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Abstract 

Least-squares estimation methods are perhaps the most widely used tool in all fields of geodetic 

research. Nevertheless, their prevailing use is not often complemented by a widespread objective 

view of their rudiments. Within the standard formalism of the least-squares estimation theory there 

are actually several paradoxical and curious issues which are seldom explicitly formulated. The aim 

of this expository paper is to present some of these issues and to discuss their implications for 

geodetic data analysis and parameter estimation problems.  

 

 

 
« De tous les principes qu’on peut proposer pour cet objet, je pense qu’il n’en est 

pas de plus general, de plus exact, ni d’une application plus facile que celui qui 

consiste à rendre minimum la somme de carrés des erreurs. » 
Adrien-Marie Legendre [1805] 

 

 
1. Introduction 

The method of least-squares (LS) estimation has a long history that spans almost two centuries of 

human intellectual work. Having been conceived in the nineteenth century when new and 

revolutionary ideas were systematically emerging in most areas of scientific research, least-squares 

theory marks the starting point of modern data analysis for the applied sciences. Over the years LS 

methods have managed to acquire a status of “universal legitimacy” and they still provide the first 

tool that comes to mind when one deals with optimal prediction or parameter estimation problems. 

An example attesting to this fact is the formal procedure employed by CODATA (Committee on 

Data for Science and Technology) to determine the numerical values of the fundamental physical 

constants. CODATA integrates several measurements which are obtained from different physical 

experiments and analyzes them with a common least-squares adjustment procedure that yields the 

best estimates for most fundamental constants. These LS estimates are subsequently suggested for 

general use by the International Council of Science (formerly ICSU) and they are recognized 

worldwide for all fields of science and engineering [Mohr and Taylor 2001, 2003]. 

 

In the geodetic world, the logic of LS estimation has undoubtedly provided a fundamental guiding 

principle that is routinely applied in every field (photogrammetry, remote sensing, geodetic 

positioning, geoid determination, deformation monitoring, etc.) where optimal analysis of geo-

related or geo-referenced data is needed [Dermanis et al. 2000]. Moreover, one can reasonably 

claim that there is a strong sentimental value hidden in the mutual relationship between least-

squares and geodetic data analysis, since it was a geodetic positioning problem which led the 

German mathematician Carl Friedrich Gauss to the formal statistical development of the LS 

adjustment method.  



The prevailing use of LS methods in geodesy, however, has not been complemented by a 

widespread common understanding of their rudiments. Although there is complete agreement on 

how to form the so-called normal equations from a system of observation equations and everyone 

can obtain the very same results for their solution, the reasons for employing LS-based estimation 

techniques, the perception of their objectives and the conditions under which these are achieved, as 

well as the interpretation of their final results, may be quite different among researchers. This 

somewhat controversial situation is probably due to the fact that least-squares, as a method for 

optimal data processing and inversion, was originally invented from three distinctively separate 

perspectives: (i) least sum of squared residuals [Legendre 1805], (ii) maximum probability of zero 

error of estimation [Gauss 1809], and (iii) least mean squared error of estimation [Gauss 1821, 

1823, 1826]; see also Plackett [1972].  

 

The previous realizations may seem to be out-of-date and of little concern in today’s pragmatic 

world where often practical results overshadow theoretical quests. Nevertheless, the objective of 

this paper is to present an alternative viewpoint of the optimal statistical principles that are 

traditionally linked to LS estimation. The main focus is put on switching the property of 

unbiasedness for the LS estimators with a different, yet equivalent, constraint. In particular, it will 

be explained how the same optimal LS solution can be obtained if we replace the a-priori 

requirement of unbiasedness with a condition which implies that the numerical range of the 

unknown parameters is unbounded. The theoretical and practical consequences that arise from this 

strange dualism are discussed, and a short critique on the statistical foundations of the least-squares 

method is also made. To avoid any possible misunderstanding it should perhaps be added that there 

is nothing mathematically new about the considerations presented in this paper. What we only 

attempt to convey here is that the logic of the statistical aspects that are typically associated with LS 

estimation methods receive a more objective and careful treatment than is usually given to them. 
 

 

 

 

 

2. The usual statistical approach for LS estimation problems 

In the context of statistical inference, the LS methodology provides a linear and uniformly unbiased 

estimator that has the minimum mean squared error among any other linear unbiased estimator. 

This is the standard perspective that is typically followed to describe the optimality of LS 

estimation techniques and it has been the basis upon which their choice for the solution of practical 

problems is usually justified. In a historical context, this probabilistic/frequentist viewpoint is due to 

Gauss’s second formulation for the LS method. The rigorous link between this approach, which will 

be identified thereafter by the acronym BLUE (Best Linear Unbiased Estimation), and Legendre’s 

deterministic/algebraic formulation (i.e. minimum sum of the squared residuals) is provided by the 

well known Gauss-Markov theorem [e.g. Dermanis and Rummel 2000, pp. 48-49].  

