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Abstract A systematic investigation of over-parameterized
and under-parameterized formulations in the least-squares
adjustment of linear models is performed in this paper. Over-
parameterization and under-parameterization are modeling
effects that can often occur in the adjustment of geodetic data.
The former refers to situations where new unknown parame-
ters are added to an existing model in order to provide a more
precise deterministic description for a given data set. Such an
expansion may either correspond to a physically meaningful
and necessary model improvement (e.g. due to the presence of
unknown systematic errors in the input data) or to a fabricated
data over-fitting through the inclusion of fictitious paramet-
ric terms in the mathematical model for the data adjustment.
On the other hand, under-parameterization schemes emerge
when the effects of existing systematic disturbances are omit-
ted from the mathematical model that is employed for the
data adjustment, thus causing a bias in the estimates for the
remaining model parameters. The main focus of this study
is the statistical accuracy of the estimated model parameters
and the conditions under which it can be improved, either
through an over-parameterized model formulation or through
an under-parameterized model formulation.

Keywords Least-squares · Over-parameterization ·
Under-parameterization · Systematic effects · Accuracy
trade-off

1 Introduction

The model of a linear(-ized) system of observation equa-
tions with additive random noise is a fundamental compo-
nent in geodetic data analysis (Dermanis and Rummel 2000).
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Despite its simplistic linear character and its inherent restric-
tion for additive measurement errors, this model (commonly
termed by statisticians as the Gauss–Markov linear model)
is overwhelmingly used in all fields of geodetic research; for
a systematic overview of various types of modeling alter-
natives in geodetic estimation problems, see Dermanis and
Rossikopoulos (1988).

Two basic modeling “effects” can often take place in the
adjustment of geodetic data with the linear(-ized) Gauss–
Markov model, namely over-parameterization and under-
parameterization. The first of these effects refers to situations
where new unknown parameters are added to an existing
model in order to provide a more detailed deterministic descrip-
tion of a given data set. Such an expansion may either cor-
respond to a physically meaningful and necessary model
improvement, or to a fabricated data over-fitting through the
inclusion of fictitious parametric terms in the mathematical
model for the data adjustment. Examples where the use of
an over-parameterized model constitutes a justifiable model-
ing choice for the adjustment of experimental data occur in
cases where the input data are affected by unknown system-
atic errors, or in cases where the measurement noise level has
declined to such a level where new higher-order systematic
effects can be detected from the adjustment of the given data.
Under-parameterization schemes, on the other hand, emerge
when the effects of existing systematic disturbances in the
observables are omitted from the mathematical model that is
employed for the data adjustment, thus causing a bias in the
final estimates for the remaining model parameters.

In this paper, a theoretical analysis of over-parameterized
and under-parameterized formulations for the least-squares
(LS) adjustment of linear models is presented. The conse-
quences from over-parameterized LS adjustments have been
investigated in the geodetic literature mainly in the frame-
work of partitioned model representations (Teunissen 2000,
pp 92–93; Koch 1999, pp 178–179) and the study of vari-
ous parametric schemes for the elimination of systematic ef-
fects from the input data (Harvey 1985, p 145; Gaspar et al.
1994; Ineichen et al. 2001; Vermeer 1997; Rutkowska 1999).
The main focus of our analysis is placed on the statistical
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accuracy of the estimated parameters and the conditions un-
der which it can be improved either through an over-param-
eterized or through an under-parameterized model formu-
lation. In particular, a systematic investigation is presented
that will address and answer the following questions: (1) does
lower data noise lead to improved parameter estimates when
the underlying model is augmented by a new parametric term
to account for hidden systematic effects in the input data? (2)
can we obtain more accurate parameter estimates from the
LS adjustment of a linear model that is simplified by ignoring
certain parametric terms from its initial rigorous formulation?
Both questions are studied within the standard framework of
LS adjustment for full-rank linear models with heterosced-
astic (and generally correlated) random errors.

