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Abstract

A generalization of the well-known relationship between geometric and orthometric heights
is presented in this paper. The advantage of our revised formulation is that, instead of the
non-determinable true orthometric heights, it employs the (most commonly used in geodetic
practice) Helmert orthometric heights. Based on standard concepts from physical geodesy
theory and straightforward analytical derivations, we obtain a set of linearized constraints
relating the geometric and Helmert orthometric heights in the presence of a geoid or quasi-
geoid model. These constraints should be theoretically satisfied in the case of errorless data
and thus they provide a standard framework for the joint analysis and the quality testing of

heterogeneous heights in a terrestrial network.
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1 Introduction

Since the advent of space-geodetic positioning techniques,
the joint analysis of heterogeneous height data has be-
come an important tool for many geodetic applications.
The most prominent example is the combination of GPS
derived geometric heights with spirit levelled orthometric
heights in the presence of a geoid model, which has been
a standard method for the quality testing of global geopo-
tential models (or terrestrial leveling networks) and the
implementation of unification schemes between traditional
and geoid-based vertical datums (e.g. Rapp 1994; Pan and
Sjoberg 1998; Bursa et al. 2004; Sanchez 2007; Amos and
Featherstone 2009; Kotsakis and Katsambalos 2010). The
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underlying principle relies on the low-order parameterization
of the theoretical constraint (Heiskanen and Moritz 1967,
p. 187)

h—N—-—H=0 (1)

and the assessment of the results from its least squares
adjustment over a network of GPS/leveling benchmarks. For
most applications the emphasis is given on the analysis of the
adjusted residuals in terms of (i) their statistical characteris-
tics that indicate the combined accuracy level of the different
height types, and (ii) their spatial modeling that facilitates
the identification of local systematic distortions in the geoid
model and/or the leveled orthometric heights. The estimated
parameters from the aforementioned adjustment do not usu-
ally carry any theoretical or practical relevance, other than
providing the overall trend of the heterogeneous height
differences in the underlying network due to hidden biases
and long-wavelength data errors. Indeed, the trend modeling
schemes that are used in practice for the analysis of the height
differences h-N-H are mostly empirical (e.g. bias/tilt models,
polynomial surfaces, Fotopoulos 2003) without considering
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any geodetically important principles for vertical reference
systems and their realizations from different data sources.
The aim of this paper is to revise the theoretical constraint
between geometric, orthometric and geoid heights beyond
the simplified form of Eq. (1), thus providing a general
parametric model that can be used for the joint analysis
of heterogeneous height data in terrestrial networks. Our
treatment is confined to a theoretical discussion of the basic
principles and the motivation for such a revised formulation
in the context of the combination problem of Helmert-type
orthometric heights not only with a geoid model (as it is usual
case in the geodetic literature) but also with a quasi-geoid
model.

2 Fundamental Relationship Between
Geometric and Orthometric Heights

The theoretical equation relating the geometric and orthome-
tric heights in the presence of a geoid model has the general
form

5W,
= @)

h—N-—-H
where the meaning of each height type is shown in Fig. 1.
The term §W, refers to the geopotential difference between
(i) the local vertical datum (LVD) defining the zero-height
level of the orthometric heights and (ii) the equipotential
surface which is realized by the geoid model, whereas g’
denotes the gravity value on the geoid as depicted in Fig. 1.
Essentially the above formula quantifies, within a linear
approximation, the vertical separation between the equipo-
tential surfaces W = WP and W=W, using three different
types of geodetic “observables”. Its linearization error is
negligible provided that the two surfaces are not separated
by more than few meters, a fact that can be ensured for
any reasonable geoid model in relation with most existing
vertical datums.! The non-parallelism of these equipotential
surfaces is reflected through the presence of the non-constant
gravity value g™ in Eq. (2). In fact, the gravity variation
on the geoid can cause an almost mm-level dispersion in
the vertical offset h-N-H, mostly over very large distances
(>10,000 km). For most practical applications, however, we
may replace the geoidal gravity with a conventional mean
gravity value (g or y) without causing any notable modeling
error in Eq. (2).