 

In this section a short review of the BLUE version for the LS estimation process is given. Although 

our presentation does not follow the most general mathematical setting, it is nevertheless sufficient 

for the purpose of this paper.  
 

 

 

2.1 The general linear model 

Let us begin with a system of linear(-ized) observation equations which has the general form given 

in Eq. (1). Note that this is an exceptionally convenient and compact setting since most of the 

geomatics applications that are related to optimal data analysis (e.g. geodetic network adjustment, 

image analysis, satellite orbit modelling, gravity field determination, deformation monitoring, etc.) 



can essentially be reduced to an inversion problem for such a system of equations. In general terms, 

we thus have 

 

vxAy                                         (1) 

 

where y is a known observation vector, x is an unknown parameter vector and A is a design matrix 

of known coefficients with full column rank. The residual vector v contains unknown random errors 

(data noise) whose statistical characteristics are typically given in terms of their first and second 

order moments, i.e. 

 

0v     }{ E  ,   Cv{v     }T  E                     (2) 

 

The symbol }{E  denotes the mathematical expectation operator (i.e. average taken over all possible 

repetitions of the measurement set). In practice, the error covariance (CV) matrix C is often 

considered partially known and its uncertainty is commonly controlled by one or more scaling 

factors (variance components) which can be estimated a-posteriori from the available data. Since 

the knowledge of the error CV matrix does not play a crucial role in the rest of this paper, we 

assume that C is a fully known symmetric and positive-definite matrix.  

 

The linear model of Eq. (1), along with the stochastic error description of Eq. (2), is suitable for the 

study of a variety of physical systems, including most of the fields in modern geodetic research. In 

principle, in all such cases we generally seek to estimate an unknown quantity   which depends on 

the parameter vector x. For convenience, we consider here the case where   is a linear function of 

the unknown parameters 

 

xq  

T                                   (3) 

 

with q being an arbitrary known vector. Based on the knowledge of the data vector y, various types 

of estimators )(ˆ  ̂ y   can be considered, each of which complies with specific optimal criteria and 

assumptions. In the following, we describe the statistical characteristics of the classic LS estimators 

that can be associated with the aforementioned linear model. 
 

 

 

 

2.2 Least-squares solution as a BLUE estimator 

A general linear estimator of the unknown quantity   will have the form 

 

cyb         ˆ  

T                                (4) 

 

where the vector b and the scalar c need to be determined according to some optimality criteria. The 

statistical formulation of LS estimation is based on two fundamental properties that the linear 

estimator of Eq. (4) should satisfy simultaneously, namely 

 

-  Uniform unbiasedness    xq
T    }ˆ{ E   for any parameter vector x  

-  Minimum mean squared error    minimum  )ˆ( }{ 2 E  

 



It can easily be shown that the first property leads to the following constraints for the quantities b 

and c 

 
TT      qAb                                (5) 

 

and 

 

0    c                                        (6) 

 

Also, using Eqs. (3) and (4) we can establish that the mean squared error (MSE) of the linear 

estimator ̂  has the general form 

 

2TTT2 ][  )(        })ˆ{(  cE  xqAbbCb                                     (7) 

 

The minimization of the above quantity, in conjunction with the linear constraints of Eqs. (5) and 

(6), lead to a unique optimal solution for b through the method of Lagrange multipliers. The result 

is given by the following equation 

 

qACAACb  

11T1 )(     

                     (8) 

 

Based on Eqs. (4), (6) and (8), the LS estimate of xq  

T    is thus given by the well known 

expression 

 

yCAACAq    

1T11TT )(    ˆ                      (9) 

 

which, in turn, implies the following LS estimate for the parameter vector x 

 

yCAACAx   

1T11T )(    ˆ                    (10) 

 

In many textbooks the statistical optimality of the LS method is normally attributed to the fact that 

it provides the minimum error variance among all other linear unbiased estimation algorithms. Due 

to the unbiasedness property of the LS estimator ̂ , however, the variance and the mean squared 

value of its estimation error  ˆ  are exactly equal. As a result, the BLUE formulation can be 

equivalently based either on the minimization of the error variance or on the minimization of the 

mean squared error for a linear unbiased estimator. Here we have chosen to follow the latter 

approach since it provides a more direct connection with the discussion given in the following 

section. 
 

 

 

 

 

3. An alternative view of the LS estimation process 

The same estimators given in Eqs. (9) and (10) can be also obtained through a different formulation, 

without however departing from the broad context of optimal statistical inference. The alternative 

approach that is presented here represents only an attempt to elucidate the logic of the unbiasedness 

condition which is associated with LS estimators. 

