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Abstract The objective of this paper is the comparison of
various types of estimators that can be used in linear mod-
els with uniformly biased data. This particular case refers
to adjustment problems where the available measurements
are affected by a common, unknown and uniform offset. The
classic least-squares (LS) unbiased estimators for this type of
models are reviewed in detail, and some additional remarks
on their properties and performance are given. Furthermore, a
family of biased estimators for linear models with uniformly
biased data is introduced, which has the potential to pro-
vide better performance (in terms of mean squared estimation
error) than the ordinary LS unbiased solutions. A number of
different regularization viewpoints that can be equivalently
associated with these biased estimators are presented, along
with a discussion on various selection strategies that can be
employed for the choice of the regularization parameter that
enters into the biased estimation algorithm.

Keywords Linear model · Least squares estimation · Uni-
formly biased data · Biased estimation · Regularization

1 Introduction

A problem often encountered in the analysis of geodetic
measurements is the presence of unmodeled systematic ef-
fects and biases in their values. In fact, most geodetic obser-
vations are carried out under complex physical conditions,
which may not correspond exactly to the mathematical mod-
els that we often employ for their analysis. Moreover, any
model is only an image of physical reality that encompasses
some level of abstraction and simplification, whereas real-
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world measurements can capture additional details that are
not necessarily included in the original model formulation.

With the intention of studying some of the problems asso-
ciated with the optimal inversion of biased data sets, let us
start with the usual linear(-ized) system of observation equa-
tions that is commonly employed in geodesy for the estima-
tion of an unknown parameter vector x from a set of noisy
measurements y

y = Ax + v , (1)

where A is a matrix of known coefficients, and v is a vector of
zero-mean random errors with a covariance (CV) matrix C.
Obviously, under the presence of unknown systematic effects
in the input data, the previous model needs to be generally
modified as follows:

y′ = Ax + b + v , (2)

where b denotes the external systematic disturbances. The
observation vector is now denoted by y′, in order to distin-
guish it from the vector of non-biased data y that is used in
Eq. (1). Although the previous model assumes only additive
biases, it can still cover most geodetic applications where
external disturbances exist in the input data. Three important
application areas should be mentioned in connection with the
general model of Eq. (2), namely the analysis of the lineari-
zation error in non-linear models, the analysis of the aliasing
error when a continuous (e.g., potential) field is a approxi-
mated by a finite-dimensional parametric model using a set of
discrete observations, and the data outlier detection in linear
models (Kusche 2004).

The sole inclusion of the bias term in Eq. (2) is not suffi-
cient to generate a feasible inversion scheme for the opti-
mal estimation of the model parameters x from the biased
measurements y′. Indeed, the least-squares (LS) principle,
vTC−1v = (y′ − Ax − b)TC−1(y′ − Ax − b) = min, yields a
singular system of normal equations, with an infinite number
of solutions for the parameter vector x and the bias term b.
Essentially, the data y′ do not really ‘know’yet how to distin-
guish between the random disturbances (v) and the systematic
disturbances (b).
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The singularity of the system of observation equations
in Eq. (2) signifies the need for further modeling of the bias
term b. Bias modeling and elimination has been a topic of
continuous research interest in geodesy by both theoreticians
and practitioners. An extensive discussion, related mostly to
the mathematical details of bias treatment in geodetic data
analysis, can be found in Kukuča (1987). A comparison of
different approaches for dealing with systematic effects that
arise from the integration of heterogeneous geodetic data sets
is given in Schaffrin and Baki-Iz (2001). A theoretical analy-
sis of the nuisance parameter elimination problem within the
standard Gauss-Markov linear model, along with some prac-
tical aspects for GPS data processing, have been presented in
Schaffrin and Grafarend (1986). Other studies that have ap-
peared in the geodetic literature with a focus on the problem
of bias modeling and elimination, include Tscherning and
Knudsen (1986); Kubáčková and Kubáček (1993); Gaspar
et al. (1994); Satirapod et al. (2003); Lerch (1991); Jia et al.
(2000) and Aduol (1987), among others.

In this paper, we compare a number of alternative estima-
tion schemes that can be implemented in linear models with
uniformly biased data. This type of problem refers to cases
where all measurements are affected by a common, unknown
and uniform offset. Consequently, the bias vector is assumed
to take the parametric form b = βs, where s is a vector of
ones and β is a scalar parameter that accounts for all “zero-
order” systematic effects in the input data. In this way, the
model of Eq. (2) becomes

y′ = Ax + βs + v . (3)

A review of two well-known types of optimal unbiased
estimators that can be associated with the above model is
given in Sect. 2, along with some additional remarks on their
properties and performance. In particular, we examine the LS
inversion of Eq. (3) using a fixed-effects or a mixed-effects
model, depending whether the bias parameter β is viewed as
a deterministic or a stochastic quantity. In Sect. 3, a family
of biased estimators for the model of Eq. (3) is introduced,
which is capable of providing better accuracy (in terms of
mean squared estimation error) than the ordinary LS unbi-
ased solution. In Sect. 4, we present alternative regularization
viewpoints that can be equivalently associated with the afore-
mentioned biased estimators, and in Sect. 5 we discuss sev-
eral criteria that can be used in practice for the choice of the
regularization parameter that appears in the biased estima-
tion formulae for x and β. Finally, some concluding remarks
and suggestions for future work are given in Sect. 6.