UIf the geoid model does not include a zero-degree term then the W,
value is solely dictated by the normal gravity potential of the underlying
reference ellipsoid and the mass difference between the actual Earth and
the reference ellipsoid, i.e. W, =f(U,, 6M).
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Fig. 1 The general relationship between the geometric and orthometric
heights in the presence of a geoid model

The theoretical validity of the previous relationship relies
on two basic assumptions. Firstly, the deflection of the ver-
tical on the Earth’s surface is ignored so that the geometric
and orthometric heights can be treated as straight distances
along the same normal direction. The approximation error in
Eq. (2) due to this simplification remains below the mm level
and it is thus negligible for most practical applications (Jekeli
2000, p. 15). Secondly, the geometric height and the geoid
height should refer to a common geodetic reference system
with respect to the same Earth reference ellipsoid so that
Eq. (2) remains free of any datum related inconsistencies.
This second assumption includes also the requirement that
the permanent tide effect and other geophysical loading
phenomena are treated and corrected in a consistent way
among the heterogeneous height types.

3 Revised Theoretical Constraint
for Geometric and Orthometric
Heights

The (true) orthometric height is not a determinable physical
quantity from geodetic measurements since it depends on
the unknown mass distribution within the Earth. Therefore,
it would be useful to replace Eq. (2) with a more realistic, yet
equally rigorous, theoretical constraint which incorporates
the operational type of Helmert orthometric heights.

Based on the definition of the true and Helmert orthome-
tric heights (Heiskanen and Moritz 1967, Chap. 4), we have
the following relationship between them

—helm
H = g - Hhelm (3)
g
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where g denotes the average gravity along the actual plumb-
line between the Earth’s surface and the zero-height refer-
ence surface of the vertical datum (i.e. W = W](;VD). The term
g™M corresponds to a conventional approximation of g that
is determined through the Poincare-Prey gravity reduction

according to the general formula (ibid. p. 167)

M = g +0.0424 H™™ 4)
where g is the gravity value on the Earth’s surface given in
Gal and H"™™ is the Helmert orthometric height in km; for
more details see also Jekeli (2000). From the combination of
Egs. (2) and (3) the following equation is obtained

gem_g Hhelm+ SI/VO

h _ N _ Hhelm — —
g g

&)

which corresponds to the rigorous constraint for geometric
and Helmert orthometric heights in the presence of a geoid
model. Other conventional types of orthometric heights (e.g.
Niethammer, Mader) may also be used with Eq. (5) by
modifying appropriately the scale factor of Eq. (3).

The above constraint emulates a transformation model
between different vertical reference frames (VRFs) in the
following sense

HVRF2 _ g VRFL _ ) pVRFL 4 (6)
where A is a differential scale factor relating the two frames
and u is the vertical offset of their zero-height reference
surfaces. In our case, the first frame (VRF1) refers to the
Helmert orthometric heights in a local vertical datum while
the second frame (VRF2) is realized through the GPS derived
orthometric heights with respect to a geoid model. Further
remarks on the VRF transformation aspects related to the
rigorous constraint in Eq. (5) will be given in Sect. 5.

4 Theoretical Constraint for Geometric
and Orthometric Heights in the
Presence of a Quasi-geoid Model

Let us consider the well-known theoretical relationship be-
tween geoid and quasi-geoid heights (Heiskanen and Moritz
1967, p. 326)

—

g_—y H/ (7)
14

N=¢+

where the (true) orthometric height H' refers to the geoidal
equipotential surface W=W, and it should be distinguished
from the (true) orthometric height H which was introduced
in Egs. (2)—(3) and refers to the equipotential surface
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W = WLVP of a local vertical datum (see Fig. 1). The term
g denotes the average gravity along the actual plumb-line
between the Earth’s surface and the geoidal equipotential
surface, whereas y is the average normal gravity along the
normal plumb-line between the telluroid and the reference
ellipsoid. For more details on the conversion between geoid
and quasi-geoid heights, see Flury and Rummel (2009).

