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Abstract Most geostatistical methods for spatial ran-
dom field (SRF) prediction using discrete data, including
least-squares collocation (LSC) and the various forms of
kriging, rely on the use of prior models describing the
spatial correlation of the unknown field at hand over its
domain. Based upon an optimal criterion of maximum
local accuracy, LSC provides an unbiased field estimate
that has the smallest mean squared prediction error, at
every computation point, among any other linear pre-
diction method that uses the same data. However, LSC
field estimates do not reproduce the spatial variabil-
ity which is implied by the adopted covariance (CV)
functions of the corresponding unknown signals. This
smoothing effect can be considered as a critical draw-
back in the sense that the spatio-statistical structure of
the unknown SRF (e.g., the disturbing potential in the
case of gravity field modeling) is not preserved during its
optimal estimation process. If the objective for estimat-
ing a SRF from its observed functionals requires spatial
variability to be represented in a pragmatic way then the
results obtained through LSC may pose limitations for
further inference and modeling in Earth-related phys-
ical processes, despite their local optimality in terms
of minimum mean squared prediction error. The aim
of this paper is to present an approach that enhances
LSC-based field estimates by eliminating their inherent
smoothing effect, while preserving most of their local
prediction accuracy. Our methodology consists of cor-
recting a posteriori the optimal result obtained from
LSC in such a way that the new field estimate matches
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the spatial correlation structure implied by the signal CV
function. Furthermore, an optimal criterion is imposed
on the CV-matching field estimator that minimizes the
loss in local prediction accuracy (in the mean squared
sense) which occurs when we transform the LSC solu-
tion to fit the spatial correlation of the underlying SRF.

Keywords Least-squares collocation · Spatial random
field · Prediction · Smoothing · Covariance matching

1 Introduction

The prediction of the functional values of a continu-
ous spatial random field (SRF), using a set of observed
values of the same and/or other SRFs, is a fundamen-
tal inverse problem in geosciences. The mathematical
model describing such a problem is commonly formu-
lated in terms of the system of observation equations

yi = Li(u) + vi, i = 1, 2, . . . , n (1)

where u(P) denotes the primary random field of inter-
est (P ∈ D, with D being a bounded or unbounded,
not necessarily Euclidean, spatial domain) that needs
to be determined, at one or more points, using n dis-
crete measurements {yi} which are taken on the same
and/or other locations. The symbols Li(·) correspond to
bounded linear or linearized functionals of the unknown
field, depending on the physical model that relates the
observable quantities with the underlying SRF itself.
The additive terms {vi} contain the effect of measure-
ment random noise, including possible errors due to
model uncertainty in the specification of the field func-
tionals Li(·) that should not exceed the data noise level.
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Typical examples in geodesy that fall within the realm
of the aforementioned SRF prediction scheme include
the determination of the disturbing gravity potential on
or outside the Earth using various types of observed
gravity field functionals, the prediction of stationary or
non-stationary ocean circulation patterns from satellite
altimetry data, the prediction and modeling of atmo-
spheric fields (tropospheric, ionospheric) from the tomo-
graphic inversion of GPS data, the de-noising and
optimal separation of geodetic and geophysical signals
from a given data record, the generation of error cor-
rection “meta-surfaces” for network-based mobile posi-
tioning and GPS-based leveling in a local vertical datum,
and the spatio-temporal prediction of crustal deforma-
tion fields from geodetic data.

Several methods exist in geosciences for tackling
problems of spatial signal interpolation and prediction
from discrete noisy measurements, and all of them
depend to some extent on the way in which some prior
information about the primary unknown SRF is assim-
ilated into the data inversion algorithm. The predomi-
nant approach that is followed in geodesy for the optimal
solution of such problems is least-squares collocation
(LSC) which was introduced by Krarup (1969) in a
deterministic context as a rigorous approximation
method in separable Hilbert spaces with reproducing
kernels, and formulated in parallel by Moritz (1970,
1973) in a probabilistic setting as a statistical predic-
tion technique for spatially correlated random variables
and stochastic processes; see also Sanso (1980, 1986),
Dermanis (1976), Tscherning (1986). Most of the con-
ceivable geodetic measurements, as well as unknown
parameters and signals, can be simultaneously handled
by the LSC method (Moritz 1980; Dermanis 1980) which
has formed the basis of the integrated geodesy con-
cept as introduced in Eeg and Krarup (1973). Similar
methods have also been developed in the general area
of geostatistics and spatial data analysis, where various
kriging-type estimators are widely used for applications
of SRF prediction in hydrology, geology, mining engi-
neering, environmental monitoring and applied geo-
physics (Christakos 1992; Cressie 1993; Matheron 1971);
for more details on the similarities and differences
between kriging and LSC, see Dermanis (1984), and
Reguzzoni et al. (2005).

Although originally developed for optimal estima-
tion problems in spatially varying geodetic signals, the
LSC method is closely associated with the pioneering
work of Kolmogorov (1941) and Wiener (1949) on the
interpolation, extrapolation and smoothing of station-
ary time series. The formalism of Wiener–Kolmogorov
prediction theory in terms of Fourier transforms, spec-
tral filters and input–output (I/O) linear systems has

actually been amalgamated in the traditional LSC
framework (Sanso and Sideris 1997; Nash and Jordan
1978) and it offers an alternative frequency-domain
approach for dealing in a computationally efficient man-
ner with optimal prediction problems in geodetic appli-
cations (see e.g., Eren 1982; Schwarz et al. 1990; Sideris
1995).

One of the critical aspects in LSC is the smooth-
ing effect on the predicted signal values û(P), which
typically exhibit less spatial variability than the actual
true field u(P). As a consequence, small field values
are overestimated and large values are underestimated,
thus introducing a likely conditional bias in the final
results and possibly creating artifact structures in SRF
maps generated through the LSC estimation process.
Note that smoothing is a characteristic which is not
solely associated with the LSC method and it is shared
by most interpolation techniques aiming at the unique
approximation of an unknown continuous function from
a finite number of observed functionals. Its merit is that
it guarantees that the recovered field does not pro-
duce artificial details not inherent or proven by the
actual data, which is certainly a reasonable and desir-
able characteristic for an optimal signal interpolator.
However, the use of smoothed SRF images or maps
generated by techniques such as LSC or kriging pro-
vides a shortfall for applications sensitive to the
presence of extreme signal values, patterns of field con-
tinuity and spatial correlation structure. While founded
on local optimality criteria that minimize the mean
squared error (MSE) independently for each predic-
tion point, the LSC approach overlooks to some extent
a feature of reality that is often important to capture,
namely spatial variability. The latter can be considered
a global attribute of an optimal field estimate, since
it only has meaning in the context of the relationship
of all predicted values to one another in space. As a
result of the smoothing effect, ordinary LSC estimates
do not reproduce either the histogram of the under-
lying true SRF, or the spatial correlation structure as
implied by the adopted model of its covariance (CV)
function.