2 Methodology

2.1 The basic model

The standard form of the linear model that is commonly used
in geodetic data analysis is given below
y1 = Ax + v1 (1)

E{v1} = 0, E{v1vT
1 } = C1 (2)

where y1 is a known observation vector, x is an unknown
(non-random) parameter vector,A is a design matrix of known
(non-random) coefficients, and v1 is a vector of zero-mean
random errors with a prescribed covariance (CV) matrix C1.
For the purpose of this paper, we assume that the design ma-
trix A has full column rank, in which case the LS optimal
inversion of Eq. (1) yields the result
x̂(1) = (ATC−1

1 A)−1ATC−1
1 y1 (3)

Regardless of the probability distribution function for the
random errors, the above solution gives the best (minimum
variance) unbiased linear estimate for x, provided that there
are no other systematic (non-random) disturbances in the in-
put data (i.e. E{y1} = Ax). In addition, for the special case of
normal (Gaussian) random errors, the solution in Eq. (3) pro-
vides also the maximum likelihood estimate for the unknown
model parameters.

The quality of the previous unbiased estimate is typically
described by its CV matrix
Cx̂(1)

= (ATC−1
1 A)−1 (4)

and its diagonal elements give a quantitative measure of the
statistical accuracy associated with the elements of x̂(1). Fur-
ther details for the LS adjustment of linear models can be
found in the textbooks by Koch (1999), Rao and Toutenburg
(1999) and Teunissen (2000), and in the monograph by Gra-
farend and Schaffrin (1993).

2.2 The expanded model

The linear model of the previous section (Eqs. (1), (2)) is now
revised according to the general form
y2 = Ax + Bz + v2 (5)

E{v2} = 0, E{v2vT
2 } = C2 (6)

where z denotes a vector of additional unknown (non-ran-
dom) parameters, and B is an associated known design ma-
trix such that rank [A|B] = rank A + rank B. The input data
are affected by zero-mean random errors v2 whose statistical
behavior is described by a new CV matrix C2.

The importance of the augmented model in Eq. (5) is
twofold. First, it provides a straightforward option for LS
adjustment problems in the presence of unknown systematic
errors (biases) in the input data. In such cases, the term Bz
corresponds to the linear(-ized) effect of the external system-
atic errors, while the noise level remains the same as in the
case with bias-free data (C1 = C2). Note that the observation
vector is now denoted by y2 in order to distinguish it from
the vector data bias-free y1 that is used in Eq. (1).

Parametric modeling is a standard tool for dealing with
non-random error sources in LS adjustments and it has been
extensively used in various geodetic applications, including
the optimal analysis of GPS code and carrier phase measure-
ments (Vanicek et al. 1985; Vermeer 1997; Satirapod et al.
2003), the compensation of systematic errors in the observa-
tional and kinematic models for real-time Kalman filtering
navigation (Yang and Zhang 2005), the processing of satel-
lite altimetry measurements (Tscherning and Knudsen 1986;
Gaspar et al. 1994; van Gysen and Coleman 1994), the detect-
ability of systematic effects in satellite gradiometry observa-
tions from dedicated gravity field missions (Preimesberger
and Pail 2004), the integration of heterogeneous height data
sets (Jiang and Duquenne 1996; Kotsakis and Sideris 1999),
the consistent combination of GPS and Galileo signals for
geodetic positioning (Moudrak et al. 2005), the estimation of
station-dependent range biases in the adjustment of satellite
laser ranging networks (Rutkowska 1999), etc.

Alternatively, Eq. (5) can be viewed as a more “detailed”
image of the physical system under consideration (e.g. satel-
lite orbit, geodetic network, gravity field, etc.), when a signifi-
cant increase in the measurement precision of its observable
quantities occurs. The term Bz now represents the higher-
order features of the underlying physical system that can be
detected due to the use of more precise data than in the case
of the simpler model in Sect. 2.1 (i.e. trace C2 < trace C1).As
an example, we can refer to the processing of gravity mea-
surements obtained from absolute free-fall or rise-and-fall
gravimeters using an expanded form of the Newtonian equa-
tion of motion that takes into account the variations of the
gravity gradient along the trajectory of the test mass (Hipkin
1999; Nagornyi 1995).

