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Abstract Transforming height information that refers to
an ellipsoidal Earth reference model, such as the geomet-
ric heights determined from GPS measurements or the geoid
undulations obtained by a gravimetric geoid solution, from
one geodetic reference frame (GRF) to another is an impor-
tant task whose proper implementation is crucial for many
geodetic, surveying and mapping applications. This paper
presents the required methodology to deal with the above
problem when we are given the Helmert transformation
parameters that link the underlying Cartesian coordinate sys-
tems to which an Earth reference ellipsoid is attached. The
main emphasis is on the effect of GRF spatial scale dif-
ferences in coordinate transformations involving reference
ellipsoids, for the particular case of heights. Since every
three-dimensional Cartesian coordinate system ‘gauges’ an
attached ellipsoid according to its own accessible scale, there
will exist a supplementary contribution from the scale var-
iation between the involved GRFs on the relative size of
their attached reference ellipsoids. Neglecting such a scale-
induced indirect effect corrupts the values for the curvilinear
geodetic coordinates obtained from a similarity transforma-
tion model, and meter-level apparent offsets can be intro-
duced in the transformed heights. The paper explains the
above issues in detail and presents the necessary mathemat-
ical framework for their treatment.

Keywords Ellipsoidal height · Geoid undulation ·
Reference ellipsoid · Geodetic reference frame (GRF) ·
Scale · Similarity transformation

C. Kotsakis (B)
Department of Geodesy and Surveying,
Aristotle University of Thessaloniki,
University Box 440, 54124 Thessaloniki, Greece
e-mail: kotsaki@topo.auth.gr

1 Introduction

The current advancements in the field of global and regional
geodetic positioning have greatly enhanced the potential of
conventional Earth-fixed reference systems by offering
access to 3D spatial datums of very high accuracy, integ-
rity and consistency (Altamimi et al. 2002; Craymer 2006;
Ray et al. 2004; Snay et al. 2002). In addition, the continuous
developments in the acquisition, modeling and processing of
Global Positioning System (GPS) data have provided geode-
sists not only with highly reliable and precise external con-
trol to evaluate global and regional models for the Earth’s
gravity field (e.g. Denker 1998; Featherstone et al. 2001;
Kiamehr and Sjoberg 2005), but they have also allowed the
synergetic use of GPS with the continuously improved gravi-
metric geoid solutions for the definition and realization of
modern satellite-based vertical reference systems (e.g. Kears-
ley et al. 1993; Denker et al. 2000; Nahavandchi and Soltan-
pour 2006).

To take full advantage of the above developments, careful
treatment of several reference frame issues is required to
ensure a coherent spatial framework for data analysis and to
avoid datum-related biases and artifacts in the results
(Pavlis 1998). Considering the recurring need in many Earth
science applications to convert spatial information for
vertical geodetic positions to a common reference system,
the objective of the present paper is to investigate the trans-
formation of ellipsoid-dependent heights from one geodetic
reference frame (GRF) to another, when we are given the
Helmert transformation parameters that link the underly-
ing Cartesian coordinate systems to which a conventional
reference ellipsoid is attached (see Fig. 1). Such a task
is of crucial importance in several geodetic applications,
including
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Fig. 1 Ellipsoidal height transformation between different geodetic
reference frames

– the consistent combination of ellipsoidal, orthometric and
geoid heights in the context of GPS-based leveling;

– the external validation of gravimetric geoid models using
geometrically derived undulations with respect to a com-
mon datum;

– the update of existing geoid models to comply with cur-
rent definitions and realizations of global geodetic refer-
ence systems;

– the reduction of sea surface heights obtained from satellite
altimetry data to a preferred geodetic reference frame for
mean sea level monitoring; and

– the reduction of ellipsoidal heights obtained at different
epochs to a common reference frame for vertical crustal
deformation studies.

An explicit treatment is given for the GRF transformation
of geometric (ellipsoidal) heights obtained from GPS mea-
surements, and geoid undulations determined either directly
from a gravimetric geoid model or indirectly through GPS
and leveled orthometric heights. A similar approach to the
one presented herein can be followed for the GRF transfor-
mation of other ellipsoid-dependent height quantities, such
as the sea surface height obtained from satellite altimetry data
or the height anomaly computed from a spherical harmonic
model for the Earth’s gravitational potential.

Using the standard framework of Euclidean similarity
transformation, a critical issue that affects the transformed
GPS or geoid heights from one GRF to another (e.g. WGS84
→ ITRF2000) is whether or not the adopted reference ellip-
soid should be ‘adapted’ to each reference frame’s scale.
Regardless of the physical meaning that can be associated
with the existence of spatial scale differences between
modern GRFs (e.g., variation in their inherent values for fun-
damental Earth parameters such as G M , observation
technique’s biases, undetected instrument-related systematic
errors, other modeling errors), the following dilemma can be

stated: should an adopted reference ellipsoid retain the value
of its semi-major axis in every GRF it is attached to, or should
every Cartesian coordinate system ‘gauge’ an attached ref-
erence ellipsoid according to its own accessible scale that is
inherent in the x, y, z values of the control stations used for
the particular GRF realization?

The above predicament requires some clarification and
elaboration, since the use of a reference ellipsoid entails a
more or less conventional choice and, apparently, it should
not be dictated by the spatial scale difference of the specific
GRFs that will utilize such a conventional model. However,
if the same reference ellipsoid (thought of as a conventional
geometric Earth model with invariant physical dimensions)
needs to be utilized in different, in terms of their accessible
spatial scale, GRFs, then a distinct value for its semi-major
axis should be assigned in each case.