2 Least-squares (unbiased) estimators for the general
model of equation (3)

The scope of this section is to review the two main types
of optimal unbiased estimators that can be associated with
a linear model that uses uniformly biased data. Specifically,
the LS inversion for the linear model of Eq. (3) is presented
from two distinct viewpoints, depending on the interpretation

(deterministic or stochastic) that we choose to assign to the
bias parameter β. The derived estimators can be considered
as special cases of other, more general LS-based estimators,
which have been developed and studied thoroughly in the lit-
erature for the case of the extended linear model y′ = Ax +
Gz + v (see, e.g., Koch 1999; Grafarend and Schaffrin 1993;
Dermanis 1979, 1991).

2.1 Fixed-effects linear model with uniformly biased data

In this approach, the data bias β corresponds to a fixed un-
known parameter that needs to be estimated, along with the
other model parameters x, through an integrated procedure.
This type of “fixed-effects” model is summarized in Box 1.

Box 1 Fixed-effects linear model with uniformly biased data

y′ = Ax + βs + v s = [1 . . . 1]T

E{v} = 0 x : deterministic model parameters
E{vvT} = C β : deterministic data bias

Applying the LS optimal inversion principle

vTC−1v = (y′ − Ax − βs)TC−1(y′ − Ax − βs)
= minimum , (4)

yields the following system of normal equations:

[
ATC−1A ATC−1s
sTC−1A sTC−1s

] [
x̂FE

β̂FE

]
=
[

ATC−1y′
sTC−1y′

]
. (5)

The superscript FE indicates that the corresponding esti-
mates refer to the LS inversion of the fixed-effects model. If
we further assume that the partitioned design matrix [A s]
has full column rank, then the above system has a unique
solution that can be expressed as

x̂FE = x̂o − k̇sTC−1(y′ − Ax̂o)ξ (6)

β̂FE = k̇sTC−1(y′ − Ax̂o) , (7)

where the auxiliary quantities x̂o, ξ and k̇ are defined by the
equations

x̂o = (ATC−1A)−1ATC−1y′ (8)

ξ = (ATC−1A)−1ATC−1s (9)

k̇ = 1

sTC−1s − ξT(ATC−1A)ξ
. (10)

The above estimation algorithm provides a special case
of a well-known procedure in geodetic data analysis, which
is generally known as nuisance parameter elimination (e.g.,
Teunissen 2000, Chap. 6).

Remark 1 The vector x̂o corresponds to the LS solution that
we would obtain if we ignored the bias presence in the input
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data y′. It gives a biased estimate of the true unknown param-
eter x, since

E{x̂o} = (ATC−1A)−1ATC−1E{y′}
= (ATC−1A)−1ATC−1(Ax + βs)
= x + βξ

�= x . (11)

Remark 2 The vector ξ identifies a characteristic quantity
for the fixed-effects model shown in Box 1. It can be directly
computed from the known matrices A and C, without the
knowledge of the actual data y′. It gives a normalized mea-
sure of the distortion that a uniform data bias would cause on
the LS solution, if β is left out of the model formulation.

Remark 3 It is often claimed that systematic biases can be
neglected in the geodetic practice, if their magnitude is be-
low the noise level of the input data. In such situations, it is
assumed that the systematic effects are entirely absorbed by
the noise component v, without the need to modify the func-
tional and/or the stochastic part of the model. Nevertheless, it
is interesting to point out that the difference between the LS
estimates for x that are obtained from: (1) non-biased data,
and (2) uniformly biased data with the same noise level as in
(1) but ignoring the bias presence in the model formulation,
is not necessarily affected by the bias-to-noise ratio. Indeed,
if we consider the case where C = σ 2I and substitute Eq. (3)
into Eq. (8), we get the following relationship

x̂o︸︷︷︸
LS solution from uniformly biased data

(ignoring the bias presence)

= (ATA)−1AT

non−biased data︷ ︸︸ ︷
(Ax + v)︸ ︷︷ ︸

LS solution from non−biased data

+β(ATA)−1ATs . (12)

From Eq. (12), it is seen that the closeness of x̂o to the LS
solution that is obtained from strictly non-biased data does
not depend on the bias-to-noise ratio β/σ 2.