The implementation of a LS adjustment using an ex-
panded model is not always endorsed by the existence of
systematic errors in the input measurements and/or the con-
siderable reduction in the measurement noise level. Often, the
parameterization for our data analysis models is not uniquely
specified a priori, and various choices need to be examined for
the optimal analysis of geodetic measurements. Some exam-
ples include the study of different orbit parameterizations
for the combined analysis of GPS and GLONASS data (In-
eichen et al. 2001), the experimentation with different types



On the trade-off between model expansion, model shrinking, and parameter estimation accuracy in least-squares data analysis

of corrector surfaces for the assimilation of GPS, levelling
and geoid height data (Fotopoulos 2003), the use of differ-
ent functional models for the parameterization of the tro-
pospheric delay in GPS observables (Kleijer 2004), and the
combination of different functional models for the optimal
description of crustal deformation patterns (Liu and Chen
1998). In such cases, several parameterization choices can
be integrated and tested with the help of the general model
in Eq. (5), where the basic parametric form Ax is enhanced
by an additional term Bz that may significantly improve the
LS fit with the given data.

The LS inversion of the augmented linear model in Eq.
(5) leads to the following solution

x̂(2) = xo − (ATC−1
2 A)−1ATC−1

2 BM−1BTC−1
2 (y2 − Axo)

(7)

ẑ = M−1BTC−1
2 (y2 − Axo) (8)

where the quantities xo and M are given by the equations

xo = (ATC−1
2 A)−1ATC−1

2 y2 (9)

M = BT(C−1
2 − C−1

2 A(ATC−1
2 A)−1ATC−1

2 )B (10)

The auxiliary term xo corresponds to the (biased) LS
solution that is obtained if we ignore the dependence of the
observable vector on the “nuisance” term Bz, whereas the
matrix M is commonly known as the Schur complement for
the system of normal equations that is formed from the linear
model of Eqs. (5) and (6).

The application of covariance propagation to Eqs. (7) and
(8) yields the CV matrix for the estimates of the original
model parameters x

Cx̂(2)
= (ATC−1

2 A)−1

+(ATC−1
2 A)−1ATC−1

2 BM−1BTC−1
2 A(ATC−1

2 A)−1

(11)

and the CV matrix for the estimates of the additional model
parameters z

Cẑ = M−1 (12)

More details on the LS adjustment of extended linear mod-
els and the theory of nuisance parameter elimination can
be found in Welsch (1975), Schaffrin and Grafarend (1986),
Schaffrin (2004), and Teunissen (2000, Chap. 6).

2.3 Neglecting data biases: does the noise level matter?

A common practice in geodetic data analysis is to neglect
unmodeled systematic effects, if their magnitude is known
to lie below the noise level of the available measurements.
However, we should point out that the difference between
the LS solutions obtained from (1) bias-free data, and (2)
biased data without concurrent modeling of their systematic
measurement errors, is not always affected by the bias-to-
noise ratio. In particular, when the data CV matrix has the
homoscedastic form C = σ 2I, then the LS estimate of the

parameter vector x which is determined without taking into
account the presence of systematic errors in the input data,
has the form

xo
︸︷︷︸

LS solution from biased data
(ignoring the bias presence)

= (ATC−1A)−1ATC−1

biased data
︷ ︸︸ ︷

(Ax+Bz + v)

= (ATA)−1AT

bias−free data
︷ ︸︸ ︷

(Ax + v)
︸ ︷︷ ︸

LS solution from bias−free data

+ (ATA)−1ATBz
︸ ︷︷ ︸

independent of the data noise

= x̂ + bias (13)

where the term Bz describes the linear(-ized) effect of the
systematic errors in the observations. Equation (13) shows
that the closeness of xo to the optimal LS solution which is
obtained from bias-free data is independent of the data noise
level, since the bias term (ATA)−1ATBz is not affected by
σ 2.