Specifically, in order to maintain the invariance of the
reference ellipsoid’s physical surface in every 3D Cartesian
coordinate system associated with it, we should ‘re-define’
the value of its semi-major axis by a′ = (1+δs)a, where δs is
the differential scaling factor between two reference frames
GRF and GRF′, a is the value of the reference ellipsoid’s
semi-major axis when attached to GRF, and a′ is the value
of the semi-major axis of the same reference ellipsoid when
attached to GRF′. Neglecting such a scale-induced indirect
effect corrupts the resulting values for the curvilinear geo-
detic coordinates obtained from a similarity transformation
and meter-level apparent offsets can be introduced in the
transformed ellipsoidal heights.

Based on a similar approach followed by Soler and van
Gelder (1987), this paper presents an extended similarity-
type model for the datum transformation of ellipsoid-depen-
dent heights, which offers a proper de-coupling of the height
variation originating from (i) the GRF scale differences and
(ii) the actual change of the physical size of the reference
ellipsoid. Various options that may appear in practice for the
conventional selection of the reference ellipsoid attached to
the ‘new’ GRF (i.e., the geodetic frame with respect to which
the transformed heights are defined) are discussed, and their
corresponding effects on the transformed heights are evalu-
ated as a function of the GRFs’ scale difference δs.

2 Similarity transformation for ellipsoid-dependent
heights

2.1 GPS heights

Let us consider the well-known Euclidean similarity trans-
formation model, which is used to convert Cartesian coor-
dinates between two geodetic reference frames that differ in
terms of three translation parameters (tx,ty,tz), three orien-
tation parameters (εx,εy,εz) and a factor of uniform spatial
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scale change (δs)

⎡
⎣

x ′ − x
y′ − y
z′ − z

⎤
⎦ =

⎡
⎣

tx
ty

tz

⎤
⎦ +

⎡
⎣

δs εz −εy

−εz δs εx

εy −εx δs

⎤
⎦

⎡
⎣

x
y
z

⎤
⎦ (1)

Equation (1) corresponds to a first-order approximation of
the rigorous Helmert conformal transformation (Leick and
van Gelder 1975; Soler 1998)

x′
GRF2 = t + (1 + δs)R(εx ,εy ,εz)xGRF1 (2)

where R is an orthogonal matrix that performs three succes-
sive rotations around the axes of GRF1 so that they become
parallel to the corresponding axes of GRF2, t = [tx tytz]T is
the Cartesian coordinate vector of the origin of GRF1 with
respect to GRF2, δs is a differential unitless factor expressing
the scale difference between the two frames, xGRF1 = [xyz]T

is the Cartesian coordinate vector of an arbitrary point with
respect to GRF1, and x′

GRF2 = [x ′y′z′]T is the Cartesian
coordinate vector of the same point with respect to GRF2;
see Fig. 1.

The use of the approximate model in Eq. (1) instead of the
rigorous expression in Eq. (2) has a negligible effect on the
transformed coordinates and it is justified for most geodetic
applications where the rotation angles do not exceed a few
arc seconds and the differential scale factor is of the order
of 10−5 or less (e.g., Harvey 1995, pp. 101–102). In contrast
to the non-standard convention followed by the International
Earth Rotation and Reference Systems Service (IERS) for
terrestrial GRF transformations (McCarthy and Petit 2004,
Chap. 4), Eq. (1) is consistent with the usual hypothesis that
counter-clockwise rotations around the GRF1 frame axes are
positive, whereas clockwise rotations around the same frame
axes are considered negative (Soler 1998).

To derive a one-step formula for the similarity transfor-
mation of ellipsoidal heights determined from GPS, we need
to combine Eq. (1) with the relationship between Cartesian
and curvilinear geodetic coordinates

⎡
⎣

x
y
z

⎤
⎦ =

⎡
⎣

(N + h) cos ϕ cos λ

(N + h) cos ϕ sin λ

(N(1 − e2) + h) sin ϕ

⎤
⎦ (3)

where N (to be distinguished from the symbol N that denotes
the geoid height) is the prime vertical radius of curvature

N = a

W
= a√

1 − e2 sin2 ϕ
. (4)

The quantities a and e2 correspond to the length of the semi-
major axis and the squared eccentricity of the reference ellip-
soid that is used for the definition of the geodetic coordinates
ϕ, λ, h that appear in Eq. (3).

If we differentiate Eq. (3) with respect to the variation in
the curvilinear geodetic coordinates, we get
⎡
⎣

dx
dy
dz

⎤
⎦ = J

⎡
⎣

dϕ

dλ

dh

⎤
⎦ (5)

where the Jacobian matrix J has the form (Soler 1976)

J =
⎡
⎣

−(M + h) sin ϕ cos λ −(N + h) cos ϕ sin λ cos ϕ cos λ

−(M + h) sin ϕ sin λ (N + h) cos ϕ cos λ cos ϕ sin λ

(M + h) cos ϕ 0 sin ϕ

⎤
⎦

(6)

and M = a(1 − e2)/W 3 is the meridian radius of curva-
ture. Note that the auxiliary term W denotes the latitude-
dependent unitless quantity

√
1 − e2 sin2 ϕ.

Substituting the left-hand side in Eq. (5) with the Carte-
sian coordinate transformation from Eq. (1), and then solving
for dh, we obtain the following expression that corresponds
to the direct (linearized) similarity transformation model for
ellipsoidal heights

h′ − h = δh(tx ) + δh(ty) + δh(tz) + δh(εx )

+ δh(εy) + δh(δs) (7)

where the individual transformation terms are given by

δh(tx ) = tx cos ϕ cos λ (8)

δh(ty) = ty cos ϕ sin λ (9)

δh(tz) = tzsin ϕ (10)

δh(εx ) = −εx Ne2sin ϕ cos ϕ sin λ (11)

δh(εy) = εyNe2sin ϕ cos ϕ cos λ (12)

δh(δs) = (aW + h)δs (13)

Notice that, due to the rotational symmetry of the reference
ellipsoid with respect to the z axis, the rotation angle εz does
not affect the change of the ellipsoidal height from GRF1 to
GRF2. More details for the above differential transformation
procedure can be found in Molodensky et al. (1962), Soler
(1976), Soler and van Gelder (1987) and Rapp (1993).