Remark 4 The scalar quantity k̇ in Eq. (10) always has a
positive value. This is easily verified by analyzing the denom-
inator of Eq. (10) as follows:

sTC−1s − ξT(ATC−1A)ξ

Eq. (9)= sTC−1s − sTC−1A(ATC−1A)−1(ATC−1A)

×(ATC−1A)−1ATC−1s
= sTC−1s − sTC−1A(ATC−1A)−1ATC−1s
= sTC−1

[
I − A(ATC−1A)−1ATC−1

]
s

= sTC−1
[
C − A(ATC−1A)−1AT

]
C−1s

= aTRa . (13)

Since the data CV matrix C is a symmetric positive-definite
matrix, the term R = C−A(ATC−1A)−1AT also corresponds
to a positive-definite symmetric matrix for any full column
rank matrix A (Harville 1997). As a result, the quadratic form
aTRa always attains positive values for any non-zero vector
a, including the case where a = C−1s.

The mean squared estimation error for the parameter vec-
tor x is defined in terms of the mean squared error (MSE)
matrix

MSE(x̂FE) = E
{
(x̂FE − x)(x̂FE − x)T

}
, (14)

whereas the mean squared estimation error for the bias param-
eter β corresponds to the scalar quantity

MSE(β̂FE) = E
{
(β̂FE − β)2

}
. (15)

Using standard matrix calculus, it is easily proven that

MSE(x̂FE) = (ATC−1A)−1 + k̇ξξT , (16)

and

MSE(β̂FE) = k̇ . (17)

Some additional comments regarding the MSE performance
of the unbiased LS estimators x̂FE and β̂FE are given in
Sect. 2.3.

2.2 Mixed-effects linear model with uniformly biased data

In this approach, the data bias parameter β is modeled as a
random variable, in contrast to the other model parameters x
which refer to fixed (deterministic) quantities. The formula-
tion of such a “mixed-effects” model is analytically given in
Box 2. Note that the stochastic bias parameter β is assumed
to have a zero mean and also to be uncorrelated with the ran-
dom noise in the input measurements.

Box 2 Mixed-effects linear model with a common stochastic bias in
the data

y′ = Ax + βs + v s = [1 . . . 1]T

E{v} = 0 x :deterministic model parameters
E{vvT} = C β : stochastic data bias
E{β} = 0, E{β2} = σ 2

β , E{βv} = 0

The LS optimal inversion of the mixed-effects model can
be performed in two different, yet equivalent, ways. In partic-
ular, we can either follow a two-step procedure as described
in Dermanis and Rummel (2000, pp. 52–53), or we can adopt
a single generalized LS criterion of the form

vTC−1v + β2

σ 2
β

= (y′ − Ax − βs)TC−1(y′ − Ax − βs) + β2

σ 2
β

= minimum . (18)

Assuming that the design matrix A has full column rank and
that the ‘noise + bias’ total CV matrix (C + σ 2

β ssT) is invert-
ible, the LS solution of the mixed-effects model can be ex-
pressed as

x̂ME = x̂o − k̈sTC−1(y′ − Ax̂o)ξ (19)

β̂ME = k̈sTC−1(y′ − Ax̂o) , (20)
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where the quantities x̂o and ξ have been defined previously
in Eqs. (8) and (9). The scalar term k̈ differs from the quan-
tity k̇ that was used in the corresponding LS solution for the
fixed-effects model, and it is given by the formula

k̈ = 1
1
σ 2

β

+ sTC−1s − ξT(ATC−1A)ξ
. (21)

Note that Eq. (19) provides an unbiased estimate for the
deterministic model parameter (E{x̂ME} = x), whereas Eq.
(20) provides an unbiased prediction for the stochastic bias
β (E{β̂ME} = E{β}).

Using standard rules of matrix calculus, it can be shown
that

MSE(x̂ME) = (ATC−1A)−1 + k̈ξξT , (22)

and

MSE(β̂ME) = k̈ . (23)

Some remarks about the MSE performance of the estimators
x̂ME and β̂ME are given in the following section.

2.3 Remarks

(1) If we take into account Eqs. (10) and (21), the following
equation is obtained

k̈ = k̇
σ 2

β

σ 2
β + k̇

= k̇

1 + k̇

σ 2
β

. (24)

Using Eq. (24), the relationship between the LS solutions
for the fixed-effects and the mixed-effects linear models
can now be described by

x̂ME = 1

1 + k̇

σ 2
β

x̂FE + 1

1 + σ 2
β

k̇

x̂o (25)

β̂ME = 1

1 + k̇

σ 2
β

β̂FE . (26)

It is seen that the two models give identical results when
the variance of the stochastic bias β is equal to infinity
(σ 2

β = ∞ → k̈ = k̇, x̂ME = x̂FE, β̂ME = β̂FE). This
equivalency represents a well-known result, which as-
serts that a mixed-effects model becomes identical (in
terms of its LS inversion results) with a fixed-effects
model when the statistical uncertainty of its stochastic
parameters is set equal to infinity (Leibelt 1967; Derma-
nis 1976).

