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Abstract. An interesting theoretical connection between
the statistical (non-stochastic) collocation principle
and the multiresolution/wavelet framework of signal
approximation is presented. The rapid developments in
multiresolution analysis theory over the past few years
have provided very useful (theoretical and practical)
tools for approximation and spectral studies of irregu-
larly varying signals, thus opening new possibilities for
`non-stationary' gravity ®eld modeling. It is demon-
strated that the classic multiresolution formalism ac-
cording to Mallat's pioneering work lies at the very core
of some of the general approximation principles
traditionally used in physical geodesy problems. In
particular, it is shown that the use of a spatio-statistical
(non-probabilistic) minimum mean-square-error criteri-
on for optimal linear estimation of deterministic signals,
in conjunction with regularly gridded data, always gives
rise to a generalized multiresolution analysis in the
Hilbert space L2�R�, under some mild constraints on the
spatial covariance function and the power spectrum of
the unknown ®eld under consideration. Using the theory
and the actual approximation algorithms associated
with statistical collocation, a new constructive frame-
work for building generalized multiresolution analyses
in L2�R� is presented, without the need for the usual
dyadic restriction that exists in classic wavelet theory.
The multiresolution and `non-stationary' aspects of the
statistical collocation approximation procedure are also
discussed, and ®nally some conclusions and recommen-
dations for future work are given.

Key words: Multiresolution approximation ± Spatio-
statistical approximation ± Wavelets ± Collocation

1 Introduction

There is no doubt that the method of least-squares
collocation (LSC) represents one of the major theore-

tical and practical foundations of modern physical
geodesy. Closely related to Bjerhammar's initial idea
on discrete underdetermined boundary value problems,
collocation has evolved into a powerful linear estimation
method for either global or local gravity ®eld modeling.
Despite the various di�erent interpretations and their
associated mathematical concepts upon which LSC has
been based (see e.g. Sanso 1986; Tscherning 1986), a
rigorous uni®ed approach that merges both the purely
deterministic (Krarup's formulation) and the purely
stochastic (Wiener's linear prediction theory) approxi-
mation viewpoints behind collocation was achieved by
Sanso (1980). Such an approach has eliminated, to some
degree, most of the `pitfalls' associated with each
individual original formulation (e.g. reproducing kernel
choice problem, non-stochasticity of the actual gravity
®eld); see also Moritz (1980) and Moritz and Sanso
(1980). We have therefore been used to considering LSC
as a rigorous statistical method for gravity ®eld
approximation, where the term `statistical' is used not
to describe some underlying stochastic behavior of the
actual gravity ®eld, but rather to specify the spatio-
statistical nature of the deterministic norm that is used
to quantify the approximation error and to optimize the
approximation algorithm.

In this paper we will establish an important theoret-
ical connection between this spatio-statistical version of
LSC and the ®elds of multiresolution approximation
theory and wavelets. Sanso (1987) had previously dis-
cussed the notion of discrete data resolution and how
this a�ects the results of optimal `operational' estima-
tion methods for continuous gravity ®eld signals. In the
lecture notes by Schwarz (1984) the relationship between
data resolution and estimated gravity ®eld quantities
was also discussed in detail, but it was restricted to a
purely Fourier-based analysis setting using the well-
known Nyquist principle to connect data resolution and
recovered signal information. The developments in
multiresolution/wavelet theory over the past few years,
on the other hand, have provided us with the necessary
mathematical tools to incorporate the data resolution
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parameter into our approximation methods in a very
attractive way. Wavelet-based approximation models
reconstruct the unknown signals according to a zoom-in/
zoom-out scaling approach, by adding self-similar lo-
calized building blocks (`details') up to a maximum scale
level dictated from the resolution of the available dis-
crete data. Many di�erent wavelet models have been
developed over the last 10 years which can be employed
for signal estimation (and other) purposes, all varying in
terms of the speci®c functional waveform that they use
to describe signal variations between the data points.
The important advantage that multiresolution/wavelet
bases have to o�er (over the classic Fourier-based spec-
tral techniques) is their convenient localization proper-
ties, which makes them a very e�cient and useful tool for
spectral studies of irregularly varying (`non-stationary')
signals. In this way, if we manage to transform the
original collocation approximation framework into a
wavelet-type multiresolution expansion, we will have
achieved a major step forward, improving signi®cantly
the quality of information that the available data can
give us about the behavior of the underlying gravity ®eld.

Few attempts to incorporate the multiresolution the-
ory tools into the optimal approximation principles have
been reported in the geodetic literature. Li (1996b)
claimed that LSC itself does not take into account the
available data resolution, and he applied a combination
of LSC-based optimal principles and independent
wavelet formalism to connect the two concepts. Follow-
ing a di�erent approach, Keller (1998) used collocation in
its `Krarup mode' [i.e. minimum-norm approximation in
a reproducing kernel (RK) Hilbert space] and applied it
to various multiresolution model spaces.