If the objective for estimating a SRF from its observed
functionals requires spatial variability to be represented
in a pragmatic way (at least according to a theoreti-
cal or empirical model of the signal CV function) then
the results obtained through LSC, or other similar tech-
niques like kriging, may pose limitations for further
inference and modeling in Earth-related physical pro-
cesses, despite their local optimality in terms of mini-
mum mean squared prediction error. It is because of
this overly smooth representation of reality that Journel
(1990, p. 31) cautions against the actual mapping of SRF
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prediction results obtained from a linear unbiased esti-
mator with minimum MSE: “In all rigor, estimates based
on a local accuracy criterion such as kriging should only
be tabulated; to map them is to entice the user to read on
the map patterns of spatial continuity that may be arti-
facts of the data configuration and the kriging smoothing
effect”.

Considering the previous arguments, the objective
of this paper is to present a prudent approach that
enhances LSC-based field estimates by eliminating their
inherent smoothing effect, while preserving most of their
local prediction accuracy. Our approach consists of cor-
recting a posteriori the optimal result obtained from the
LSC technique for the inversion of Eq. (1), in such a
way that the new field estimate matches the spatial cor-
relation structure implied by the signal CV function that
was used to construct the initial LSC solution. In con-
trast to stochastic simulation techniques which provide
multiple equiprobable signal realizations according to
some CV model of spatial variability (Christakos 1992;
Deutsch and Journel 1998), the methodology presented
herein gives a unique field estimate that is statistically
consistent with a prior model of its spatial CV function.
The uniqueness condition is imposed though an optimal
criterion that minimizes the loss in local prediction accu-
racy (in the MSE sense) which occurs when we transform
the LSC solution to match the spatial correlation of the
underlying unknown SRF.

The paper is organized as follows: in Sect. 2 a review of
the traditional LSC technique for the optimal estimation
of an unknown SRF is presented, and an
analysis of its inherent smoothing effect is given. The
proposed “de-smoothing” approach for LSC-based field
estimates is introduced in Sect. 3, and some related
numerical tests are presented in Sect. 4 using sets of sim-
ulated gravity data. Finally, Sect. 5 concludes the paper
by presenting some ideas for future work, along with a
few remaining open questions that need further study.

2 Ordinary least-squares collocation

2.1 General concept

Based on the general observation model of Eq. (1), let
us briefly review the LSC technique as a means to obtain
an optimal SRF estimate û(·), at an arbitrary number of
prediction points {P′

i}, from a set of discrete noisy mea-
surements. The symbol u denotes the random vector
that contains the values of the primary SRF u(·) at the
selected prediction points, while the vector û contains
their corresponding estimates obtained from the LSC
method.

Denoting by si = Li(u) the signal part in the available
data, the system (1) can be written in vector form as

y = s + v (2)

where y, s and v are n-dimensional random vectors
containing the known measurements, and the unknown
signal and noise values, respectively, at all observation
points {Pi}. The LSC scheme requires some prior infor-
mation in the form of auxiliary hypotheses placed on the
first and second order moments of the signal and mea-
surement noise. In particular, the additive signal and
noise components in (2) are considered uncorrelated
with each other (a crucial simplification that is regularly
applied in practice), and of known statistical properties
in terms of their given expectations and co-variances.

Assuming that the spatial variability of the primary
SRF u (e.g., the disturbing potential in most physical
geodesy applications) is described by a known CV
function

Cu(P, Q) = E{(u(P) − mu(P))(u(Q) − mu(Q))} (3)

with mu(P) = E{u(P)} being the spatial trend of u, then
the elements of the CV matrix of the signal vector s
are determined through a straightforward application
of co-variance propagation (Moritz 1980)

Cs(i, j) = LiLjCu(Pi, Pj) (4)

where Li and Lj correspond to the functionals associated
with the ith and jth observation, respectively. In the same
way, the cross-CV matrix between the primary field val-
ues (at the selected prediction points) and the observed
signal values (at the observation points) is obtained as

Cus(i, j) = LjCu(P′
i, Pj) (5)

The CV matrix of the data noise is also considered
known, based on the availability of an appropriate sto-
chastic model describing the statistical behavior of the
zero-mean measurement errors.

Cv(i, j) = E{vivj} = σvivj (6)

Within the LSC framework it is not required, in
principle, to impose any particular constraints on the
functional form of the signal CV function Cu(P, Q),
apart from the fact that it corresponds to a positive-
definite bivariate kernel. In practice, a stationarity mod-
eling assumption is usually adopted in order to infer
the signal and/or the noise covariance structure from
available data records and to simplify the overall SRF
prediction process.

An additional postulate on the spatial trend mu(P)

of the primary SRF is often employed as an auxiliary
hypothesis for the LSC inversion of Eqs. (1) or (2). In
fact, various LSC prediction algorithms may arise in
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practice, depending on how we treat the signal de-trend-
ing problem. For the purpose of this paper and with-
out any essential loss of generality, it will be assumed
that we deal only with zero-mean SRFs and signals (E{u
(P)} = 0, E{s} = 0). More general cases can be han-
dled either through a remove-restore approach by first
subtracting a known deterministic trend from the avail-
able data and then restoring it back to the LSC field
estimate, or through the simultaneous estimation of the
field trend within the LSC algorithm using a suitable
parameterization for the quantities E{u(P)} and/or E{s};
see Dermanis (1990) for more details.

Based on the previous hypotheses, the LSC estimator
of the primary SRF at all selected prediction points {P′

i}
is given by the well known matrix formula

û = Cus(Cs + Cv)
−1y (7)

which corresponds to the linear unbiased solution with
minimum mean squared prediction error (Moritz 1980;
Sanso 1986).