Starting from the rigorous integral expression that defines
the average gravity g’, we have

P

®)
where §(8W") denotes the average gravity along the vertical
segment between the equipotential surfaces W =W, and
W = WLVD while the rest of the terms were already intro-
duced in the previous sections.
Substituting the result of Eq. (8) into Eq. (7) and con-
sidering that the orthometric heights H and H’ differ by the
amount § W, /g™) (within a linear approximation), we have

5 S6W) _ = s
N=§+gTyH+gyfyg(Wo)

©)

and by replacing H according to Eq. (3), we obtain the
relationship

§(5Wo) —7 W,

" (g —7)
7 g (Wo)

Hhelm +
gv

N=¢+ (10)

Finally, if we combine the last equation with Eq. (5) we get
the result

—(5W,
g( )

ghelm _ 7

SW,

helm
H + 7 g (Wo)

h_é-_Hhelm:

(1)

Since the equipotential surfaces W = W, and W = WVP do
not deviate by more than few meters, it is reasonable to
assume that §(8 Wo) ~ g without causing any notable error
in the last equation. More specifically, we have that

7o) s, (E(W’)—g(%))

SW,  SW, W,
= A + — =
g o

4 14 4

¥ g(Wo)
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and thus Eq. (11) is practically equivalent to

<helm _ — SW.
h—t— g = § T ppem = a3

The above relationship corresponds to a theoretical con-
straint for geometric and Helmert orthometric heights in
the presence of a quasi-geoid model. It resembles a frame
transformation model for physical heights in a similar sense
as Eq. (6), where the first frame (VRF1) refers to the Helmert
orthometric heights in a local vertical datum while the second
frame (VRF2) is realized through the GPS derived normal
heights with respect to a quasi-geoid model.

Interestingly enough, the terms g and g*) which appear
in the geoid-related constraint of Eq. (5) (see previous sec-
tion) have been now replaced by the mean normal gravity y.
The latter is a computable quantity in terms of a truncated
power series expansion of the station’s normal height H*
(Jekeli 2000, Eq. 29)

— w2a2
y=y(l—(l+f+ GMb

14
—2fsin2<p)H7*+(H7*)2+...) 4
where y is the normal gravity on the reference ellipsoid
at the geodetic latitude (¢) of the underlying station, a, b
and f denote the length of the semi-major and semi-minor
axes and the flattening of the reference ellipsoid, and finally
o and GM correspond to the rotational velocity and the
gravitational constant of the normal gravity field. In the
context of Eq. (13), the required normal height H* for the
implementation of the previous formula can be taken as the
difference between the geometric height (%) and the height
anomaly (¢) from the available quasi-geoid model.

5 Discussion

A modification of the well-known theoretical relationship
between geometric and orthometric heights (see Eq. (1)) was
presented in the preceding sections. The advantage of our
revised formulation is that, instead of the non-determinable
true orthometric heights, it employs the (most commonly
used) Helmert orthometric heights in conjunction with a
gravimetric geoid or quasi-geoid model. The corresponding
constraints given in Eqs. (5) and (13) should be theoretically
satisfied in the case of errorless data, and thus they provide
a standard modeling framework for the joint analysis of
heterogeneous heights in a terrestrial network.

Evidently, the height residuals h—N—H"™ or
h—¢ —H"™™ will always contain a terrain-correlated part
due to the difference of the “vertical metric” that is associated
with the physical heights H™™ and A—N (or h—¢).
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In reality, though, the terrain-correlated part of these

residuals should not be attributed solely to the different

vertical metrics as implied by the respective constraints (5)

and (13), but it is also caused by hidden systematic errors

which inflict an additional scale discrepancy among the
heterogeneous height data.