(2) The stochastic treatment of an unknown data bias can be
equivalently viewed as a LS inversion of a fixed-effects
model accompanied by an appropriate downweighting
of the input data. Indeed, the estimate x̂ME in Eq. (19)
can be alternatively obtained by using the following LS
principle for the optimal inversion of Eq. (1)

vTC̃−1v = minimum , (27)

where C̃ is a downweighted modification of the CV
matrix for the pure random noise in the input data

C̃ = C + σ 2
β ssT . (28)

The use of downweighting as a method to account for
unmodeled systematic effects in the analysis of geo-
detic measurements has been already discussed in Lerch
(1991). In his study, it was suggested that the analysis
of satellite-tracking data with a constant unknown bias
should be made by downscaling the diagonal elements of
their CV matrix with an appropriate factor correspond-
ing to the number of tracking points within each satellite
orbital pass. A more recent study on data downweighting
as an alternative technique for the optimal combination
of heterogeneous geodetic observations with partial sys-
tematic inconsistencies can be found in Schaffrin and
Baki-Iz 2001.

(3) The statistical accuracy of the LS estimate for x that is
obtained from a biased data set y′(= Ax+βs+v) is lower
than the statistical accuracy of the corresponding LS esti-
mate obtained from a non-biased data set y(= Ax + v).
In the latter case, the MSE matrix of the LS estimate
for x is equal to (ATC−1A)−1. Since both k̇ and k̈ have
positive values, the diagonal elements of MSE(x̂FE) and
MSE(x̂ME) are always larger than the corresponding ele-
ments of (ATC−1A)−1; see Eqs. (16) and (22).

(4) The accuracy degradation for the LS estimate of x is
smaller in the case of the mixed-effects model, since it
holds that k̈ < k̇; see Eq. (24). As a result, we have that
traceMSE(x̂ME) ≤ traceMSE(x̂FE). Given that the fixed-
effects model is equivalent to the mixed-effects model for
σ 2

β = ∞, the accuracy improvement for x̂ME (compared
to x̂FE) should be attributed to the lower uncertainty for
the data bias that is associated with the mixed-effects
model approach (σ 2

β < ∞).
(5) Another interesting point is that the degradation in the LS

estimation accuracy for x, in the case of the fixed-effects
model, is completely independent of the magnitude of the
data bias; i.e., the MSE matrix of x̂FE does not depend on
β. This means that, regardless of the actual magnitude
of the constant bias that has affected the input measure-
ments, the reduction in the statistical accuracy of the LS
solution x̂FE will always be the same.

3 Biased estimation in fixed-effects linear models
with uniformly biased data

3.1 Motivation

The mixed-effects model appears to be the preferred approach
for the LS inversion of uniformly biased data since it leads
to optimal parameter estimates with better accuracy than the
fixed-effects model. The key factor that controls the MSE
improvement for x̂ME and β̂ME is the variance of the bias
effect in the input data. It is clear from Eq. (21) or Eq. (24)
that the factor k̈ becomes smaller (relative to k̇) as the variance
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σ 2
β decreases, thus resulting in MSE reduction for both x̂ME

and β̂ME. The limit case σ 2
β = 0 implies that we essentially

have complete knowledge of the bias effect, which in princi-
ple makes possible the a-priori correction of the input data,
without the need to include any additional nuisance parame-
ter into the LS adjustment process.

Nevertheless, the adoption of a stochastic interpretation
for the data bias β creates theoretical and practical concerns
for most geodetic applications. Some of these concerns can
be summarized in terms of the following three questions:

1. Is it always possible (from a physical point of view) to
accept a stochastic interpretation for systematic effects in
the data?

2. Even if we are willing to accept a stochastic treatment for
the bias parameter β, how can we obtain a value for the
bias variance σ 2

β in order to implement in practice the LS
inversion of the mixed-effects model?

3. What complications arise when the mixed-effects model
in Box 2 incorporates a non-zero mean for the stochastic
bias parameter? Is it not more realistic to consider the case
E{β} �= 0 in practice?

The answer to the first question depends more on the mod-
eling preferences that we are inclined to follow, and much
less on the existence of some hidden physical mechanism
that underlies the true behaviour of data biases. The dilemma
of using a deterministic or a stochastic representation for
(some or all of) the unknown quantities that are involved in
the LS estimation process has stimulated interesting theo-
retical arguments among scientists (Moritz 1980; Dermanis
and Sansò 1993; Scales and Snieder 1998), without how-
ever seriously hampering the geodetic practice over the years.
After all, it does not really matter whether nature admits truly
random signals or not, unless you are doing quantum mechan-
ics (Moritz 1997).