2.2 LSC smoothing effect

The inherent smoothing effect in LSC prediction can
be easily identified from the CV structure of its optimal
result. Applying co-variance propagation to the SRF
estimate û in Eq. (7), we obtain the result

Cû = Cus(Cs + Cv)
−1CT

us (8)

which generally differs from the CV matrix Cu of the
original SRF at the particular set of prediction points,
i.e.,

Cu(i, j) = Cu(P′
i, P′

j) �= Cû(i, j) (9)

Moreover, if we consider the vector of the prediction
errors e = û − u, it holds that

Cû = Cu − Ce (10)

where the error CV matrix is given by the equation
(Moritz 1980)

Ce = Cu − Cus(Cs + Cv)
−1CT

us (11)

The fundamental relationship in Eq. (10) conveys the
meaning of the smoothing effect in LSC, which essen-
tially acts as an optimal low-pass filter to the input
data. The spatial variability of the LSC prediction errors,
in terms of their variances and co-variances, is exactly
equal to the deficit in spatial variability of the LSC esti-
mator û with respect to the original SRF u.

Note that the decrease in spatial variability between
the estimated and the original true signal, according
to Eq. (10), is valid also for the case of noiseless data
(Cv = 0). The only exception occurs when the group of

prediction points is identical to the group of data points,
and the observed signals are of the same type as the
primary unknown SRF (u = s, Cus = Cs = Cu). In this
special case we have that Ce = 0 and Cû = Cu, which
manifests the well known data reproduction property of
LSC in the presence of noiseless measurements (Moritz
1980).

An example of the smoothing effect that can take
place when using the LSC technique for SRF predic-
tion is given in Fig. 1. This particular example refers to
a standard interpolation problem, namely the construc-
tion of a gravity anomaly grid from irregularly distrib-
uted noiseless point data. The image shown in Fig. 1a
is the realization of a free-air gravity anomaly field
which has been simulated within an 50 × 50 km2 area
with a uniform sampling resolution of 2 km, according
to the Hirvonen model of a planar isotropic CV function
(Meier 1981)

Cu(P, Q) = Co

1 +
(

rPQ
a

)2

where Co = 750 mgal2, rPQ is the planar distance
between points P and Q, and the parameter a is selected
such that the correlation length of the gravity anomaly
field is equal to 8.5 km. The locations of the irregular
sampling points for this specific experiment are plotted
in Fig. 1b, whereas the resulting LSC-based grid with the
corresponding prediction errors are shown in Fig. 1c, d,
respectively. The LSC smoothing effect can be further
identified in the histograms of the true (simulated) and
predicted gravity anomaly grids (Fig. 2), as well as in
their corresponding sample statistics that are listed in
Table 1.

Remark 1 The smoothing effect according to Eq. (10)
inflicts a kind of “model denial” in the optimal LSC solu-
tion. That is because the vector estimate û obtained from
Eq. (7) refutes its fundamental building component,
namely the CV structure of the underlying true SRF. In
this respect, the merit of LSC as a stochastic interpola-
tion technique for the optimal recovery of a continuous
field from a finite number of observed functionals, using
its known CV function Cu(P, Q), can be challenged based
on the argument that the spatio-statistical structure of
the SRF u(·) is not preserved through the optimal esti-
mation process.

Remark 2 The LSC prediction algorithm is not affected
by the spatial distribution of the prediction points. If we
denote by P′

i and P′
j two different points where the opti-

mal prediction of the primary SRF u(·) is sought, then
the LSC method yields the following results, separately
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Fig. 1 Plots of the true
free-air gravity anomaly
signal (upper left), the
locations of the noiseless
irregular point data (upper
right), the LSC signal solution
obtained from the irregular
point data (lower left), and
the actual LSC prediction
errors (lower right)

Fig. 2 Histograms of the
true free-air gravity anomaly
signal (upper graph) and the
corresponding LSC solution
using a sample of noiseless
irregular point data (lower
graph)
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Table 1 Statistics of the true gridded values and the predicted
gridded values using the LSC method with noiseless irregular
point data (all values in mgals)

Max Min Mean σ

True grid 87.64 −83.70 2.04 31.04
LSC-predicted grid 52.86 −53.21 1.06 19.28

for each point

û(P′
i) = cT

i (Cs + Cv)
−1y (12)

and

û(P′
j) = cT

j (Cs + Cv)
−1y (13)
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The cross-CV vectors ci and cj are determined through
co-variance propagation from the basic CV function
Cu(P, Q), i.e.,

ci =
[
L1Cu(P′

i, P1) L2Cu(P′
i, P2) · · · LnCu(P′

i, Pn)
]T (14)

cj =
[
L1Cu(P′

j, P1) L2Cu(P′
j, P2) · · · LnCu(P′

j, Pn)
]T

(15)

The values that are obtained from the prediction for-
mulae (12) and (13) are not directly influenced by the
relative spatial position of points P′

i and P′
j. More impor-

tantly, these values remain unaffected by the number
and/or the geometry of other prediction points where
additional field estimates may be computed. Note that
the vector formula in Eq. (7) originates essentially by
stacking each individual LSC estimate û(·) for all desired
prediction points.

The LSC results from Eqs. (12) and (13) are both
affected by the common data-dependent factor
(Cs + Cv)

−1y. Furthermore, the cross-CV vectors in
Eqs. (14) and (15) are both generated from the same
fundamental CV kernel, thus creating an implicit inter-
dependence on the values û(P′

i) and û(P′
j). However,

what is lacking from the LSC framework is an explicit
constraint that would jointly control the numerical val-
ues of the field estimates û(·) at all prediction points, in a
manner that their spatial variation would be statistically
consistent with the CV function Cu(P, Q) of the primary
SRF.

As it will be seen in the next section, the formula-
tion of such a constrained SRF prediction approach can
lead to an “adaptive” field estimator which, in contrast
to the traditional LSC solution û, emulates the spatial
variation patterns that are inherent into the CV func-
tion model Cu(P, Q) for the particular distribution of
prediction points {P′

i}. Depending on the specific prob-
lem at hand, the preservation of such patterns in the
spatial variation of the primary SRF may be critical for
its truthful approximation from discrete noisy data and
the modeling or the computation of other quantities of
interest that depend on it.