 



If we keep the same setting that was adopted in the last section and start from a typical linear 

estimator c    ̂ T  yb  for an unknown scalar quantity xq
T   , we again seek optimal values for b 

and c. As it was mentioned already, the mean squared estimation error in such a case has the general 

form 

 

2TTT2 ][  )(        })ˆ{(  cE  xqAbbCb                                   

 

where A is the design matrix of the linear(-ized) system of observation equations; see Eq. (1).  

 

Let us now indicate the critical fact that the MSE of ̂  depends directly on the vector of the original 

unknown parameters, as it is clearly seen from the last formula. Consequently, if the range of x is 

unbounded, the second term in the above expression becomes, in general, unbounded too. In order 

to ensure that the MSE of the linear estimate ̂  remains finite, regardless of the numerical range of 

the unknown parameters, the following condition should thus be satisfied 

 
TTT          0qAb                             (11) 

 

where T
0  corresponds to a row vector of zeros. Subject to this condition and given the fact that c is 

only a constant scalar, the MSE minimization for the linear estimator ̂  yields the result 

 

qACAACb  

11T1 )(     

   and  0    c                  (12) 

 

which, in turn, gives rise to the same estimates for   and x that were derived in the previous 

section.  

 

Hence, it is seen that we can obtain the same optimal solution as in the BLUE case, without 

invoking a-priori the requirement of having unbiased results for the estimated parameters. An 

equivalent formulation of the LS estimation process can thus emerge which is summarized as 

follows: among all linear estimators that provide finite mean squared error for a set of unknown 

parameters with unbounded range, least-squares estimators yield results with minimum mean 

squared error. 

 

Under the preceding perspective it may appear that we have removed the requirement of 

unbiasedness at the expense of a more restricted version for the LS method. Obviously, the property 

of unbiasedness for the optimal solution has not been lost in this case, since it will now be a direct 

consequence of Eq. (12). On the other hand, the resulting estimators are not restrictive in any way 

because they can be always implemented, regardless of the actual range of the parameter vector x 

and/or the numerical values in the data vector y. In fact, what the previous alternative formulation 

should make us skeptical about is the following question: will the traditional LS estimation 

algorithms give optimal results in the case where x is a vector of bounded parameters ? 
 

 

 

 

 

4. Discussion - Conclusions 

An informative way to look at LS estimation is to recognize that its statistical optimality is closely 

associated with the assumption that the range of the unknown parameter vector x is unbounded. 

Clearly, in all geodetic applications where LS techniques are employed, the values of the 



parameters that need to be estimated always lie within a finite range. What should be acknowledged 

here is that this important piece of information (or perhaps a fact for most physical systems under 

study) is not integrated at all in the ordinary LS estimation process. The statistical logic of the LS 

principle, as this is depicted in terms of a linear unbiased estimator with minimum MSE, ignores the 

fact that the unknown parameters are always finite in magnitude. That is probably the reason why 

LS solutions tend to give numerical answers that are “longer” (when measured by some Euclidean-

type norm) than the actual true parameter vector. It is actually instructive to recall the following 

well known formula from LS adjustment theory [Sen and Srivastava 1990] 

 

  11TTT )  trace(      ˆˆ  ACAxxxxE                             (13) 

 

which indeed shows that the LS-estimated parameter vector x̂  is expected to be always longer than 

the corresponding true vector x (i.e. the matrix ACA
1T   is positive-definite and thus the trace of its 

inverse is always a positive number). 

 

An even more interesting and important conclusion which can be drawn from the comparative 

analysis of sections 2 and 3 is that the property of unbiasedness is responsible for causing the LS 

estimators to be “blind” on the bounded nature of the unknown parameters. This rather strange 

dualism brings up a fairly strong argument in favor of biased estimation methods, although in 

geodesy we have often been guided by a non-enthusiastic, if not negative, attitude towards the use 

of such techniques; for a general overview of biased estimation methods see Mayer and Willke 

[1973] and for a comparison between biased and unbiased estimation techniques see Efron [1975]. 

But, on the other hand, is it reasonable to embrace a statistical estimation philosophy whose one of 

its optimality principles is associated with the assumption that the unknown parameters are 

boundless? Should we not prefer an estimation algorithm which respects the fact that physical 

quantities, such as the Cartesian coordinates in geodetic/surveying networks, the transformation 

parameters between spatial reference systems or the deformation rates in geotechnical structures (to 

name a few of the usual unknowns that appear in geodetic applications), cannot exceed certain 

limits? Is it not reasonable to adjust a levelling network by incorporating the prior information that 

the unknown height values of its points do not exceed, say, 6,000 m? We should also not forget that 

the linear model in Eq. (1), which is extensively used in most applications of geodetic data analysis, 

gives a realistic picture of physical reality only when the unknowns x are constrained within certain 

intervals around their initial approximate values [Björck 1996, p. 195]. 