The second question signifies a much more important
issue from a practical viewpoint. A possible solution to this
problem is to follow a variance component estimation (VCE)
approach within the mixed-effects model of Box 2, where the
unknown variance σ 2

β of the stochastic bias β is estimated
a-posteriori from the available (biased) data with the help
of some VCE technique. This particular topic has been dis-
cussed in Kusche (2003) and Schaffrin and Baki-Iz (2001).

The third question is also an important one, since the
assumption of zero-mean for the stochastic bias parameter
provides a rather strong (and possibly unrealistic) restric-
tion. The LS inversion of the mixed-effects model, in the
general case E{β} = µβ �= 0, results in optimal estima-
tors that depend on the expected value µβ ; see, e.g., Derma-
nis (1991). Such a result makes the optimal estimation pro-
cess non-feasible in practice, since the value µβ is generally
unknown.

In order to overcome the concerns raised with the above
questions, and also to provide an alternative to the “stochastic
regularization” that is embedded in the mixed-effects model
of Box 2, a biased estimation algorithm for the inversion
of uniformly biased data is proposed and discussed in the
sequel.

3.2 Formulation of the biased estimators

Our aim is to exploit the advantage of the estimators in Eqs.
(19) and (20), which improve the estimation accuracy for the
parameter vector x and the bias parameter β with respect to
the LS (unbiased) solution of the fixed-effects model in Box
1. At the same time, we want to abandon the stochastic inter-
pretation for the data bias that is implied by the mixed-effects
model approach. Hence, we apply the following modifica-
tions to the estimators of Eqs. (19) and (20):

• remove the stochastic interpretation from the bias param-
eter β;

• replace the bias variance σ 2
β with a positive scalar term λ,

which should now be seen as an arbitrary regularization
factor.

The resulting estimators are now associated with the fixed-
effects model of Box 1 and they are given by the equations

x̂FE
b = x̂o − k̇

1 + k̇
λ

sTC−1(y′ − Ax̂o)ξ (29)

β̂FE
b = k̇

1 + k̇
λ

sTC−1(y′ − Ax̂o) (30)

where the subscript b is used to distinguish the above solu-
tion from the LS solution x̂FE and β̂FE that was discussed in
Sect. 2.1. In general, the previous estimators are biased:

BIAS(x̂FE
b ) = E{x̂FE

b } − x = k̇

λ + k̇
βξ (31)

BIAS(β̂FE
b ) = E{β̂FE

b } − β = − k̇

λ + k̇
β . (32)

The estimation bias in both cases is controlled by the reg-
ularization parameter λ and it decreases as the value of λ
increases. When the regularization parameter takes an infi-
nitely large value, the estimators x̂FE

b and β̂FE
b converge to the

(unbiased) LS solution x̂FE and β̂FE.
The accuracy of the biased estimators in Eqs. (29) and

(30) can be described in terms of their corresponding MSE.
Specifically, the MSE matrix of x̂FE

b is given by

MSE(x̂FE
b ) = (ATC−1A)−1 + ...

k ξξT, (33)

whereas the MSE for β̂FE
b is

MSE(β̂FE
b ) = ...

k , (34)

with the scalar factor
...

k given by the formula
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Table 1 Comparison between various estimators for the parameter vector x, using (i) non-biased data and (ii) uniformly biased data with different
modeling schemes for the data bias effect

General model y′ = Ax + βs + v Model parameters x

x̂ MSE (x̂) BIAS (x̂)

Fixed-effects model (Box 1) x̂o[= (ATC−1A)−1ATC−1y′] (ATC−1A)−1 0
with non-biased data (β=0) LS/BLUE solution

Fixed-effects model (Box 1) x̂o − k̇sTC−1(y′ − Ax̂o)ξ (ATC−1A)−1 + k̇ξξT 0
with biased data (β �= 0, fixed & unknown) LS/BLUE solution

Mixed-effects model (Box 2) x̂o − k̇

1+ k̇

σ2
β

sTC−1(y′ − Ax̂o)ξ (ATC−1A)−1 + k̈ξξT 0

with biased data (β is zero-mean RV) LS/BLUE solution

Fixed-effects model (Box 1) x̂o − k̇

1+ k̇
λ

sTC−1(y′ − Ax̂o)ξ (ATC−1A)−1 + ...

k ξξT k̇

k̇+λ
βξ

with biased data (β �= 0, fixed & unknown) Biased solution

Table 2 Comparison between various estimators for the bias parameter β, using (1) non-biased data and (2) uniformly biased data with different
modeling schemes for the data bias effect