3 An optimal “de-smoothing” scheme for least-squares
collocation

The main issue raised in the previous section is the
inability of the classic LSC algorithm to reproduce the
spatial variability of the primary SRF that needs to be
predicted on the basis of a finite set of discrete observa-
tions. The term spatial variability is used here to describe
the joint statistical behavior of the SRF values, as this is
imposed and dictated by an a-priori CV function model.

It should be noted that for increasing data sampling reso-
lution, the result of LSC prediction converges to the true
field (Tscherning 1978) and thus its inherent smoothing
effect ceases to be a problem. However, whether the
smoothing effect in LSC is a problem or not in a par-
ticular application depends on the relationship between
the actual data resolution and the degree of roughness of
the primary unknown field, as well as on the data noise
level. A data sampling resolution level that may be con-
sidered sufficient for one problem, may not be sufficient
for another problem with a less smooth field and/or more
noisy data. Moreover, the justification for the effective-
ness of any estimation or prediction method, including
LSC and other least-squares techniques, should not be
based solely on its behaviour under some ideal condi-
tions that ensure nice properties of mathematical con-
vergence, but it must also consider what happens in an
arbitrary general situation where the resolution of the
available data set may not “match” the spatial variabil-
ity of the primary unknown field that is dictated by its
CV function.

Our objective in this paper is to develop a post-
processing correction algorithm that can be applied to
any optimal field estimate obtained through LSC for the
purpose of reducing its inherent smoothing effect, while
sustaining most of its local prediction accuracy. In gen-
eral terms, we seek a “de-smoothing” transformation to
act upon the LSC estimator

û′ = �(û) (16)

so that the CV structure of the primary SRF u(P) is
recovered. This means that the transformation �(·)
should guarantee that

Cû′ = Cu (17)

where Cu is the CV matrix that is formed from the CV
function Cu(P, Q) of the unknown SRF; see Eq. (9).

In addition, the prediction errors e′ = û′ − u associ-
ated with the field estimator û′ should remain small in
some sense, so that the new solution can provide not only
a CV-adaptive representation for the SRF variation pat-
terns, but also locally accurate predicted values on the
basis of the given data. For this purpose, the formulation
of the de-smoothing operator �(·) should additionally
incorporate an optimality principle by minimizing, for
example, the trace of the new error CV matrix Ce′ .

3.1 Optimal linear de-smoothing

Let us introduce a straightforward linear approach to
modify the LSC estimator û by setting

û′ = Rû (18)
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where R is a square filtering matrix that needs to be
determined according to some optimal properties for
the new estimator û′.

The field estimate obtained from Eq. (18) should
reproduce the CV structure of the primary SRF, in the
sense that Cû′ = Cu for the given spatial distribution of
all prediction points {P′

i}. As a result, the filtering matrix
R should satisfy the CV-matching constraint

RCûRT = Cu (19)

where Cu and Cû correspond to the known CV matrices
of the true and the LSC-predicted SRFs, respectively.

The assessment of the prediction accuracy of the new
solution û′ can be made through its error CV matrix

Ce′ = E{(û′ − u)(û′ − u)T} (20)

which, taking into account Eq. (18), yields.

Ce′ = RCûRT + Cu − RCûu − CuûRT (21)

Using the following relations that are always valid for
the LSC estimator (assuming that there is zero corre-
lation between the observed signals s and the measure-
ment noise v)

Cu = Cû + Ce (22)

Cûu = Cû (23)

the new error CV matrix Ce′ can be finally expressed as

Ce′ = Ce + (I − R)Cû(I − R)T (24)

where Ce is the error CV matrix of the usual LSC
solution.

Evidently, the pointwise prediction accuracy of the
modified solution û′ will always be worse than the pre-
diction accuracy of the original LSC solution û, regard-
less of the form of the matrix R. This is expected since
LSC provides the best (in the MSE sense) linear predic-
tor from the available measurements, which cannot be
further improved by additional linear, or even nonlinear
in the case of normally distributed SRFs, operations.

Our aim here is to determine an optimal filtering
matrix R that will satisfy the CV-matching constraint
in (19), while minimizing the loss of the MSE prediction
accuracy in the sense that

trace(Ce′ − Ce) = trace(δCe′) = minimum (25)

According to Eq. (24), the residual matrix

δCe′ = (I − R)Cû(I − R)T (26)

represents the part of the error CV matrix of the new
estimator û′ which depends on the choice of the filtering
matrix R.

uCu ˆ,ˆ uCu ′′ ˆ,ˆR = ?
CV-matching solutionLSC solution

Fig. 3 De-smoothing of the LSC estimator û as a filtering opera-
tion in a SISO linear system

Remark 3 To obtain an idea about the degradation in
the MSE prediction accuracy caused by the modified
estimator û′, under the presence of the CV-matching con-
straint (19), let us consider the case where the filtering
matrix takes the general form R = I+δR, with δR being
a non negative-definite matrix (i.e., all eigenvalues of R
are larger, or equal, than one). Then, it follows from
Eq. (24) that

trace(Ce′) = trace(Ce + Cû + RCûRT − RCû − CûRT)

= trace(Ce) + trace(Cû) + trace(RCûRT)

−trace(RCû) − trace(CûRT) (27a)

Taking into account the matrix decomposition R = I +
δR, the CV-matching constraint (19), and the well known
properties trace(AB) = trace(BA) = trace((AB)T), we
have

trace(Ce′) = trace(Ce) + trace(Cû) + trace(Cu)

−2trace(RCû)

= trace(Ce) + trace(Cû) + trace(Cu)

−2trace(Cû) − 2trace(δRCû)

= trace(Ce) + trace(Cu) − trace(Cû)

−2trace(δRCû)

= trace(Ce) + trace(Cû) + trace(Ce)

−trace(Cû) − 2trace(δRCû)

= 2trace(Ce) − 2trace(δRCû). (27b)

Since both δR and Cû are non negative-definite matri-
ces, then it holds that trace(δRCû) ≥ 0 (Theobald 1974,
p. 104). Thus, we infer that

trace(Ce′) ≤ 2trace(Ce) (28)

Note that the above inequality is true for every filtering
matrix that satisfies the CV-matching constraint (19)
and has the form R = I + δR, with δR being a non
negative-definite matrix.