2.2 Geoid heights

Equations (7) to (13) perform, in one step, the similarity trans-
formation of ellipsoidal heights from one geodetic reference
frame (h with respect to GRF1) to another geodetic reference
frame (h′ with respect to GRF2) at any point in space with
known curvilinear coordinates ϕ, λ and h; see Fig. 1.

If we assume that the point whose ellipsoidal height being
transformed is located on the geoid, then Eq. (7) is reduced
to the direct (linearized) similarity transformation model for
geoid heights

N ′ − N = δN (tx ) + δN (ty) + δN (tz) + δN (εx )

+ δN (εy) + δN (δs) (14)
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where

δN (tx ) = tx cos ϕ cos λ (15)

δN (ty) = ty cos ϕ sin λ (16)

δN (tz) = tz sin ϕ (17)

δN(εx ) = −εx Ne2 sin ϕ cos ϕ sin λ (18)

δN(εy) = εyNe2sin ϕ cos ϕ cos λ (19)

Since the evaluation point in this case is located on the
geoid surface, its ellipsoidal height will be identical to the
geoid undulation with respect to the same GRF (h = N ).
Thus, the scale-dependent term from Eq. (13) should take
the form

δN (δs) = (aW + N )δs (20)

where N is the geoid height with respect to the initial refer-
ence frame.

In principle, the curvilinear geodetic coordinates ϕ and λ

that enter in the above transformation formulae refer to the
horizontal position of the evaluation point (located on the
geoid) with respect to GRF1. In practice, ϕ and λ correspond
to the horizontal geodetic coordinates of a terrestrial point
located on the Earth’s surface, whose geoid undulation is
available with respect to GRF1 and needs to be transformed
to a new reference frame GRF2.

Remark 1 Note that Eqs. (7) and (14) perform only a geo-
metric-type datum transformation for ellipsoidal and geoid
heights respectively, without considering additional varia-
tions in the values of other fundamental Earth parameters
(e.g. a, e2, Wo, J2, etc.) for the reference system associated
with the new frame GRF2.

Remark 2 Similar formulae like Eqs. (7) or (14) can be used
for the transformation of other ellipsoid-dependent height
quantities that are commonly employed in geodetic applica-
tions, such as the height anomaly determined by a spheri-
cal harmonic model for the Earth’s gravitational field or the
sea surface height obtained from satellite altimetry measure-
ments.

2.3 Apparent change of the reference ellipsoid

Consider the case where the underlying GRFs have the same
origin and orientation (i.e. tx = ty = tz = εx = εy = εz = 0)

and they differ only in terms of a spatial scaling factor.
Under these constraints, the similarity transformation model
for ellipsoidal heights in Eq. (7) yields

h′ − h = δh(δs) = (aW + h)δs (21)

or equivalently

h′ = (1 + δs)h + aWδs (22)

Likewise, the similarity transformation model for geoid
heights in Eq. (14) takes the simplified form

N ′ − N = δN (δs) = (aW + N )δs (23)

or equivalently

N ′ = (1 + δs)N + aWδs (24)

The additive latitude-dependent term aWδs in Eqs. (22)
and (24) corresponds to the effect of an ‘apparent’ change in
the length of the semi-major axis of the reference ellipsoid
due to the scale difference between the involved GRFs. Its
magnitude can be quite significant, reaching more than 6 m
when δs = 10−6 (1 ppm) and dropping to about 7 mm for
δs = 10−9 (1 ppb). The direct consequences of this appar-
ent offset in the transformed height values were studied in
Soler and van Gelder (1987) to explain the detected z-shift
between Doppler-based and SLR geodetic reference systems,
as well as other types of inconsistencies that occurred from
the results of curvilinear geodetic coordinate transformations
in various studies that were performed in the 1960s, 1970s
and 1980s.

If the reference ellipsoid retains its physical size in both
GRFs, then the transformed ellipsoidal height (when tx =
ty = tz = εx = εy = εz = 0) should be given only by a
simple re-scaling

h′ = (1 + δs)h (25)

since the same physical length (i.e., the distance between a
fixed point in space and its orthogonal projection onto a sin-
gle reference ellipsoid) needs to be quantified with respect
to two coinciding GRFs that differ only by a uniform scale
factor δs. The same argument applies also for the case of
geoid height transformation.

In order to counter-balance the effect of the apparent var-
iation term aWδs in Eqs. (22) and (24), and also to properly
account for an actual change in the physical dimensions of
the reference ellipsoid, the six-parameter similarity transfor-
mation model for ellipsoidal and geoid heights needs to be
further extended as described in Sect. 3.

2.4 Rigorous non-linear approach

The most rigorous approach for performing the similarity-
type transformation of ellipsoidal or geoid heights between
different datums requires, in principle, a three-step procedure
according to the non-linear scheme depicted in Fig. 2.

The first step is executed through the curvilinear-to-
Cartesian coordinate conversion from Eq. (3), while the
second intermediate step employs the standard Helmert trans-
formation model from Eq. (1) or Eq. (2). The last step requires
the inversion of the curvilinear-to-Cartesian transformation
formula, which is usually implemented through an iterative or

123



Transforming ellipsoidal heights and geoid undulations

2211
),,(      ),,(      ),,(      ),,(

3 2 1 
GRFGRFGRFGRF

hzyxzyxh
stepstepstep ′′′′′′ ⎯⎯ →⎯⎯⎯ →⎯⎯⎯ →⎯ λϕλϕ

Fig. 2 The most rigorous approach for transforming the ellipsoidal height at a known point (ϕ, λ, h) between different geodetic reference frames

closed-form algorithm (e.g., Pollard 2002; Fukushima 2006;
Zhang et al. 2005).