On the other hand, for cases with correlated and/or non-
homogeneous noise in the input data, the difference between
the non-rigorous (biased) LS solution xo obtained from bi-
ased measurements without modeling their systematic errors,
and the optimal (unbiased) LS solution x̂ obtained from bias-
free measurements, will depend on the magnitude of the sys-
tematic errors and the data noise structure. In such cases, we
have that

xo
︸︷︷︸

LS solution from biased data
(ignoring the bias presence)

= (ATC−1A)−1ATC−1

biased data
︷ ︸︸ ︷

(Ax + Bz+v)

= (ATC−1A)−1ATC−1

bias−free data
︷ ︸︸ ︷

(Ax + v)
︸ ︷︷ ︸

LS solution from bias−free data

+ (ATC−1A)−1ATC−1Bz
︸ ︷︷ ︸

depends on the data noise structure

= x̂ + bias (14)

In general, for a given systematic error vector Bz, the size
of the bias term (ATC−1A)−1ATC−1Bz varies for different
types of CV matrices, except of course when C = σ 2I.

3 Unbiasedness, over-parameterization,
and under-parameterization

Geodetic data sets are often used for fitting or testing a num-
ber of different parametric models with varying degrees of
complexity. Examples include the assessment of different
kinematic models for the description of local and regional
crustal deformation fields, the use of several types of cor-
rector surfaces for the optimal fitting of GPS, levelling and
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gravimetric geoid data, and the investigation of various coor-
dinate transformation models for the optimal analysis of dis-
tortions in geodetic networks. An important problem in such
cases is to determine which parameter(s) can be uniquely
estimated under a given model design. Note that, within a
linear modeling framework, a parameter is called estima-
ble if it admits a linear unbiased estimator (Koch 1999, p
183). The estimability structure of partitioned linear models
and submodels has been a classic problem in statistical esti-
mation theory (Seely and Birkes 1980; Stewart and Wynn
1981), while in the geodetic literature a systematic investi-
gation of estimability issues in partitioned linear models has
been given by Schaffrin and Grafarend (1986), Schaffrin and
Baki-Iz (2001), and Schaffrin (2004).

In the context of the present paper, a key point is the
effect of over-parameterization schemes on the estimability
of linear model parameters. The LS estimator x̂(2) in Eq. (7)
provides the best (minimum variance) linear unbiased (BLU)
estimate for the parameter vector x, assuming that E{y2} =
Ax + Bz. In addition, the estimator x̂(2) retains its unbiased-
ness property even if the underlying true model does not
contain the “nuisance” parametric term Bz. This means that
E{x̂(2)} = x not only when E{y2} = Ax + Bz but also for
E{y2} = Ax, as it can easily be verified from Eq. (7). In the
latter case, x̂(2) corresponds to the result of an over-param-
eterized LS adjustment and it lacks the minimum-variance
optimality property since the trace of its CV matrix is not
minimum anymore within the class of all linear unbiased
estimators for the simple linear model E{y2} = Ax.

On the other hand, the LS estimator x̂(1) of Eq. (3) pro-
vides the BLU estimate for the parameter vector x when
E{y1} = Ax, and it does not remain unbiased if the true
underlying model contains an additional parametric term (in
which case we have an under-parameterized data adjustment).
In fact, it is easily verified that E{x̂(1)} = x+(ATC−1

1 A)−1AT

C−1Bz �= x when E{y1} = Ax + Bz.
We can thus conclude that LS-type estimators remain

unbiased when applied to over-parameterized models, but
they become biased when used with under-parameterized
data sets; see also Koch (1999, pp 178–180).

4 A condition for improved parameter estimates
from over-parameterized linear models

The scope of this section is to derive a simple condition that
can guarantee the improvement in the LS estimation accu-
racy of x when the linear model of Sect. 2.1 is replaced by
the extended model of Sect. 2.2. For this purpose, we need to
compare the performance of the parameter estimates x̂(1) and
x̂(2), which are obtained from the LS adjustment of the cor-
responding models. Note that both estimators are considered
unbiased and their quality assessment can be solely based on
the comparison of their CV matrices. Their unbiasedness is
justified from the following assumptions

E{y1} = Ax (15)

and

E{y2} = Ax + Bz or E{y2} = Ax (16)

Under the above setting, the estimator x̂(2) can admit two
alternative interpretations:

(i) if E{y2} = Ax then x̂(2) corresponds to a LS adjust-
ment where the extra (non-random) parametric term Bz
is related to “fictitious” systematic effects which do not
really exist in the input data y2 .