3.2 An alternative SISO-type formulation

The optimal de-smoothing process that was presented in
the previous section can be formulated in a different, yet
equivalent, way as follows. Using a single-input single-
output (SISO) linear system approach, we take the LSC
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Fig. 4 Plots of the true
gravity anomaly signal (upper
left), the noisy observed signal
(upper right), the
CV-matching signal solution
(lower left), and the LSC
signal solution (lower right)
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estimate û as the known input to a SISO system which
is implemented in terms of an arbitrary square filtering
matrix R (see Fig. 3). The output of the SISO system
corresponds to a new estimate û′ of the primary SRF,
whose properties are controlled by the system matrix.

We want to impose a specific CV structure on the
output field û′, which must reproduce the spatial varia-
tion patterns of the underlying primary SRF at all pre-
diction points {P′

i}. Hence, the filtering matrix of the
SISO system must satisfy the same CV-matching con-
straint that was already given in Eq. (19).

In contrast to the optimal principle in (25) that min-
imizes the loss of the MSE prediction accuracy for the
new estimate û′ with respect to the original LSC solu-
tion, we shall now introduce a different criterion for the
unique determination of the filtering matrix R.
In particular, we require that the differences between
the original LSC solution and the new CV-adaptive field
estimate are as small as possible. This requirement is
formulated in terms of the following minimization prin-
ciple which enforces an optimal fit, in the mean squared
sense, between the input and the output signals in the
SISO system of Fig. 3
∥∥û′ − û

∥∥2 = E{(û′ − û)T(û′ − û)} = minimum. (29)

The above principle is algebraically equivalent to the
one given in Eq. (25). Indeed, if we use the following

property which holds for every zero-mean random vec-
tor x and symmetric matrix Q (Koch 1999, p. 134)

E{xTQx} = trace(QCx).

we have that

E{(û′ − û)T(û′ − û)} = E{(Rû − û)T(Rû − û)}
= E{(ûTRT − ûT)(Rû − û)}
= E{ûT(RT − I)(R − I)û}
= E{ûT(I − R)T(I − R)û}
= trace((I − R)T(I − R)Cû}
= trace((I − R)Cû(I − R)T}
= trace(Ce′ − Ce)

= trace(δCe′). (30)

Consequently, the desired filtering matrix R for
implementing our CV-adaptive prediction scheme
according to (18) and (19) yields two basic properties
for the field solution û′, namely:

(i) minimum loss in the MSE prediction accuracy with
respect to the original LSC solution, and

(ii) maximum statistical agreement, in the mean
squared sense, between the CV-adaptive solution
and the LSC solution.
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Fig. 5 Histograms of the
true gravity anomaly signal
(upper graph), the LSC signal
solution (middle graph), and
the CV-matching signal
solution (lower graph)
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3.3 The optimal filtering matrix

The solution to the optimization problem that was
formulated in the last two sections, namely the deter-
mination of the filtering matrix R that satisfies the CV-
matching constraint (19) and also minimizes the loss in
the prediction accuracy for the linear estimator û′, is
analytically given in the appendix. Note that the follow-
ing result was originally derived in Eldar (2001, 2003)
in a completely different context than the one discussed
in this paper, focusing on applications such as
matched-filter detection, quantum signal processing and
subspace signal whitening; see also Eldar and Oppen-
heim (2003).

The optimal filtering matrix will be given by the equa-
tion

R = C1/2
u (C1/2

u CûC1/2
u )−1/2C1/2

u (31)

or equivalently,

R = C−1/2
û (C1/2

û CuC1/2
û )1/2C−1/2

û (32)

Table 2 Statistics of the true gravity anomaly signal, the LSC sig-
nal solution and the CV-matching signal solution (all values in
mgals)

Max Min Mean σ

True grid 54.18 −31.59 1.26 14.62
LSC filtered signal 25.14 −18.00 1.60 8.69
CV-matching filtered signal 44.20 −35.49 1.98 13.46

Using the matrix identity ST1/2S−1 = (STS−1)1/2, we
can also obtain the following equivalent matrix expres-
sions from the previous equations:

R = (CuCû)−1/2Cu (33)

R = (CuCû)1/2C−1
û (34)

R = C−1
û (CûCu)1/2 (35)

R = Cu(CûCu)−1/2 (36)

The numerical implementation of any of the last four
formulae requires the use of an appropriate algorithm
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Fig. 6 Plots of the actual
prediction errors in the LSC
signal solution (upper graph),
and the CV-matching signal
solution (lower graph)
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Table 3 Statistics of the actual predictions errors in the LSC sig-
nal solution and the CV-matching signal solution (all values in
mgals)

Max Min Mean σ

LSC prediction errors 29.03 −21.89 −0.33 11.03
CV-matching prediction errors 30.24 −28.91 −0.71 11.83

for the computation of the square root of a generally
non-symmetric matrix; see, e.g., Higham (1987, 1997,
2006), Iannazzo (2006), and Smith (2003).

Following the general expression given in (24), the
error CV matrix of the CV-matching field estimator
û′ that corresponds to the previous equivalent optimal
choices for the filtering matrix R will be given by the
formula

Ce′ = Ce + Cû + Cu − (CûCu)1/2 − (CuCû)1/2 (37)

which can be used for the assessment of the prediction
error originating from the de-smoothing process û′ =
Rû that is applied to the standard LSC solution.

4 Numerical tests

A number of simulation experiments have been worked
out to demonstrate the performance of the CV-adaptive
field estimator û′ in contrast to the classic LSC estima-
tor û. The examples presented in this section refer to

a standard SRF prediction problem that often appears
in many geodetic applications, namely the optimal de-
noising of observed gravity field functionals.

The first simulation regards a signal u(x), with x ∈
[0, 100], thought of as a free-air gravity anomaly profile
obtained from airborne gravity measurements. In partic-
ular, we have simulated a 4 Hz ensemble of a zero-mean
SRF u(x) based on the CV function model

Cu(P, Q) = Co

1 +
(

rPQ
a

)2 (38)

where Co = 225 mgal2, rPQ is the distance between
points P and Q, and the parameter a is selected such
that the correlation length of the gravity anomaly pro-
file is 10 km. The “observed” data record is obtained by
adding white noise to the simulated signal values, with
the noise variance set to 1, 025 mgal2.