 

At this point, one can rightly protest that the finite range of the unknown parameters can easily be 

taken into account in practice, without giving up the standard LS principle. That is, we can always 

seek optimal estimators x̂  which minimize the sum of the squared residuals in the misclosure 

vector Axy     (Legendre’s formulation for the LS method), subject to appropriate inequality 

constraints that bound the size of the unknown parameters x. Such problems are actually very 

common in various disciplines of engineering and geosciences (tomographic geophysical 

inversions, ocean circulation modelling, optimization of mechanical systems, etc.) and they can be 

handled through well known techniques of convex optimization and non-linear programming [e.g. 

Luenberger 1969, 1984]. What is important however to note here is that the solutions of such 

constrained LS adjustments, using either linear or quadratic inequality constraints, will not 

generally produce unbiased estimates for the unknown parameters. 

 

As an example, we can mention a relatively common problem of constrained optimization, 

according to which an upper bound maxb  is placed on the Euclidean length of the parameter vector 

x that appears in the observation equations model of Eq. (1). If we now seek the least-squares 



estimator (in the Legendre’s sense - minimum  )  ()  ( 1T
AxyCAxy ) subject to the inequality 

constraint max
T bxx , the final result will have the ridge regression form 

 

yCΑIACAx  

1T11T )  (    ˆ  

  k                                                (14) 

 

where the scalar parameter k is uniquely determined from the bound maxb  of the parameter vector 

length; for more details and proofs see Meeter [1966], Draper and Smith [1998, pp. 391-395], 

Björck [1996, p. 205-206]. Taking into account the stochastic model for the data errors in Eq. (2), it 

is easily verified that the previous linear estimator is generally biased, i.e. 

 

xxACAIACAx     )  (    }ˆ{  

1T11T
   kE                                               (15) 

 

In fact, the solution in Eq. (14) corresponds to a well known estimation algorithm which is often 

viewed as the outcome of a Tikhonov regularization procedure for the optimal solution of inverse 

problems; see e.g. Bouman and Koop [1997]. The above estimator is actually known to outperform, 

in the MSE sense, the ordinary (unconstrained and unbiased) LS solution from Eq. (10) when xx
T  

is bounded [Marquardt 1970, Hoerl and Kennard 1970]. When viewed under this perspective, it is 

difficult to argue against the use of ridge regression or other biased estimation methods that confine 

reasonably the size of the unknown parameters (e.g. “shrunken” estimators), although in reality x 

and its exact length are always unknown. 

 

We should also bring to the reader’s attention the fact that the unbiasedness criterion is intrinsically 

related to the frequentist approach in probability theory. The latter provides the backbone of what is 

known as the “objective” or “classic” view for statistical inference problems, in contrast to the more 

controversial Bayesian methods which represent the movement of “subjectivists” in estimation 

theory [Jaynes 2003]. Note that for true Bayesians there is usually no contemplation about possible 

biases in their estimators since this notion is totally irrelevant within the Bayesian vision of 

statistical inference [Barnett 1982, pp. 16-19, 225-226]. An interesting argument against the 

statistical logic of least-squares methods can be now raised, since the asymptotic behaviour of an 

estimator is not really relevant for practical purposes. Let us not forget that the merit of the 

unbiasedness principle is the errorless recovery of the true unknown parameters after infinitely 

many repetitions of the experimental process. However, the real problem in all applied scientific 

disciplines has always been to achieve the best inference we can from a particular and finite set of 

data values. Adopting a frequentist’s approach who fantasizes about continuously repeated 

measurements and optimizes the average estimation performance over infinitely many data sets that 

are obtained under identical conditions can be considered irrelevant, since it corresponds to an 

imaginary scenario that is never attained in practice.  

 

As a final remark, we should say that this paper does not represent a disagreement with the practice 

of applying the LS methodology for optimal estimation problems. What is merely claimed here is 

that the statistical logic of least-squares estimation receives a more objective treatment than it is 

usually given. In particular, the widespread belief that unbiasedness is a natural, almost purifying 

property that should accompany any meaningful optimal estimator must be rationally criticized, in 

view of its strong link with the assumption that the unknown parameters are boundless. In this way, 

for example, potential users of ridge regression or other similar estimation techniques that compete 

with the standard BLUE-type methods would not think (only) in terms of having to choose between 

a biased or an unbiased estimator, but they would also consider the concurrent knowledge about 

physical reality that each of these methods brings to an investigator’s quest for understanding. 
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