General model y′ = Ax + βs + v Data bias parameter β

β̂ MSE (β̂) BIAS (β̂)

Fixed-effects model (Box 1) – – –
with non-biased data (β = 0) LS/BLUE solution

Fixed-effects model (Box 1) k̇sTC−1(y′ − Ax̂o) k̇ 0
with biased data (β �= 0, fixed & unknown) LS/BLUE solution

Mixed-effects model (Box 2) k̇

1+ k̇

σ2
β

sTC−1(y′ − Ax̂o) k̈ 0

with biased data (β is zero-mean RV) LS/BLUE solution

Fixed-effects model (Box 1) k̇

1+ k̇
λ

sTC−1(y′ − Ax̂o)
...

k − k̇

k̇+λ
β

with biased data (β �= 0, fixed & unknown) Biased solution

...

k = k̇λ2 + k̇2β2

(k̇ + λ)2
. (35)

The derivation of the previous MSE expressions is straight-
forward and it can easily be verified using standard properties
from matrix calculus.

It is interesting to observe that, although x̂FE
b and β̂FE

b are
numerically equal to the unbiased LS estimates x̂ME and β̂ME

obtained from the mixed-effects model when σ 2
β = λ, their

respective MSE measures are not necessarily equal in this
case. Indeed, if we form the ratio k̈/

...

k under the restriction
σ 2

β = λ and take into account Eqs. (24) and (35), we have the
relationship

k̈
...

k
= k̇ + σ 2

β

β2

σ 2
β

k̇ + σ 2
β

, (36)

which reveals that k̈ �= ...

k and thus MSE(x̂FE
b ) �= MSE(x̂ME),

MSE(β̂FE
b ) �= MSE(β̂ME) when σ 2

β = λ, unless β2 = σ 2
β . An

analogous example for the case of generalized ridge regres-
sion is discussed in Xu and Rummel (1994).

In Tables 1 and 2, a summary of the main characteristics
for the three types of estimators in linear models with uni-
formly biased data is given. In the next section, a number
of alternative regularization schemes that can be associated

with the biased estimators of Eqs. (29) and (30) are pre-
sented. The problem of the optimal choice for the value of
the regularization parameter λ, as well as a comparison of
the MSE performance for the three types of estimators (x̂FE,
β̂FE), (x̂ME, β̂ME) and (x̂FE

b , β̂FE
b ), are presented in Sect. 5.

4 Alternative views for the biased estimators in the
fixed-effects linear model with uniformly biased data

4.1 Partial ridge regression

The biased estimators x̂FE
b and β̂FE

b can be derived by apply-
ing a Tikhonov-Phillips regularization procedure (e.g., Moritz
1980; Bouman and Koop 1997) within the fixed-effects model
of Box 1. In this case, the underlying “stabilizer” is applied
only to the bias parameter β, without taking into account the
rest of the model parameters x. The analytical expression of
the regularized inversion principle is

vTC−1v +
(

1

λ

)
β2 = (y′ − Ax − βs)TC−1(y′ − Ax − βs)

+
(

1

λ

)
β2 = minimum , (37)
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where λ corresponds to a regularization factor whose role is
to provide a more stable solution by smoothing out the effect
of a uniform bias β in the input data. It can easily be veri-
fied that the minimization of the above function leads to the
particular biased estimators given in Eqs. (29) and (30).

In the statistical literature, such an approach is usually
referred to as partial or partitioned ridge regression (Brown
1977; Farebrother 1978). It differs from the usual ridge regres-
sion method (Hoerl and Kennard 1970; Marquardt 1970; Xu
and Rummel 1994) as it incorporates only a subset of the
model parameters into the optimization principle.

4.2 LS inversion using a constraint for the bias size

An alternative viewpoint for the biased estimators x̂FE
b and

β̂FE
b is obtained by formulating the inversion of the fixed-

effects model as a LS estimation problem subject to a con-
straint for the size of the bias parameter β. Such an approach
is based on the argument that the range of possible values
for the data bias is certainly bounded, since the true value
of β cannot exceed some physically reasonable limits. This
kind of “prior information” can be incorporated into the data
analysis procedure with the help of an inequality constraint,
which restricts the range of admissible values for β.