Two filtering solutions for u(x) have been determined
based on the aforementioned simulation setting. The
first field estimate comes from the usual LSC algorithm
that is applied directly to the available data (a standard
Wiener filter in this particular case), while the second
field estimate corresponds to the CV-matching optimal
solution that was described in the previous sections. The
two signal solutions, along with the original SRF and
the observed noisy data, are illustrated in Fig. 4. As it
can be seen from these plots, the CV-matching solu-
tion emulates much closer than the LSC solution the
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Fig. 7 Plots of the true
gravity anomaly signal (upper
left), the noisy observed signal
(upper right), the
CV-matching signal solution
(lower left), and the LSC
signal solution (lower right)

spatial variability and the range of values of the original
SRF u(x), despite LSC’s optimal pointwise prediction
accuracy.

The improved replication of the spatial variability of
the unknown SRF by the CV-matching solution û′, in
contrast to the smoothed representation obtained by
the LSC result û, can also be seen in the histogram plots
in Fig. 5, as well as in the signal statistics in Table 2.

The actual prediction errors in the LSC solution and
the CV-matching solution (i.e., e = û − u and e′ =
û′ − u, respectively), are plotted in Fig. 6, while their
corresponding statistics are given in Table 3. From the
spatial behavior and the magnitude of their prediction
errors, we conclude that the performance of both solu-
tions is similar in terms of average prediction accuracy,
with the LSC result being marginally better than the
CV-matching field estimate, as should be expected.

The second example is essentially a repetition of the
previous noise filtering experiment, with the difference
being that now a two-dimensional gravity anomaly SRF
is considered. In particular, using the same signal and
noise simulation parameters and the same CV func-
tion model of Eq. (38), a two-dimensional free-air grav-
ity anomaly grid of “true” and “observed” values is
simulated over a 50 × 50 km2 with a uniform resolu-
tion of 1 km (see Fig. 7). The LSC and the CV-match-
ing filtering solutions obtained from this test are also
shown in Fig. 7, while their corresponding histograms are

presented in Fig. 8, and their actual prediction errors in
Fig. 9.

Similarly to the previous example, we see again the
improvement achieved by the CV-matching solution in
the representation of the spatial variability patterns and
the range of signal values, at the cost of a small increase
in the signal prediction errors; see also Tables 4 and 5.

As a final note, let us mention that the improvement
obtained from the CV-matching prediction algorithm
over the LSC solution, with respect to the representation
of spatial signal variability and the reproduction of the
global statistics of the underlying SRF, becomes more
evident in cases with particularly low signal-to-noise
ratio (SNR), while for high SNR situations both field
estimates give practically identical results. A character-
istic example is shown in Figs. 10 and 11 for two noise
filtering cases with high and low SNR values, respec-
tively. Specifically, in Fig. 10 we see the results obtained
from the CV-matching and the LSC prediction methods
when the ratio between the signal and the noise standard
deviation in the simulation of a free-air gravity anomaly
field is set to SNR = 1.5, while in Fig. 11 the correspond-
ing results are shown when the simulation experiment
takes place with SNR = 0.1. From the values of the sta-
tistics given in the corresponding Tables 6, 7, 8 and 9,
we confirm the superiority of the CV-matching solution
when the SNR of the problem is low, and the equivalency
with the LSC solution when the SNR is high.
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Fig. 8 Histograms of the
true gravity anomaly signal
(upper graph), the LSC signal
solution (middle graph), and
the CV-matching signal
solution (lower graph). The
plots refer to the 2D noise
filtering experiment

Fig. 9 Plots of the actual
prediction errors in the LSC
signal solution (upper graph),
and the CV-matching signal
solution (lower graph). The
plots refer to the 2D noise
filtering experiment
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Fig. 10 Plots of the true
gravity anomaly signal (upper
left), the noisy observed signal
(upper right), the
CV-matching signal solution
(lower left), and the LSC
signal solution (lower right),
for the case where SNR = 1.5

Table 4 Statistics of the true gravity anomaly signal, the LSC
signal solution and the CV-matching signal solution for the two-
dimensional noise filtering experiment (all values in mgals)

Max Min Mean σ

True grid 45.33 −42.88 −0.04 14.96
LSC filtered signal 27.42 −29.10 0.74 10.29
CV-matching filtered signal 41.47 −42.48 0.73 14.64

Table 5 Statistics of the actual predictions errors in the LSC signal
solution and the CV-matching signal solution for the two-dimen-
sional noise filtering experiment (all values in mgals)

Max Min Mean σ

LSC prediction errors 28.70 −31.94 0.78 9.88
CV-matching prediction errors 31.98 −32.05 0.77 11.01

5 Conclusions

Most geostatistical methods for SRF prediction
problems using discrete data, including LSC and the
various forms of kriging, rely on the use of prior models
that describe the spatial correlation of the unknown field
at hand over its domain. Built upon an optimal criterion
of maximum local accuracy, LSC provides an unbiased
field estimate that has the smallest mean squared predic-
tion error, at every computation point, among any other
linear prediction method using the same data. However,
LSC field estimates do not reproduce the spatial vari-
ability of the corresponding unknown SRFs which is

implied by their adopted CV functions. From a theoret-
ical viewpoint, this can be considered as a critical draw-
back in the sense that the spatial correlation structure
of the SRF (e.g., the disturbing potential in the case of
gravity field modeling) is not preserved during its opti-
mal estimation process. On the practical side, the LSC
algorithm acts as a low-pass filter which smoothens the
spatial variability patterns originating from the adopted,
either theoretical or empirical, CV function model of the
unknown field.

Although smoothing is not necessarily a bad side-
effect in signal interpolation and prediction problems,
there is an apparent paradox in the idea that the opti-
mality criteria used in the LSC method give field esti-
mates that do not achieve the global statistics of the
underlying SRF, thus suggesting that “local” prediction
accuracy (in the sense of unbiased signal estimates with
minimum pointwise MSE) and “global” field mapping
(in the sense of preserving the spatial correlation struc-
ture of the unknown signal according to a CV function
model) cannot be both optimally accomplished. Gen-
erally speaking, this dichotomy may be a LSC user’s
analogue to the well known Heisenberg’s uncertainty
principle. Whether or not this paradox represents some-
thing more fundamental, the current needs for SRF pre-
diction in geodesy and geosciences make it clear that the
objective(s) in every application must be clearly defined
in advance (e.g., maximum local accuracy, preservation
of global statistics, preservation of non-stationary pat-
terns in spatial variability, etc.) since no single method
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Fig. 11 Plots of the true
gravity anomaly signal (upper
left), the noisy observed signal
(upper right), the
CV-matching signal solution
(lower left), and the LSC
signal solution (lower right),
for the case where SNR = 0.1