For the particular case of geoid height transformation,
the procedure in Fig. 2 should be applied using the initially
known value of the geoid height N in place of h, so that
the computed Cartesian coordinates from step 1 refer to the
spatial position of the evaluation point on the geoid with
respect to GRF1. From the two subsequent steps, the Carte-
sian and curvilinear geodetic coordinates of the same point
with respect to the new reference frame are obtained. Obvi-
ously, the ellipsoidal height h′ that is computed at the final
step will correspond to the transformed geoid undulation N ′
with respect to GRF2.

The implementation of step 1 and step 3 entails the con-
ventional adoption of a specific reference ellipsoid that should
be attached to the GRF1 and GRF2 frames, in order to define
the triplets of curvilinear geodetic coordinates ϕ, λ, h (or N )

and ϕ′, λ′, h′(or N ′), respectively. It should be noted that the
presence of the term aWδs in Eqs. (22) and (24), which cor-
responds to an apparent variation of the size of the reference
ellipsoid as explained in the previous section, is consistent
with the use of the same numerical value for the semi-major
axis of the reference ellipsoids in steps 1 and 3.

The difference in the transformed heights obtained from
the rigorous non-linear scheme of Fig. 2 and the direct one-
step transformation formulae given in Eqs. (7) or (14) is due
to the linearization errors of the curvilinear-to-Cartesian con-
version formula, which was inherently employed in a dif-
ferential form for the development of Eqs. (7) and (14); see
Sect. 2.1. The effect of these linearization errors on the trans-
formed heights is at the cm-level, which for certain applica-
tions (e.g., geodynamic studies) may pose an unacceptable
source of error.

As an example, let us consider the problem of transform-
ing the ellipsoidal height at a point with known geodetic
coordinates ϕ = 50◦.0034, λ = 11◦.0028 and h = 547.19 m
from the German national coordinate system (DHDN) to the
European Terrestrial Reference Frame 1989 (ETRF89). The
Helmert transformation parameters are tx = 582.00 m, ty =
105.00 m, tz = 414.00 m, εx = −1′′.040, εy = −0′′.350,

εz = 3′′.080 and δs = 8.30 ppm (Ihde and Lindstrot 1995).
The semi-major axis of the reference ellipsoid
associated with the DHDN geodetic coordinates is set to a =
6378137.000 m and its flattening f = 0.00335281068118
(GRS80 values). In this case, the transformed ellipsoidal
height obtained by applying the direct transformation
formula in Eq. (7) is h′ = 1297.253 m, whereas the

corresponding value determined through the rigorous non-
linear methodology of Fig. 2 is h′ = 1297.256 m.

3 Extended similarity transformation
for ellipsoid-dependent heights

3.1 Considering the effect of the reference ellipsoid change

The length of the semi-major axis (a) and the flattening ( f )

shall be adopted as the two fundamental parameters that
uniquely define the geometrical size and shape of a refer-
ence Earth ellipsoid.

In order to account for a likely change in the physical
dimensions of the reference ellipsoid in height transforma-
tion problems, we should again perform a differentiation of
the curvilinear-to-Cartesian coordinate conversion formula
in Eq. (3) as follows

⎡
⎣

dx
dy
dz

⎤
⎦ = J1

⎡
⎣

dϕ

dλ

dh

⎤
⎦ + J2

[
da
d f

]
(26)

where the first Jacobian matrix J1 is identical to the matrix
J given in Eq. (6), while the analytical form of the second
Jacobian matrix J2 is (Soler 1976)

J2 =

⎡
⎢⎢⎢⎢⎢⎣

cos ϕ cos λ

W

a(1 − f ) sin2 ϕ cos ϕ cos λ

W 3

cos ϕ sin λ

W

a(1 − f ) sin2 ϕ cos ϕ sin λ

W 3

(1 − e2) sin ϕ

W
(M sin2 ϕ − 2N)(1 − f ) sin ϕ

⎤
⎥⎥⎥⎥⎥⎦

(27)

The differential quantities da and d f express the variation
of the geometrical size and shape of the reference ellipsoid
due to a change in the length of its semi-major axis and/or
the value of its flattening.

Setting the left-hand side in Eq. (26) equal to zero, and
then solving for dh, we obtain the ellipsoidal height var-
iation associated with the change of the reference ellipsoid
which, in conjunction with Eq. (7), leads to the direct
(linearized) extended similarity transformation model for
ellipsoidal heights

h′ − h = δh(tx ) + δh(ty) + δh(tz) + δh(εx ) + δh(εy)

+ δh(δs) + δh(δa) + δh(δ f ) (28)
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where the additional terms δh(δa) and δh(δ f ) are given by
(Soler 1976; Rapp 1993)

δh(δa) = −Wδa (29)

δh(δ f ) = a(1 − f )

W
sin2 ϕ δ f (30)

The quantities δa = a′−a and δ f = f ′− f correspond to
the difference in the numerical values for the semi-major axis
and the flattening of the reference ellipsoid, as these are used
in the respective reference frames, GRF1 and GRF2. The
translation, rotation, and scale dependent terms in Eq. (28)
have already been defined in Sect. 2.

Assuming that the evaluation point is located on the geoid,
the corresponding direct (linearized) extended similarity
transformation model for geoid heights is obtained

N ′ − N = δN (tx ) + δN (ty) + δN (tz) + δN (εx ) + δN (εy)

+ δN (δs) + δN (δa) + δN (δ f ) (31)

where the terms δN (δa) and δN (δ f ) are exactly the same as
in the case of ellipsoidal height transformation

δN (δa) = δh(δa) (32)

δN (δ f ) = δh(δ f ) (33)

while the translation, rotation, and scale dependent terms in
Eq. (31) have been also defined in Sect. 2.