In contrast to Keller's paper, which was considered as
a special case of LSC in a priori selected multiresolution
Hilbert spaces, the aim of the present study is to show
that the use of an optimal mean-square-error (MSE)
principle with gridded data (almost) always gives rise to a
multiresolution framework for signal approximation.
Using the theory and the actual approximation
algorithms associated with statistical collocation, the
present paper will present a new constructive (frequency-
domain-based) framework for building generalized mul-
tiresolution analyses (and thus wavelet-type bases) in the
Hilbert space L2�R�, without the need of the usual dyadic
restriction that exists in classic wavelet theory. For the
sake of simplicity, all the following developments will be
restricted to a one-dimensional (1D) setting. The exten-
sion into higher dimensions, although not straightfor-
ward in some cases, is certainly possible. A brief overview
of 1D multiresolution approximation theory and wave-
lets is given in Sect. 2. The LSC problem is solved in
Sect. 3 following Sanso's spatio-statistical spirit (Sanso
1980) and being additionally modi®ed in order to reveal
the multiresolution properties of its solution, which are
discussed in more detail in Sect. 4. In Sect. 5, the theo-
retical connection between the LSC solution and multi-
resolution analysis theory is made, and some comments
regarding the `non-stationarity' aspects of the approxi-
mation procedure are given. Finally, some conclusions
and recommendations for future work are drawn.

2 Overview of multiresolution theory
and wavelets

The concept of multiresolution theory for signal
approximation is a relatively recent one, originally
formulated by Mallat (1989a, b). Wavelet signal expan-
sions, on the other hand, existed long before Mallat's
developments, with their most common example being
the asymptotic approximation of L2 signals by translates
of piecewise-constant base functions (i.e. Haar wave-
lets). Since there exists a very strong connection between
the two concepts, they are usually considered as the two
sides of the same coin, although there do exist patho-
logical cases of wavelet expansions which cannot be
identi®ed under Mallat's multiresolution framework.
In this section we are going to present just a very small
sample from these two vast mathematical subjects,
restricting ourselves only to what is necessary in order
to follow the discussion in the following sections. The
interested reader can ®nd a fully comprehensive
reference for these subjects, including some of the most
recent developments, in the book by Mallat (1998) and
in the excellent review paper by Jawerth and Sweldens
(1994). Geodetic and geophysical applications of multi-
resolution/wavelet theory are discussed in the papers by
Freeden and Schneider (1998), Kumar and Foufoula-
Georgiou (1997), Ballani (1996), Li (1996a) and Keller
(1998), among many others.

2.1 Multi-resolution analysis

A multiresolution analysis (MRA) in the Hilbert space
L2�R� is de®ned as an in®nite sequence of closed linear
Hilbert subspaces Vj � L2�R�, having the following ®ve
properties:

1: Vj � Vj�1; 8 j 2 Z �1a�
2: f �x� 2 Vj , f �2x� 2 Vj�1 �1b�
3: f �x� 2 Vj , f �x� n2ÿj� 2 Vj; 8 n 2 Z �1c�

4:
[�1

j�ÿ1
Vj � L2�R� and

\�1
j�ÿ1

Vj � f0g �1d�

5: A scaling function u�x� 2 Vo; with a non-vanishing

integral, exists such that the family u�xÿ n�n2Z
is a Riesz basis of Vo : �1e�

The de®nition given above is not minimal, in the sense
that some of the conditions (1)±(5) can be derived from
the remaining ones (Wojtaszczyk 1997). However, it has
been customary to use all ®ve properties of an MRA as
independent statements. A Riesz basis is just a general-
ization of the notion of an orthonormal basis in Hilbert
spaces, corresponding to a set of linearly independent
functions that forms a complete `oblique' and stable
system of reconstructing elements. If we have a Riesz
basis un�x�n2Z in a Hilbert space H, then there always
exists a unique biorthonormal system ~un�x�n2Z which
also forms a Riesz basis for H. The biorthonormality

276



property between the two systems can be expressed
through the relation

hun�x�; ~um�x�i � dn;m �2�
where h;i denotes the inner product in the Hilbert space
H, and dn;m is the Kronecker delta. More details for
Riesz bases can be found in Young (1980), Heil and
Walnut (1994) and Wojtaszczyk (1997).

If a Riesz basis (under the usual L2 inner product) is
formed by the translates u�xÿ n�n2Z of a basic scaling
function u�x�, then the Fourier transform U�x� of the
scaling function should satisfy the following condition
(see e.g. Jawerth and Sweldens 1994):