(ii) if E{y2} = Ax+Bz then x̂(2) corresponds to a LS adjust-
ment where the extra (non-random) parametric term Bz
is related to real systematic effects that exist in the input
data y2.

Using Eqs. (4) and (11), we have

Cx̂(1)
− Cx̂(2)

= (ATC−1
1 A)−1 − (ATC−1

2 A)−1 − Q (17)

where the auxiliary matrix Q has the form

Q = (ATC−1
2 A)−1ATC−1

2 BM−1BTC−1
2 A(ATC−1

2 A)−1 (18)

In order for the LS estimator x̂(2) to provide better statistical
accuracy than the LS estimator x̂(1), the difference between
their CV matrices in Eq. (17) must correspond to a positive-
definite matrix.

Based on this criterion, an optimal “tuning” for the data
accuracy can be determined that will guarantee the improve-
ment in the estimation accuracy of x, for any augmenting
term Bz. For this purpose, we express the data CV matrix C2
as a scaled version of the initial data CV matrix C1

C2 = aC1 (19)

where a denotes a positive scaling factor. Taking into account
Eq. (19), the expression in Eq. (17) takes the form

Cx̂(1)
− Cx̂(2)

= (1 − a)(ATC−1
1 A)−1 − aQ̃ (20)

where the auxiliary matrix Q̃ is

Q̃ = (ATC−1
1 A)−1ATC−1

1 BM̃
−1

BTC−1
1 A(ATC−1

1 A)−1 (21)

and

M̃ = BT(C−1
1 − C−1

1 A(ATC−1
1 A)−1ATC−1

1 )B (22)

The result in Eq. (20) gives a positive-definite matrix if and
only if the quadratic form qT(Cx̂(1)

− Cx̂(2)
)q takes positive

values for any nonzero vector q. In this way, the following
condition is obtained that ensures the positive definiteness of
Cx̂(1)

− Cx̂(2)

1 − a

a
>

qTQ̃q

qT(ATC−1
1 A)−1q

(23)

Since (ATC−1
1 A)−1 is a symmetric and positive-definite ma-

trix, it can be factorized via a Cholesky decomposition as
follows

Cx̂(1)
= (ATC−1

1 A)−1 = LLT (24)

where L is a unique lower-triangular invertible matrix. By
introducing a new auxiliary vector p = LTq, the inequality
condition in Eq. (23) is replaced by the relationship

1 − a

a
>

pTKp
pTp

(25)
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which should be satisfied for any real non-zero vector p. The
matrix K is given by

K = L−1Q̃(LT)−1 (26)

The ratio of the quadratic forms on the right-hand side of
Eq. (25) is commonly known as Rayleigh’s quotient and its
maximum value, for any real vector p, is equal to the largest
eigenvalue of the kernel K (Strang 1988, pp 348–349).

In this way, a sufficient condition that ensures the positive
definiteness of the difference Cx̂(1)

− Cx̂(2)
is

1 − a

a
> λmax (27)

or, equivalently

a <
1

1 + λmax
(28)

where λmax denotes the maximum eigenvalue of K. The last
inequality sets the required improvement of the data precision
(i.e. in the sense of scaling the initial data CV matrix by a
positive factor a satisfying Eq. (28)) that guarantees more
accurate parameter estimates when a linear model is aug-
mented by an extra parametric term Bz.

Note that the computation of K does not require the avail-
ability of the data values but only the knowledge of the design
matrices A and B, and the knowledge of the initial noise CV
matrix C1. Thus, the condition in Eq. (28) can be partic-
ularly useful, for example, in the optimization of geodetic
networks with respect to the presence of systematic errors in
the measurements, or with respect to the selection of a suit-
able deformation/kinematic model for the variations in the
station coordinates (in the case of time-dependent geodetic
networks).