Remark 3 With the exclusion of the rotation- and scale-
dependent terms, Eqs. (28) and (31) correspond to the stan-
dard Molodensky differential transformation formulae
(Molodensky et al. 1962) which have often been used for
transforming ellipsoidal heights between different geodetic
datums (National Imagery and Mapping Agency 1996, pp.
7.3–7.4) and for determining the Earth’s mean equatorial
radius and center of mass through the joint analysis of
geometrically derived and gravimetric geoid heights (e.g.
Anderle 1974; Rapp and Rummel 1976; Grappo 1980); see
also Badekas (1969); Hotine (1969); Heiskanen and Moritz
(1967) and Rapp (1993).

3.2 Geoid fitting

A simplified version of the geoid height transformation given
in Eq. (31), namely

N ′ − N = δN (tx ) + δN (ty) + δN (tz) + No (34)

is frequently employed for studies related to the evaluation
and the accuracy assessment of geoid models, particularly in
view of their potential use in GPS-based leveling projects.

In such cases, the values N and N ′ correspond to the
known geoid heights obtained from different data sources
or Earth gravity models (e.g., N from a gravimetric geoid
model and N ′ from GPS and leveling data or from another

geoid model) and they are available over a network of ter-
restrial control stations. Following a standard least-squares
adjustment, Eq. (34) has been often applied for the com-
parative validation of global and/or regional geoid models,
with the datum-shift terms tx,ty,tz and the geoid-shift term
No being treated as unknown fitting or correction parameters
(Rapp and Rummel 1976).

The estimated value of No that is determined by the afore-
mentioned approach corresponds to the mean offset between
the geoid models under comparison, and it gives a collective
indication of the various constant biases that are inherent in
them. The parameter No will absorb any uncorrected effects
originating from the orientation, scale and reference ellipsoid
discrepancies between the underlying datums, as well as the
zero-order effect coming from the gravity potential and mass
differences between the equipotential surfaces realized by
the values N and N ′, respectively. As a result, the conclu-
sions drawn from this type of evaluation scheme are likely
to be obscured by the fusion of several distinct sources into
the No estimate, which could lead to a deceptive interpre-
tation about the actual quality of the geoid model(s) under
study.

A relatively large value of No may arise merely from the
spatial scale difference between the GRFs associated with the
geoid heights N and N ′. The scale-dependent term δN (δs) =
(aW + N )δs, which will be absorbed within the estimated
value of No, can reach more than 6 m for datum scale dif-
ferences of the order of 10−6. On the other hand, a small
value of No could be the result of reciprocal cancellations
for a number of individually significant error sources that
may exist in each data set.

If we have a clear knowledge about the particular GRFs
with respect to which the original geoid heights N and N ′
are defined, then the transformation model of Eq. (31) should
be initially applied in a forward manner to reduce the two
data sets to a common reference system. Subsequently, the
comparison and the modeling of the differences between the
datum-corrected geoid heights can provide a more realistic
assessment and quantification about the remaining biases, or
other systematic effects, that may still exist in them.

3.3 What should we use for δa?

An issue that needs to be clarified in the context of the sim-
ilarity-type transformation for ellipsoid-dependent heights
is the proper evaluation of the terms δh(δa) and δN (δa),
which give the ellipsoidal and geoid height variation due to
the change of the semi-major axis for the reference ellipsoids
adopted by the frames GRF1 and GRF2. Note that if we sim-
ply set δa = 0 (which corresponds to the case where both
datums use the same value for the semi-major axis of their
ellipsoids), then the influence of the additive term aWδs for
the apparent variation of the reference ellipsoid will fully
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remain in the transformed height values; see Eqs. (28) and
(31).

If not corrected, the presence of such a ‘non-physical’
effect in the transformed vertical positions can cause prob-
lems for certain geodetic applications (e.g., vertical crustal
deformation from GPS data, or mean sea level monitoring by
satellite altimetry), since it will appear as a hidden, almost
constant, offset in the transformed heights which, however,
will not correspond to any real vertical movement at the eval-
uation points.

In general, the length of the semi-major axis of the refer-
ence ellipsoid attached to GRF2 can be expressed as

a′ = (1 + δs)a + δā (35)

where a is the length of the semi-major axis of the reference
ellipsoid attached to GRF1, δs is the scale change factor
between the two frames, and δā corresponds to the actual
change of the physical length of the semi-major axis of the
GRF2 ellipsoid with respect to the physical length of the
semi-major axis of the GRF1 ellipsoid.

In this way, we have the relationship

δa = a′ − a = aδs + δā (36)

which shows the influence of the differential scale factor δs
on the total variation δa of the semi-major axis for the refer-
ence ellipsoid adopted by the GRF2 frame; see also Soler and

van Gelder (1987). Hence, the transformation terms δh(δa)

and δN (δa) can be decomposed as

δh(δa) = δN (δa) = −Waδs − Wδā (37)

Based on the above, let us consider again the case where
tx = ty = tz = εx = εy = εz = 0, and additionally δ f = 0.
Under these constraints, the extended similarity transforma-
tion model for ellipsoidal heights in Eq. (28) yields

h′ − h = δh(δs) + δh(δa) (38)

or, using Eqs. (13) and (37), in the equivalent form

h′ = (1 + δs)h − Wδā (39)

In contrast to the expression obtained by the simple (non-
extended) similarity transformation model in Eq. (22), the
above result complies with geometrical intuition that dictates
that the transformed ellipsoidal height should be determined
by a simple re-scaling if the underlying GRFs have the same
origin and orientation and also use the same reference ellip-
soid in terms of physical dimensions (δ f = 0, δā = 0!). A
similar analysis can also be carried out for the case of geoid
height transformation N → N ′.