In our case, the estimators x̂FE
b and β̂FE

b provide the solu-
tion to the following constrained optimization problem

vTC−1v = (y′ − Ax − βs)TC−1(y′ − Ax − βs)
= minimum (38)

subject to

β2 ≤ R2 , (39)

where R2 denotes an upper bound for the squared value of the
data bias. The solution to the above problem is obtained via
the method of Lagrange multipliers and it leads to the biased
estimators x̂FE

b and β̂FE
b given in Eqs. (29) and (30); see Björck

(1996, pp. 205–206) for more mathematical details. In this
particular case, it can be shown that the following condition
should be satisfied by the optimal estimate of the bias param-
eter β

(β̂FE
b )2 = R2 (40a)

or more analytically(
k̇

1+ k̇
λ

)2 [
sTC−1(y′ − Ax̂o)(y′−Ax̂o)TC−1s

]=R2 . (40b)

From Eq. (40b), the value of the regularization factor λ
can be determined as a function of the actual data y′ and the
given bound R2 for the bias size. Further details can be found
in Draper and Smith (1998, pp. 392–394).

4.3 The “phony data” viewpoint

A third interpretation for the linear estimators x̂FE
b and β̂FE

b

is possible by adopting a pseudo-Bayesian approach for the

inversion of the fixed-effects model in Box 1. According to
this approach, we introduce prior information for the data
bias β by adding new “data” in our analysis, in terms of the
following observation equation

βobs = β + vβ (41)

where βobs denotes an “observed” value for the bias parame-
ter, and vβ is its associated error with the following stochastic
description

E{vβ} = 0 ; (42)

E{v2
β} = σ 2

vβ
. (43)

It can easily be shown that the joint inversion of the fixed-
effects model in Box 1 along with Eq. (41), under the LS
optimal principle, leads to the estimates x̂FE

b and β̂FE
b , when

σ 2
vβ

= λ ; (44)

βobs = 0 . (45)

The above approach, which augments the original data
vector y′ with additional “phony” (zero) observed values for
some (or all) of the model parameters, provides a well-known
alternative viewpoint for ridge regression problems (Draper
and Smith 1998, pp. 394–395). More details for more general
cases of this approach can be found in Schaffrin (1983).

4.4 Shrinking and shifting the unbiased LS solution

Further insight into the behaviour of the biased estimators
x̂FE

b and β̂FE
b can be obtained by examining their relationship

with the corresponding LS unbiased estimates x̂FE and β̂FE.
Taking into account Eqs. (7) and (30), it is easily verified

that

β̂FE
b = λ

λ + k̇
β̂FE (46)

which shows that the biased estimate for the bias parameter
β is obtained by shrinking the corresponding LS unbiased
estimate. The amount of shrinkage depends on the regular-
ization parameter λ, and it increases according to the ratio
k̇/λ. Note that the factor k̇ is equal to the variance of the LS
unbiased estimate β̂FE; see Eq. (17).

Using Eqs. (6) and (29), it can also be shown that
the estimator x̂FE

b satisfies the following equations:

x̂FE
b = x̂FE + k̇

λ + k̇
β̂FEξ ; (47)

x̂FE
b = x̂FE + k̇

λ
β̂FE

b ξ . (48)

According to Eqs. (47) and (48), the biased estimate x̂FE
b is a

shifted version of the LS unbiased estimate x̂FE. The amount
of the shift depends not only on the ratio k̇/λ, but also on the
estimated value for the bias parameter β and the auxiliary
quantity ξ .
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An alternative expression for x̂FE
b as a function of x̂FE is

x̂FE
b = λ

λ + k̇
x̂FE + k̇

λ + k̇
x̂o (49)

which shows that the biased estimator x̂FE
b is a weighted aver-

age of (1) the unbiased LS solution x̂FE and (2) the LS solution
x̂o that we obtain when we neglect the bias presence in the
input data. Under this viewpoint, the regularization parame-
ter λ plays the role of a relative weighting factor between the
two estimators x̂FE and x̂o.

5 Choice of the regularization parameter

The most critical aspect in every regularization technique
is the choice of the regularization parameter(s) that enter
into the corresponding estimation formulae. This problem
has been studied extensively in the geodetic literature, mainly
within the framework of the Tikhonov-Phillips regularization
procedure (e.g., Schwarz 1979; Rummel et al. 1979; Bouman
and Koop 1997; Cai et al. 2004). In this section, we examine
briefly the problem of choosing the value of the regularization
parameter λ for the particular case of the biased estimators
x̂FE

b and β̂FE
b .