Remark 1 In the case of homoscedastic uncorrelated errors,
the data CV matrices take the diagonal forms C1 = σ 2

1 I
and C2 = σ 2

2 I. Such oversimplified CV matrices are often
used in practice due to the lack of reliable information for
the data noise characteristics. Since C2 = (σ 2

2 /σ 2
1 )σ 2

1 I =
(σ 2

2 /σ 2
1 )C1, the condition for the tuning factor in Eq. (28)

takes the form

σ2 <
σ1√

1 + λmax
(29)

The above inequality gives the necessary reduction of the
noise level in order to obtain more accurate parameter esti-
mates from the LS adjustment of an over-parameterized lin-
ear model with homogeneous uncorrelated noise in its input
data.

Remark 2 If the data noise level remains the same then the
accuracy of the LS estimates for the original parameters x
always gets poorer when the extended model is used. This
can easily be deduced from Eq. (17), which yields the fol-
lowing result for C1 = C2

Cx̂(2)
= Cx̂(1)

+ Q (30)

Since the matrix Q is non-negative definite, the accuracy
of the LS estimator x̂(2) will be lower than the accuracy of

the LS estimator x̂(1). A general conclusion, therefore, is that
estimating external biases through the LS adjustment pro-
cess weakens the solution for the original model parameters
in a statistical sense, but it still provides a correct mecha-
nism to optimally eliminate systematic data errors from them.
Such a result manifests a well-known fact to geodesists: over-
parameterization (for a constant data noise level) degrades
the statistical accuracy of the LS adjustment results (Teunis-
sen 2000, pp 92–93; Harvey 1985, p 145, Rutkowska 1999,
p 123; Vermeer 1997).

Remark 3 It is interesting to point out that the extent of the
accuracy improvement or the accuracy degradation for the
estimates of the model parameters x in an over-parameterized
LS adjustment (i.e. the difference between the CV matrices
Cx̂(1)

and Cx̂(2)
) is independent of the magnitude of the new

parameters z that enter in the expanded model formulation;
see Eq. (17). A constant unknown bias, for example, which
affects all (or a part of) the input measurements and it is taken
into account by adding a single extra parameter into the LS
adjustment, will cause the same reduction in the estimation
accuracy of the original model parameters x, regardless of its
true magnitude.

5 A condition for improved parameter estimates
from under-parameterized linear models

In this section, we investigate the effects of under-paramete-
rization in the LS adjustment of linear models. In particular,
we seek a condition that can guarantee the improvement in
the LS estimation accuracy of x when the extended model of
Sect. 2.2 (Eqs. (5), (6)) is replaced by the simpler model of
Sect 2.1 (Eqs. (1), (2)). For this purpose, we need again to
compare the performance of the parameter estimates x̂(1) and
x̂(2) that are obtained from the LS adjustment of the corre-
sponding models.

The important difference, compared to the analysis in
Sect. 4, is that the estimator x̂(1) should be presumed biased
since we now consider the case

E{y1} = Ax + Bz (31)

and thus

E{x̂(1)} = (ATC−1
1 A)−1ATC−1E{y1}

= x + (ATC−1
1 A)−1ATC−1Bz

= x + b (32)

where b denotes the bias vector. In reality (which is now to
be understood in terms of Eq. (31)), the solution x̂(1) corre-
sponds to the result of an under-parameterized adjustment of
the data set y1.

Due to the fact that x̂(1) is a biased estimate when Eq.
(31) is valid, whereas x̂(2) remains unbiased regardless of the
inclusion of the parametric term Bz in the model formulation,
the assessment of the under-parameterization effect must be
based on the comparison of the mean squared error matri-
ces for these two estimators. In this way, both the internal
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precision (variance) and the external accuracy (bias) of the
solutions are properly accounted for, since the CV matrix of
an arbitrary estimator does not reflect the magnitude of its
possible associated bias.