Table 6 Statistics of the true gravity anomaly signal, the LSC sig-
nal solution and the CV-matching signal solution (all values in
mgals), for the case where SNR = 1.5

Max Min Mean σ

True grid 49.68 −28.82 7.16 14.29
LSC filtered signal 46.91 −25.78 7.14 13.32
CV-matching filtered signal 50.92 −27.15 7.16 14.11

Table 7 Statistics of the true gravity anomaly signal, the LSC sig-
nal solution and the CV-matching signal solution (all values in
mgals), for the case where SNR = 0.1

Max Min Mean σ

True grid 34.62 −49.37 −6.32 14.55
LSC filtered signal 9.82 −24.72 −6.22 7.01
CV-matching filtered signal 28.03 −47.45 −7.76 13.94

Table 8 Statistics of the actual predictions errors in the LSC signal
solution and the CV-matching signal solution (all values in mgals)
for the case where SNR = 1.5

Max Min Mean σ

LSC prediction errors 13.47 −16.35 −0.02 4.70
CV-matching prediction errors 13.34 −17.65 −0.00 5.04

exists that allows the simultaneous optimal reaching
of all possible objectives in a given prediction prob-
lem. Choosing the best solution based solely on a min-
imum MSE criterion may be considered a prejudiced
approach that does not necessarily lead to the most real-
istic picture of physical reality.

Table 9 Statistics of the actual predictions errors in the LSC sig-
nal solution and the CV-matching signal solution (all values in
mgals), fir the case where SNR = 0.1

Max Min Mean σ

LSC prediction errors 29.54 −32.11 0.10 12.04
CV-matching prediction errors 31.90 −49.92 −1.44 13.79

The SRF prediction method presented in this paper is
not as locally accurate as LSC, but is more globally repre-
sentative for an unknown signal with a known CV func-
tion. Our methodology employs a post-processing filter
that is applied to the usual LSC solution and yields a
unique field estimate that reproduces the global statistics
of the primary SRF based on a CV-matching constraint.
Besides having the same spatial CV structure with the
primary SRF, the new field estimate retains most of the
local prediction accuracy associated with the original
LSC solution by minimizing the increase of the error
variance at each prediction point. In that sense, the pro-
posed technique offers an interesting alternative to LSC
for SRF filtering problems in cases where the final result
should follow a given CV function model. It can provide
a useful post-processing tool, in particular, for physical
geodesy estimation problems with low SNR and/or high
degree of smoothness in their regularized least-squares
solution (e.g., Wiener filtering of airborne gravity data,
downward continuation, etc.), for calibration or valida-
tion of signal and/or error CV models using discrete
data, for computing stochastic simulations (according to
some a-priori CV model) of various gravity field func-
tionals that need to be additionally conditioned upon
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actual data values, and finally for adjusting heteroge-
neous gravity field data sets according to a common CV
model of spatial variability.
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Appendix: Determination of the optimal filtering matrix

We want to determine the optimal filtering matrix R
that is used for obtaining a new SRF estimate û′ from
the original LSC solution û according to û′ = Rû, which
satisfies the CV-matching constraint

Cû′ = RCûRT = Cu (A1)

and also minimizes the loss in MSE prediction accuracy
as stated by the optimal principle (see Sect. 3.1)

ϕ = trace[(I − R)Cû(I − R)T] = minimum (A2)

where Cu and Cû are known n × n positive-definite
matrices, with Cû �= Cu in general. Note that the MSE
principle in the last equation is equivalent to the follow-
ing expression

ϕ = E{(û′ − û)T(û′ − û)} = minimum (A3)

as explained in Sect. 3.2.
Let us apply an auxiliary invertible transformation

to the LSC field estimate û and the corresponding CV-
matching field estimate û′ = Rû (note that there is a
different transformation matrix applied to each of the
vectors û and û′):

ŵ = C1/2
u û (A4)

ŵ′ = C−1/2
u û′ (A5)

In this way, the transformed SRF estimates are related
through the filtering equation

ŵ′ = Rwŵ (A6)

where the matrix Rw is

Rw = C−1/2
u RC−1/2

u (A7)

Based on Eqs. (A4) and (A5), we have that

Cŵ = C1/2
u CûC1/2

u (A8)

Cŵ′ = C−1/2
u Cû′C−1/2

u (A9)

Taking into account the CV-matching constraint (A1),
the last equation yields the following whitening con-
straint for the CV matrix of the transformed vector ŵ′

Cŵ′ = C−1/2
u CuC−1/2

u = I (A10)

Also, using the transformation formulae in (A4) and
(A5), the MSE principle from (A3) can be now
expressed as

ϕ = E{(C1/2
u ŵ′ − C−1/2

u ŵ)T(C1/2
u ŵ′ − C−1/2

u ŵ)}
= E{ŵ′T}Cuŵ′ + ŵTC−1

u ŵ − ŵ′Tŵ − ŵTŵ′}
= E{(ŵ′Tŵ′ + ŵTŵ − ŵ′Tŵ − ŵTŵ′)

+(ŵ′TCuŵ′ + ŵTC−1
u ŵ − ŵ′Tŵ′ − ŵTŵ)}

= E{(ŵ′ − ŵ)T(ŵ′ − ŵ)} + E{ŵ′TCuŵ′

+ŵTC−1
u ŵ − ŵ′Tŵ′ − ŵTŵ)}

= minimum (A11)

Note that both vectors ŵ and ŵ′ have zero means, since
the LSC solution û (and thus also û′ = Rû) is also a zero-
mean random vector based on the initial assumptions
stated in Sect. 2.1. Hence, the previous MSE principle
can finally take the form

ϕ = E{(ŵ′ − ŵ)T(ŵ′ − ŵ)} + trace(CuCŵ′)

+ trace(C−1
u Cŵ) − traceCŵ′ − traceCŵ

= minimum (A12)

or, by substituting from (A8) and (A10),

ϕ = ϕ̃ + trace(Cu + C−1/2
u CûC1/2

u − I − C1/2
u CûC1/2

u )

= minimum (A13)

where

ϕ̃ = E{(ŵ′ − ŵ)T(ŵ′ − ŵ)} (A14)

Since Cu and Cû are both known and fixed matrices not
depending on R, we conclude that finding the optimal
filtering matrix R that minimizes the quantity ϕ in (A3),
subject to the CV-matching constraint (A1), is equiva-
lent to finding the filtering matrix Rw = C−1/2

u RC−1/2
u

that minimizes the quantity ϕ̃ in (A14), subject to the
CV-matching whitening constraint (A10).