5.1 Criterion I: MSE reduction

The inclusion of an additional unknown parameter β for the
inversion of a linear model from uniformly biased data leads
to estimates, for the original model parameters x, which are
less accurate (in terms of MSE) than those obtained from
non-biased data. This result applies to all three types of esti-
mators that have been studied in this paper, namely x̂FE, x̂ME

and x̂FE
b . The MSE matrix for each of these estimators always

has larger diagonal elements than the MSE matrix of the
LS estimator with non-biased data (see Table 1). The accu-
racy degradation in each case is solely controlled by a single
positive factor (k̇ for x̂FE, k̈ for x̂ME and

...

k for x̂FE
b ). In partic-

ular, the larger the values of these factors, the greater is the
degradation in the estimation accuracy for the model param-
eters x. Note that the scalar factors k̇, k̈ and

...

k also correspond
to the MSE for the respective estimates β̂FE, β̂ME and β̂FE

b of
the bias parameter β (see Table 2). As a result, a reasonable
criterion for choosing an optimal value for the regularization
parameter λ, in the case of the biased estimators x̂FE

b and β̂FE
b ,

is the minimization of the factor
...

k .
The analytical expression of

...

k as a function of λ has
already been given in Eq. (35). Its minimization ensures that
(i) the estimation accuracy for the model parameters x has
the smallest possible degradation due to the use of uniformly
biased data, and (ii) the MSE of the bias estimate β̂FE

b is min-
imum. Using Eq. (35), it is easily established that the optimal
value of λ which minimizes

...

k is

λopt = β2 , (50)

where β is the true value of the data bias. In this case, the
MSE performance of the biased solution (x̂FE

b , β̂FE
b ) is always

better than the MSE performance of the LS unbiased solution
(x̂FE, β̂FE) since we have
...

k

k̇
= β2

β2 + k̇
< 1 . (51)

The optimal choice for λ according to Eq. (50) is of theo-
retical value only, since the true bias β is obviously not known
in practice.A more practical approach can be followed by first
requiring that the factor

...

k is smaller than k̇, and then finding
the values of λ that satisfy this condition. In this way, we can
ensure a priori that the biased solution (x̂FE

b , β̂FE
b ) offers better

MSE performance than the LS unbiased solution (x̂FE, β̂FE).
Again using Eq. (35), it is easily verified that

...

k

k̇
< 1 ⇔ λ >

β2 − k̇

2
. (52)

The above inequality offers a range of values within which we
should select the regularization parameter in order to guaran-
tee better MSE performance than the LS unbiased solution.
Based on Eq. (52), a reasonable choice for λ is

λ = (β2)max − k̇

2
(53)

where (β2)max denotes a maximum bound that we are willing
to accept for the squared value of the data bias.

5.2 Criterion II: bounded bias

An alternative methodology for the choice of the regulariza-
tion parameter λ is obtained by following the viewpoint of
Sect. 4.2. According to this approach, the biased estimators
x̂FE

b and β̂FE
b provide the solution to a constrained LS adjust-

ment problem which is formulated in terms of Eqs. (38) and
(39). The regularization parameter can be determined in this
case by solving Eq. (40b). This yields a second-order poly-
nomial in λ, which has the analytic form

[R2 − (β̂FE)2]λ2 + 2k̇R2λ + (k̇)2R2 = 0 , (54)

where β̂FE is the unbiased LS estimate for the data bias param-
eter and R2 is the imposed upper bound for the squared true
value of β.

Equation (54) has only real roots since its discriminant �
is always positive, i.e.,

� = 4R2(k̇β̂FE)2 . (55)

Assuming that k̇ and R2 are both non-zero, there are three
different cases that can be distinguished for the possible solu-
tions of Eq. (54), depending on the relationship between R2

and (β̂FE)2. In particular, the following alternative scenarios
can be identified:

Case 1: if R2 > (β̂FE)2, then Eq. (54) has two negative real
roots;
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Case 2: if R2 < (β̂FE)2, then Eq. (54) has one positive and
one negative real root;

Case 3: if R2 = (β̂FE)2, then Eq. (54) has only one negative
real root, λ = − k̇

2 .

From the above cases, only the second leads to an
acceptable (positive) value for the regularization parameter
λ. In fact, the condition in Case 2 provides a justification for
the practical use of the biased estimators x̂FE

b and β̂FE
b in cases

where a realistic bound for the squared data bias is smaller
than the squared value of the unbiased LS estimate of β. Such
a result is compatible with the well-known behaviour of or-
dinary (unbiased) LS estimators, which tend to over-estimate
the size of the unknown parameters in a linear model.

Note that, in contrast to the methodology presented in
Sect. 5.1, the value of the regularization parameter λ that is
obtained from the solution of Eq. (54) depends directly on
the available data, since the term β̂FE is a linear function of
the measurements y′.

6 Summary and conclusions

The aim of this paper was to study and compare various esti-
mation schemes that can be used in linear models with uni-
formly biased data.A type of biased estimators for such mod-
els has been introduced, which has the potential to provide
better MSE performance than the ordinary LS (unbiased)
solution. Different regularization viewpoints that can be asso-
ciated with these biased estimators were also discussed, along
with a number of selection strategies that can be followed for
the choice of the regularization parameter that enters into the
biased estimation algorithm. Although it has not been treated
explicitly in this paper, we should note that results similar to
the ones presented here are also obtained in the case where
only a part of the input data is affected by a constant unknown
bias.
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