After having explained the proper evaluation of the term
δa = a′−a, we can now give the final form of the direct simi-
larity-type transformation for ellipsoid-dependent heights, as
shown in Table 1.

Table 1 Conversion of ellipsoid-dependent heights between different geodetic reference frames according to the Helmert similarity transformation
model and considering a change of the physical size of the reference ellipsoid

Transformation of ellipsoid-dependent heights from GRF1 to GRF2

h′ = h + δh(tx ) + δh(ty) + δh(tz) + δh(εx ) + δh(εy) + δh(δs) + δh(δa) + δh(δ f )

GRF trtanslation terms δh(tx ) = tx cos ϕ cos λ where tx,ty,tz are the coordinates of the origin of GRF1
with respect to GRF2

δh(ty) = ty cos ϕ sin λ

δh(tz) = tz sin ϕ

GRF orientation terms δh(εx ) = −εx Ne2 sin ϕ cos ϕ sin λ where εx,εy are the rotation angles around the x and y
axes of GRF1 (anti-clockwise rotations are assumed
positive)

δh(εy) = εyNe2 sin ϕ cos ϕ cos λ

GRF scaling term δh(δs) = (aW + h)δs where δs is the differential scale factor between GRF1
and GRF2

Reference ellipsoid variation terms
δh(δa) = −Waδ s − Wδā

= −Wδ a
where δa and δā are the changes in the numerical value

and the physical length, respectively, of the semi-
major axis of the reference ellipsoid, and δ f is the
change of its flattening

δh(δ f ) = a(1− f )
W sin2 ϕδ f

Notes:
- The values of a, e2 and f refer to the reference ellipsoid adopted by the first reference frame (GRF1)
- The quantities ϕ, λ, h refer to the position of the evaluation point with respect to the first reference frame (GRF1)
- The auxiliary term W = (1 − e2 sin2 ϕ)1/2 and the prime vertical radius of curvature N = a/W are evaluated using the aforementioned quantities
- For the transformation of geoid heights, h should be replaced by N in all above formulae
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Remark 4 The option of employing a different reference
ellipsoid in the context of the rigorous non-linear datum
transformation procedure for ellipsoid-dependent heights
(see Sect. 2.4), can be handled by using appropriate val-
ues for its defining geometrical parameters (a, f ) during the
implementation of step 1 and step 3 (see Fig. 2). In any case,
the value of the semi-major axis of the reference ellipsoid
that will be used in step 3 can be related to the value of the
semi-major axis of the reference ellipsoid adopted in step 1
through the general expression of Eq. (35). Therefore, using
a′ = (1 + δs)a in step 3 of the non-linear transformation
procedure corresponds to retaining the physical size of the
reference ellipsoid in both datums, since in this case we have
that δā = 0. On the other hand, if we choose to employ the
convention a′ = a in step 3, the physical size of the reference
ellipsoid is different in the new datum since from Eq. (35) it
holds that δā = −aδs.

3.4 Joint variation of ellipsoidal and geoid heights

If we consider a point P that is located on the Earth’s surface
then its ellipsoidal height variation δh P = h′

P −h P , due to a
change of the underlying GRF, will not be necessarily equal
to its corresponding geoid height variation δNP = N ′

P −
NP . The discrepancy between the values δh P and δNP is
caused solely by the scale-dependent variation terms δh(δs)
and δN (δs), which are generally different at a point located
outside the geoid, i.e.

δh(δs) = (aW + h P )δs �= (aW + NP )δs = δN (δs) (40)

However, the rest of the height variation terms, that depend
on the datum translation parameters (tx,ty,tz), the datum ori-
entation parameters (εx,εy,εz) and the datum ellipsoid param-
eters (δa, δ f ), are always the same regardless of the particu-
lar quantity (ellipsoidal or geoid height) being transformed;
see Table 1.

The fact that δh P �= δNP , in the case where the GRF1
→ GRF2 transformation involves a non-zero scaling factor
δs, does not contradict the well-known relationship among
ellipsoidal, orthometric and geoid heights (e.g., Heiskanen
and Moritz 1967)

h P = HP + NP (41)

A common misconception that often arises from Eq. (41)
is to claim that the ellipsoidal height variation is always
equivalent to the geoid height variation under a change of
the geodetic reference frame in which the ellipsoid-depen-
dent quantities h and N have been determined.

The primary reasoning in this case is summarized as fol-
lows: since the point P remains fixed with respect to the
Earth’s surface and the orthometric height depends only on
the geoid-crust vertical separation, then changing solely the

geodetic reference system implies that dHP = 0 and thus
dh P = dNP .

However, Eq. (41) presumes that all three height types
refer to a common spatial scale. If we change the refer-
ence scale in which the GRF-dependent heights h and N are
expressed to, then we need also to rescale accordingly the
orthometric height H in order for Eq. (41) to remain valid.
In this sense, the transformation model given in Table 1 is
fully consistent with Eq. (41), since

δh P − δNP = δh(δs) − δN (δs)

= (aW + h P )δs − (aW + NP )δs

= (h P − NP )δs

= HPδs

= δHP (42)

where δHP = HPδs is the required correction that needs to
be applied to the orthometric height so that Eq. (41) retains
its consistency.

4 Implementation options

Several cases can be identified for the practical implemen-
tation of the similarity-type transformation model that was
discussed in the previous section. Assuming that the Helmert
transformation parameters (tx,ty,tz,εx,εy,εz,δs) between the
underlying frames are known, these cases relate to the eval-
uation of the terms δh(δa) or δN (δa), and they essentially
correspond to choosing how to treat the physical size of the
reference ellipsoid with respect to the involved GRFs.