Let us consider the orthogonal decomposition of the
CV matrix Cŵ given in (A8)

Cŵ = C1/2
u CûC1/2

u = VDVT (A15)

where V is a unitary matrix whose columns correspond
to the orthonormal eigenvectors of Cŵ, and D is a diago-
nal matrix that contains the corresponding eigenvalues.

If we apply the following invertible transformation to
the random vectors ŵ and ŵ′

ẑ = VTŵ (A16)

ẑ′ = VTŵ′ (A17)
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then we have immediately that

Cẑ = VTCŵV
Eq. (A15)= D (A18)

Cẑ′ = VTCŵ′V
Eq. (A10)= VTV = I (A19)

so that both vectors ẑ and ẑ′ are uncorrelated.
Furthermore, it holds that

ẑ′ = Rzẑ (A20)

where the matrix Rz is related with the previous filtering
matrix Rw according to the equation

Rz = VTRwV (A21)

Also, due to the orthogonality of the vector transforma-
tion applied in (A16) and (A17), the quantity ϕ̃ can be
equivalently expressed as

ϕ̃ = E{(ẑ′ − ẑ)T(ẑ′ − ẑ)} (A22)

Taking into account that both ẑ and ẑ′ are zero-mean
random vectors (since they are obtained through suc-
cessive linear transformations applied to the zero-mean
LSC solution û and the CV-matching field solution û′ =
Rû, respectively), the above quantity takes the form

ϕ̃ = E{ ˆz′Tẑ′} + E{ẑTẑ} − 2E{(ẑTẑ′}
= trace(Cẑ′) + trace(Cẑ) − 2E{(ẑTẑ′}
= trace(I) + trace(D) − 2E{(ẑTẑ′} (A23)

The first two terms in the above equation are fixed and
they do not depend on the desired filtering matrix R
(or any of its transformed versions Rw = C−1/2

u RC−1/2
u

and Rz = VTRwV). Note that the diagonal matrix D
is uniquely specified through the eigenvalue decompo-
sition in (A15), since Cu and Cû are both known and
given symmetric matrices; see (A15). In this way, the
minimization of ϕ̃ with respect to the choice of the fil-
tering matrix Rz is equivalent to the minimization of the
term

ρ = −2E{(ẑTẑ′} (A24)

Taking into account the linearity of the expectation
operator E{·}, we can express the quantity ρ in the alter-
native form

ρ = −2
n∑

k=1

E{ẑ[k]ẑ′[k]} (A25)

where ẑ[k] and ẑ′[k] denote the k-th elements of the
vectors ẑ and ẑ′, respectively. In order to find the mini-
mum of ρ we will use the well known cosine inequality
(Papoulis 1991, p. 154)

E{x1x2} ≤
√

E{x2
1}E{x2

2} (A26)

which is valid for any pair (x1, x2) of real-valued random
variables. It needs to be emphasized that the equality
sign in the previous inequality holds if and only if the
random variables are linearly related, x2 = ax1, where
a is an arbitrary real scalar.

Putting the elements ẑ[k] and ẑ′[k] in place of the arbi-
trary random variables x1 and x2, the cosine inequality
of (A26) yields

E{ẑ[k]ẑ′[k]} ≤
√

E{(ẑ[k])2}E{(ẑ′[k])2} (A27)

or equivalently

− 2E{ẑ[k]ẑ′[k]} ≥ −2
√

E{(ẑ[k])2}E{(ẑ′[k])2} (A28)

and by summing over all possible values of the index k,
we finally obtain

− 2
n∑

k=1

E{ẑ[k]ẑ′[k]} ≥ −2
n∑

k=1

√
E{(ẑ[k])2}E{(ẑ′[k])2}

(A29)

or equivalently

ρ ≥ −2
n∑

k=1

√
E{(ẑ[k])2}E{(ẑ′[k])2} (A30)

The equality sign in (A30)s holds if and only if the
cosine inequality in (A27) becomes an equality for every
value of the index k, i.e.,

E{ẑ[k]ẑ′[k]} =
√

E{(ẑ[k])2}E{(ẑ′[k])2}, k=1, 2, . . . , n

(A31)

which obviously holds if and only if the random variables
ẑ[k] and ẑ′[k] are linearly related

ẑ′[k] = λkẑ[k], k = 1, 2, . . . , n (A32)

where λk denotes an arbitrary scalar factor. Hence, we
can conclude that the minimization of the term ρ

requires that the random variables ẑ[k] and ẑ′[k] should
be related according to above linear equation.

In view of (A32), and considering the fact that Cẑ = D
and Cẑ′ = I [see Eqs. (A18) and (A18)], we easily deduce
that the vectors ẑ and ẑ′ should be related through a
diagonal matrix � = diag(λ1, . . . , λk, . . . , λn)

ẑ′ = �ẑ (A33)

such that � = D−1/2. In this way, the matrix Rz accord-
ing to the filtering formula in (A20) becomes

Rz = D−1/2 (A34)

From Eq. (A21), and taking also into account Eq. (A15),
we obtain the filtering matrix Rw
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Rw = VRzVT = VD−1/2VT

= (Cŵ)−1/2

= [
C1/2

u CûC1/2
u

]−1/2 (A35)

Using the last result, the required filtering matrix R is
finally determined from (A7) as

R = C1/2
u RwC1/2

u

= C1/2
u

[
C1/2

u CûC1/2
u

]−1/2C1/2
u (A36)

In order to conclude the proof, it is required to show that
the above result satisfies the CV-matching constraint in
(A1). We have

RCûRT = C1/2
u

[
C1/2

u CûC1/2
u

]−1/2C1/2
u CûC1/2

u[
C1/2

u CûC1/2
u

]−1/2C1/2
u

= C1/2
u

[
C1/2

u CûC1/2
u

]−1/2

[
C1/2

u CûC1/2
u

][
C1/2

u CûC1/2
u

]−1/2C1/2
u

= C1/2
u C1/2

u

= Cu (A37)

which concludes our proof.
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