 

the signal statistics listed in Table 1. 

 
Table 1.  Statistics of the actual (simulated) signal u , the LSC-

filtered signal û  and the CV-matching filtered signal uˆ           

(all values in mgals). 

 Max Min Mean  

Actual grid 

values 

45.33 -42.88 -0.04 14.96 

LSC solution 27.42 -29.10 0.74 10.29 

CV-matching 
solution 41.47 -42.48 0.73 14.64 

 

5 Conclusions   
 

Due to its inherent smoothing effect, the LSC pre-

diction algorithm does not reproduce the spatial 

correlation structure implied by the CV function of 

the primary SRF that needs to be recovered from its 

observed functionals. The method presented in this 

paper offers an alternative approach for optimal 

SRF prediction, which preserves the signal’s spatial 

variability as dictated by its known CV function. 

 

Evidently, the rationale of the proposed technique 

relies on the knowledge of the true CV function of 

the underlying SRF, an assumption which is also 

inbuilt in the theoretical development of the classi-

cal LSC method (Moritz 1980). In practice, an em-

pirical signal CV function is often first estimated 

from a given and possibly noisy data record, and 

then used in the implementation of the LSC proce-



(a) (b) 

(c) (d) 

Figure 1. Plots of the actual (simulated) gravity anomaly signal (a), the noisy observed signal (b), 

the CV-matching filtered signal (c), and the LSC-filtered signal (d). 

(a) 

(b) 

(c) 

Figure 2. Histograms of the actual (simulated) gravity anom-

aly signal (a), the LSC-filtered signal (b), and the CV-

matching filtered signal (c).  

dure for the (sub-optimal) recovery of the primary 

SRF at a set of prediction points. For such cases, it 

is reasonable to question whether it would be mean-

ingful to let the spatial variability of the LSC-

predicted field to be adapted to an empirical CV 

function by following the CV-matching approach 

presented in this paper. A more reasonable method-

ology would be to additionally incorporate a vari-

ance component estimation approach, in a way that 

the final predicted field becomes adapted to an “im-

proved” model of spatial variability (i.e. with re-

spect to the one imposed by the empirical CV func-

tion). In contrast to the standard CV-matching con-

straint introduced in (10), we can impose in this 

case the alternative CV-tuning constraint   

 

uu QC    2
ˆ                               (21) 

 

where the known CV matrix uQ  is formed through 

the empirically determined signal CV function, and 

2  is an unknown variance factor which controls 

the consistency between the empirical and the true 

CV function for the underlying unknown signal. 

 

Tackling the above problem along with the study of 

one-step CV-matching linear predictors (see 

Schaffrin 1997, 2002), instead of the two-step con-

structive approach that was presented herein, may 

be an interesting subject for future investigation.  
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Appendix 
 

In this appendix, we will establish the equivalency 

between the two forms of the optimal filtering ma-

trix R that were given in (18) and (19), respectively. 

  

Starting from (18) and using the following matrix 

identity (which is easy to verify for all invertible 

matrices S and T) 
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  (A2) 

 

The last expression in the above equation is identi-

cal to the matrix form given in (19), and thus the 

equivalency between (18) and (19) has been estab-

lished. 

 