Note that, unlike the quantities δh(δa) and δN (δa), the
terms δh(δ f ) and δN (δ f ) are insensitive to any GRF scale
difference. That is because the ellipsoid flattening, f = (a −
b)/a, is a unitless geometrical measure that does not depend
on the spatial scale of the particular datum.

Equation (35) provides the basic model upon which each
of the following implementation options can be distinguished.
The value of a associated with the initial reference system
(GRF1) and the scaling factor δs are considered known quan-
tities, in every case. In many practical applications, the value
of a′ associated with the target reference system (GRF2)
is also fixed, particularly for studies where the transformed
heights need to be combined with other types of geodetic data
that are already available with respect to the GRF2 datum and
a conventionally given reference ellipsoid (a′, f ′).

In the latter case, the transformed heights obtained through
the similarity-type model of Eq. (28) or Eq. (31) will contain
the effect of the inherent change δā = a′ − (1 + δs)a of the
physical dimensions of the GRF2 ellipsoid with respect to the
GRF1 ellipsoid. Such an effect can create significant apparent
biases in the vertical position of the evaluation points, espe-
cially in the common case where a′ = a, and it will affect any
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other auxiliary geodetic quantity that may be subsequently
computed from these transformed heights (e.g. normal grav-
ity, gravity anomaly, gravity disturbance, etc.).

Based on Eq. (35), the following three cases can be dis-
tinguished. The critical point for each case is the combined
treatment of the terms δh(δs) and δh(δa), which give the
variation due to the change of the semi-major axis of the ref-
erence ellipsoid and the spatial scale difference in the under-
lying reference frames.

Case 1: Keeping the same physical size of the reference
ellipsoid in both datums

One alternative is to select δā = 0, which implies that the
physical length of the semi-major axis of the reference ellip-
soid is invariant within the underlying GRFs. According to
Sect. 3, the combined effect of the variation terms δh(δs) and
δh(δa) is

δh(δs, δa) = δh(δs) + δh(δa)

= (aW + h)δs − W (aδs + δā)

= hδs (43)

whereas, for the case of geoid heights, we have that

δN (δs, δa) = δN (δs) + δN (δa)

= (aW + N )δs − W (aδs + δā)

= Nδs (44)

which corresponds to a negligible correction for most prac-
tical purposes (<1 cm even for δs = 10 ppm).

In this case, all numerical calculations involving the semi-
major axis of the reference ellipsoid with respect to the GRF2
datum (e.g. conversion of Cartesian coordinates to curvilin-
ear coordinates and vice versa, computation of normal grav-
ity values, etc.) should be compatible with the new re-scaled
value

a′ = (1 + δs)a (45)

and not the initial value a which is used for similar calcula-
tions with respect to the GRF1 datum; see also Soler and van
Gelder (1987).

The implementation of this particular option is useful if
we want to ensure that various ellipsoid-dependent geodetic
quantities that are observed or computed in one datum, they
will keep referring to the same spatial reference surface when
they are transferred to a new datum through a similarity-type
transformation model.

Case 2: Using the same numerical value for the semi-
major axis of the reference ellipsoid in both datums
(a′ = a)

The second alternative is to set a-priori δa = 0, which implies
that the same numerical value for the semi-major axis of the
reference ellipsoid is adopted and used by both reference
systems, GRF1 and GRF2. This is a rather common option
in practice, since most geodetic datums today make use of
the physical and geometric parameter values associated with
GRS80.

In this case, the combined effect of the terms δh(δs) and
δh(δa) is

δh(δs, δa) = δh(δs) + δh(δa)

= (aW + h)δs − Wδa

= hδs + aWδs (46)

whereas, for the case of geoid heights, we have

δN (δs, δa) = δN (δs) + δN (δa)

= (aW + N )δs − Wδa

= Nδs + aWδs. (47)

The magnitude of the additional correction term aWδs
that appears in Eqs. (46) and (47) is quite significant, since it
can reach more than 6 m even for δs = 1 ppm; see Fig. 3. Its
actual value is practically independent of the particular ellip-
soid (a, f ) adopted by the initial datum GRF1, and it appears
as an almost constant offset in all transformed heights since
it has a very weak dependence on latitude variations (i.e. it
varies by less than ±1 cm, over the ellipsoidal surface).
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Fig. 3 The effect of the apparent variation term aWδs on the trans-
formed ellipsoid-dependent heights, as a function of the scaling fac-
tor involved in the GRF transformation. The particular graph shows
the influence at a point with ϕ = 45◦ for a reference ellipsoid with
a = 6378137 m and e2 = 0.006694380
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Adopting the same numerical value for the semi-major
axis of the reference ellipsoid that is attached in both datums
carries an inherent change in its physical dimensions, if the
scaling factor δs �= 0. Indeed, by setting δa = 0 in Eq. (36),
we get

δā = −aδs (48)

which gives the required change in the physical length of the
semi-major axis of the reference ellipsoid attached to GRF2
in order for the numerical values a and a′ to be equal. This,
in turn, may cause significant changes in the transformed
heights values, as shown in Fig. 3, depending on the value of
the scaling factor δs.

Case 3: Using an arbitrary, conventionally fixed, value
for the semi-major axis of the reference ellipsoid in the
second datum (a′ �= a)

The last option can be considered as a generalization of Case
2. Now, a given conventional numerical value a′ for the semi-
major axis of the GRF2 reference ellipsoid is used, which is
generally different from the conventional value a that was
adopted for the GRF1 ellipsoid. This new value is intended
for use in all related calculations involving positional infor-
mation with respect to the GRF2 datum (e.g., conversion
of Cartesian coordinates to curvilinear coordinates and vice
versa, computation of normal gravity values, etc.), and it may
have been obtained by a revision of the geometrical param-
eters associated with the best geodetic Earth model (e.g.,
Grafarend and Ardalan 2000).