The mean squared error matrix (MSEM) of x̂(1) is

MSEMx̂(1)
= E{(x̂(1) − x)(x̂(1) − x)T} (33)

and taking into account Eqs. (3) and (31), we get

MSEMx̂(1)
= (ATC−1

1 A)−1 + bbT (34)

or more analytically

MSEMx̂(1)
= (ATC−1

1 A)−1 + (ATC−1
1 A)−1ATC−1

1 BzzT

×BTC−1
1 A(ATC−1

1 A)−1 (35)

The MSEM of x̂(2) is identical to its CV matrix (since x̂(2) is
unbiased) and it is given by (see Eq. (11))

MSEMx̂(2)
= E{(x̂(2) − x)(x̂(2) − x)T}
= (ATC−1

2 A)−1 + (ATC−1
2 A)−1ATC−1

2 BM−1

×BTC−1
2 A(ATC−1

2 A)−1 (36)

The difference between x̂(1) and x̂(2), when both are used
with the same set of data, lies in the fact that the former
estimator neglects the influence of certain systematic distur-
bances in the input data. In this way, the solution x̂(1) offers
greater simplicity than x̂(2), at the cost of a nonzero estima-
tion bias b. However, the total statistical accuracy of the bi-
ased estimate x̂(1) will be better than the statistical accuracy
of the unbiased estimate x̂(2), if the difference MSEMx̂(2)

−
MSEMx̂(1)

corresponds to a positive-definite matrix.
Equivalently, this means that the quadratic form qT

(MSEMx̂(2)
− MSEMx̂(1)

)q should take positive values for
every nonzero vector q. Taking into account Eqs. (35) and
(36), and also setting C1 = C2 since the same set of data is
supposed to be used by both estimators, we have

qT(MSEMx̂(2)
− MSEMx̂(1)

)q = qT(ATC−1
1 A)−1ATC−1

1

×B(M−1 − zzT)BTC−1
1 A(ATC−1

1 A)−1q

= pT(M−1 − zzT)p (37)

where the auxiliary vector p denotes the quantity BTC−1
1

A(ATC−1
1 A)−1q.

From Eq. (37), it can be concluded that in order for the
matrix difference MSEMx̂(2)

− MSEMx̂(1)
to be positive-defi-

nite, the following matrix should also be positive-definite

G = M−1 − zzT (38)

The positive-definiteness of G represents a sufficient con-
dition that will ensure the improvement in the estimation
accuracy of the model parameters x, when the under-param-
eterized (biased) LS estimator x̂(1) is used instead of the rig-
orous (unbiased) LS estimator x̂(2). Note that the matrix M
corresponds to the Schur complement that was already de-
fined in Eq. (10). Its determination requires the two design
matrices A and B, and the knowledge of the data CV matrix.
On the other hand, the matrix zzT cannot be rigorously com-
puted in practice, since it depends on the magnitude of the true
unknown parameters that are ignored by the under-parame-
terized estimator x̂(1). Nevertheless, the positive-definiteness
of G can be tested in practice by using some prior infor-
mation on the parameters z (e.g. their approximate values
that enter into the evaluation of the design matrix B or some
other type of numerical information in terms of maximum
and minimum bounds for the elements of z).

6 Conclusions

A set of conditions that guarantee the accuracy improvement
for the estimated model parameters, which are obtained from
either an over-parameterized or an under-parameterized LS
data adjustment, has been presented in this paper.

For the case of an over-parameterized model formula-
tion, the associated condition requires the tuning of the data
CV matrix by an appropriate scaling factor that satisfies the
inequality restriction given in Eq. (28). Note that improved
parameter estimates in such cases can only be obtained if the
data accuracy gets better by a certain required amount. The
required improvement of the data accuracy has been solely
modeled in this paper through a CV scaling process (C2 =
aC1), leaving out more general schemes (e.g. C2 = C1 +δC)
that can be investigated in future work.

For the case of an under-parameterized model formula-
tion, the associated condition requires the positive-definite-
ness of a “criterion matrix” G that is defined in Eq. (38).
The accuracy improvement for the parameter estimates in
such cases can be obtained without enhancing the accuracy
of the input data, but the determination of G requires in prin-
ciple the knowledge of the true values of the parameters that
have not been included in the model formulation. Nonethe-
less, its positive-definiteness can be examined in practice
by using approximate values (or some other type of prior
numerical information) for the elements of the omitted model
parameters.
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