Both of the derived constraints resemble a 1D similarity-
like transformation between different vertical frame real-
izations; see Eq. (6). However, the height transformation
parameters which are implied by the analytic forms of
these constraints are not spatially invariant and thus Eq. (6)
represents only a simplified approximation of the rigorous
transformation between the underlying VRFs. More specifi-
cally,

— the spatial variation of the translation terms §W,/g
and §W, /7y is negligible even in large networks and their
effect can be safely replaced by a mean vertical offset u,
but

— the spatial variation of the scaling factors (§helm — §) /g
and (ghelm —7) /v on the Earth’s surface may have a
considerable contribution to the respective height resid-
uals h—N — H"™™ and h — ¢ — H™™ and it can create a
significant nonlinear systematic behavior in their values.
Nonetheless, the simplified model in Eq. (6) can be effec-

tively used for the least squares de-trending of heterogeneous
height data and the assessment of their low-order systematic
differences. Depending on the particular type of gravity field
information that we have available (i.e. geoid or quasi-geoid
heights), the following alternative forms of “observation
equations” can be devised:

(W)

hi _ Ni _ Hihelm A em
h; — & — Hm } R Py Hih l
j 1 gl 09
sl Vi

which are deduced from Egs. (5) and (13) by replacing
the pointwise scaling factors with a “global” scale-change
parameter. The terms v; and v; contain the total data noise
and other systematic effects (including of course the spa-
tial irregularities of the scaling factors (g"'™ —g) /g and
(g™'™ — ) /¥ over the test network) which cannot be ab-
sorbed by the unknown parameters A, or alternatively A’,
and §W,. Note that the latter will absorb not only the actual
offset of the involved reference surfaces (i.e. W # W-VP) but
it will also be strongly affected by data systematic errors
in spatial wavelengths that overly exceed the coverage of
the test area. Anyhow, the results from the least squares
adjustment of either version of Eq. (15) can support the
conventional quality testing of global or regional gravity field
models in GPS/leveling networks, as well as the assessment
of the vertical frame consistency between the Helmert ortho-
metric heights and the GPS/geoid orthometric heights (or the
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GPS/quasi-geoid normal heights) over a number of leveling
benchmarks.

Conclusions
Our approach in this paper instigates a unified scheme
with which the geometric and Helmert orthometric
heights can be jointly analyzed and tested either with a
geoid or quasi-geoid model. The second option may seem
peculiar and in conflict with Molodensky’s theoretical
framework (Heiskanen and Moritz 1967, Chap. 8), yet it
is fully justified on the basis of the fundamental constraint
that was derived in Sect. 4. In fact, the direct combination
of h, ¢ and H™™ according to Eq. (13) besides being
theoretically valid, it is also practically advantageous
since it avoids the conversion of the initially known height
anomalies to geoid undulations (or, alternatively, the
conversion of the orthometric heights to normal heights).
The aforementioned height conversion has been a pre-
requisite step for the consistent use of a quasi-geoid model
with orthometric heights while its rigorous implemen-
tation is a challenging task especially in mountainous
regions (e.g. Flury and Rummel 2009). Nevertheless, if
Helmert orthometric heights are to be used then their
consistent combination with a quasi-geoid model can be
based on the much simpler equation (13) which essen-
tially requires only the knowledge of:
— the surface gravity g at each point (so that the term
g™ can be directly determined via Eq. (4)), and
— the geopotential difference W, between the local
vertical datum of the Helmert orthometric heights and
the W, value which is implied in the zero-degree term
of the quasi-geoid model.
Due to the limited extent of the current paper, it has
not been possible to present some numerical examples
related to the height modeling aspects that were discussed
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in the previous sections. A more thorough theoretical
analysis, along with detailed examples using real data,
will therefore be presented in a future journal paper.
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