In this case, the actual change in the physical length of the
semi-major axes of the GRF1 and GRF2 ellipsoids should be
determined by Eq. (35) as

δā = −aδs + (a′ − a) (49)

Taking into account the similarity-type transformation
model from Table 1, the combined effect of the terms δh(δs)
and δh(δa) is

δh(δs, δa) = δh(δs) + δh(δa)

= (aW + h)δs − Wδa

= hδs + aWδs − W (a′ − a) (50)

whereas, for the case of geoid heights, we have

δN (δs, δa) = δN (δs) + δN (δa)

= (aW + N )δs − Wδa

= Nδs + aWδs − W (a′ − a) (51)

Depending on the magnitude of the difference a′ − a and
the accuracy standards for the transformed heights, the last
correction term may be significant and it should be taken into
account. The other two correction terms shown in Eqs. (50)

and (51) have already been explained under Case 1 and Case
2, respectively.

Numerical example. Consider the problem of transform-
ing the EGM96 geoid height from the WGS84(G873) frame
to the ITRF94 frame. The horizontal geodetic coordinates
of the evaluation point, with respect to the WGS84(G873)
frame, are given ϕ = 50◦.0000, λ = 11◦.0000 and its
EGM96/WGS84(G873) geoid height is N = 47.193 m. The
values of the Helmert transformation parameters from
WGS84(G873) to ITRF94 (at epoch t = 1997.0) are tx =
9.6 cm, ty = 6.0 cm, tz = 4.4 cm, εx = −2.2 mas, εy =
−0.1 mas, εz = 1.1 mas and δs = −14.3 ppb (Malys et al.
1997). The reference ellipsoid associated with the EGM96
geoid and the WGS84(G873) geodetic position is defined
in terms of a = 6378137.00 m and f = 0.00335281066475
(National Imagery and Mapping Agency 1996).

By applying each of the previous cases for the geoid height
conversion from WGS84(G873) to ITRF94, we obtain:

Case 1 (δā = 0,δ f = 0— retaining the physical size of the
WGS84 reference ellipsoid)
δN = N ′ − N = 0.102 m
N ′ = 47.295 m

Case 2 (δa = 0, δ f = 0— retaining the numerical values
for the semi-major axis and the flattening of the WGS84
reference ellipsoid)
δN = N ′ − N = 0.011 m
N ′ = 47.204 m

Case 3 (a′ = 6378136.602 m, f ′ = 0.00335281969240—
using the zero-tide reference ellipsoid of the World Geo-
detic Datum 2000; see Grafarend and Ardalan 1999)
δN = N ′ − N = 0.442 m
N ′ = 47.635 m

The above results verify the important role of the a-priori
conventional specification of the reference ellipsoid attached
to the new GRF, with respect to which the transformed height
shall refer to. Although the EGM96/ITRF94 geoid height
obtained from Case 2 can be considered identical, within
±1 cm, to the original EGM96/WGS84(G873) geoid height,
the implementation of Case 1 increases the EGM96/ITRF94
geoid height by almost 9 cm. Furthermore, in Case 3, the
transformed geoid undulation exhibits an additional increase
of about 30 cm with respect to the corresponding value that
is referenced to the physical body of the WGS84 ellipsoid.
Note that for the computation of the transformed geoid height
in Case 3, the flattening change term δN (δ f ) has been taken
into account.
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Remark 5 It should be noted that none of the three aforemen-
tioned options should be treated as more ‘correct’ or ‘false’ in
the sense of physical reality. The problem of selecting a value
for the semi-major axis of a reference ellipsoid is always an
issue of conventional choice. In the context of similarity-type
transformation for geodetic quantities, it is up to the user to
ensure that his conventional choice will not create inconsis-
tencies or other apparent biases with existing data sets, when
transferring geodetic data from one datum to another.

5 Discussion and conclusions

Maintaining a conventional, yet geometrically and physi-
cally invariant, Earth reference model is a fundamental issue
in geodesy, particularly in view of the increasing need to
monitor global change parameters, such as mean sea level
or landmass subsidence. However, when a geodetic refer-
ence system is used in practice via an accessible group of
stations with known spatial positions, the adopted reference
ellipsoid that is required to define several important geodetic
quantities does not refer to an ‘ideal’ scale unit, but rather
to the best spatial scale that geodesists are able to reproduce
by means of their current data, measurement techniques and
combination procedures (Soler and van Gelder 1987).

As a result, any geodetic datum ‘detects’ an attached ref-
erence ellipsoid, as well as every length-type quantity that
depends on it (e.g., ellipsoidal height, geoid height, height
anomaly, sea surface height), according to its own accessible
spatial scale that is inherent in the Cartesian coordinate val-
ues of its realization points. In cases of classical terrestrial
geodetic datums, the spatial scale itself is defined through
the conventional adoption of a reference ellipsoid in which
the horizontal positions of its realization points are given.

Taking into account the above considerations, we have
investigated the problem of ellipsoidal height (h → h′)
and geoid height (N → N ′) conversion between different
GRFs by providing a general similarity-type transformation
that incorporates the contribution of GRF scale variation to
the relative size of the reference ellipsoids adopted by each
datum. Several options that can be followed for the conven-
tional selection of the semi-major axis of the reference ellip-
soid in the target GRF have been analyzed, and their practical
implications were highlighted.

Considering the growing trend for the definition and real-
ization of modern GPS-based vertical reference systems, as
well as the requirement of accurate vertical control for the
evaluation of Earth gravity field models, the extended height
transformation model presented herein provides an adequate
tool for the consistent combination of GPS and/or geoid
heights obtained from different GRFs with different scale
realizations. Its usage in ‘inverse’ datum studies, for the pur-
pose of estimating unknown datum transformation parame-

ters using heterogeneous height information, will be explored
in future studies.
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