0 < A �
X

k

U�x� 2pk�j j2� B < �1 �3�

for some strictly positive, ®nite bounds A and B. If
Eq. (3) is true, then the sets u�x=hÿ n�n2Z form Riesz
bases for their corresponding linear spans, for every
non-zero value of the scaling parameter h (Unser and
Daubechies 1997). In this way, the collection of
functions u�2jxÿ n�n2Z will also form a Riesz basis in
each corresponding subspace Vj of a dyadic MRA.
Condition (3), for the special case where the family
u�xÿ n�n2Z is an orthonormal set, takes the simple formX

k

U�x� 2pk�j j2� 1 �4�

In every nested subspace Vj of an MRA, an in®nite
number of complete orthonormal sets can be construct-
ed from a given Riesz basis u�2jxÿ n�n2Z, according to
the orthonormalization trick given in Young (1980,
p. 48); see also Holschneider (1995, p. 187) and
Wojtaszczyk (1997, pp. 24±25). These orthonormal sets
will, too, be comprised of integer translates of a basic
function. For the same MRA in L2�R�, therefore, we can
have many di�erent choices for the generating scaling
function. Let us denote by u�x� a scaling function which
generates a complete orthonormal system for a certain
MRA. Each subspace Vj of this MRA is a RK Hilbert
space (under the usual L2 inner product), with its
reproducing kernel kj�x; y� given by

kj�x; y� � 2jk�2jx; 2jy� �5�
and

k�x; y� �
X

n

u�xÿ n�u�y ÿ n� �6�

where k�x; y� is the RK of the `unit' resolution subspace
Vo. For some technical mathematical conditions, see the
paper by Walter (1992). It can also be shown that the
collection of functions k�x; n� � k�xÿ n; 0�n2Z provides
an alternative Riesz basis for Vo (Walter 1992). The
biorthonormal basis corresponding to k�x; n�n2Z has
some very special properties, namely being a sampling
basis for the same subspace Vo. The expansion of an
arbitrary signal f �x� 2 Vo, with respect to such a basis,
takes the form of a sampling theorem associated with the
speci®c subspace Vo, i.e.

f �x� �
X

n

f �n� s�xÿ n� �7�

The situation can easily be extended for an arbitrary
MRA subspace Vj. Further details on the connection
between sampling theorems and L2 multiresolution
theory can be found in Aldroubi and Unser (1992,
1994), Xia and Zhang (1993), Zayed (1993) and Walter
(1992). Another excellent reference is also Nashed and
Walter (1991), where the notion of sampling theorems is
studied in a general, arbitrary Hilbert space setting.

2.2 Multi-resolution approximation through
orthogonal projection

The original de®nition of an MRA, according to Mallat
(1989b), di�ers slightly from the one given in Eq. (1).
In Mallat's de®nition, instead of introducing a priori
a scaling function u�x�, the central role is played by
a sequence of orthogonal projectors Pj associated with a
sequence of translation-invariant and dyadically nested
subspaces Vj � L2�R�, according to properties (1a), (1b)
and (1c). These projectors are used to determine the best
linear approximation of an arbitrary signal f �x� 2 L2�R�
at a speci®c dyadic resolution level 2ÿj. The consistency
of this approximation scheme was also enforced by the
fact that Pj should converge to the identity operator as
the resolution index j increases. The existence of a
scaling function, whose integer translates generate the
sequence of the corresponding nested subspaces, can
then be proven according to the fundamental theorem
given in Mallat (1989b).

Assuming that u�x� is an orthonormal scaling func-
tion in some MRA, the orthogonal projection of an
arbitrary signal f �x� 2 L2�R� onto a nested subspace Vj
will be given by the formulas (see e.g. Mallat 1989a)

�Pjf ��x� �
X

n

a�n� u�2jxÿ n� �8a�

a�n� � 2j
Z

f �x� u�2jxÿ n� dx �8b�

The projection procedure is illustrated in Fig. 1, where
the ®rst ®lter U�ÿ2ÿjx� from Eq. (8b) has a kind of
`anti-aliasing' role for the given dyadic resolution level.
In Unser and Daubechies (1997) and Blu and Unser
(1999), the above orthogonal projection scheme is
analytically described for the general case where a
non-orthonormal Riesz basis is used in the multiresolu-
tion framework.

Fig. 1. Orthogonal projection onto a subspace Vj of an MRA (use of
orthonormal scaling function)
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2.3 Wavelets

Associated with every MRA in L2�R� is a corresponding
wavelet basis, which provides the means to connect
consistently and e�ciently signal information from
di�erent dyadic resolution levels, according to a zoom-
in/zoom-out approach. If we denote by Wj the orthog-
onal complement of the linear subspace Vj in Vj�1 (i.e.
Vj � Wj � Vj�1), then there exists a basic mother wavelet
function w�x� such that the family w�2jxÿ n�n2Z will
provides a Riesz basis for every Wj. The Hilbert space
Wj � L2�R� contains basically the signal `local details'
needed to go from the dyadic scale level 2j to the next
upper scale level 2j�1 within the speci®c MRA fVjg.
Furthermore, the collection of all these Riesz wavelet
bases (from all the di�erent detail subspaces Wj) will
form a single Riesz basis for the whole Hilbert space
L2�R� (see e.g. Jawerth and Sweldens 1994).

In this way, the study of a signal at a speci®c dyadic
resolution level 2ÿjk can be considerably enriched by
computing its wavelet coe�cients at coarser resolution
values 2ÿj > 2ÿjk , i.e.

f �x� �
X

n

a�n�u�2jk xÿ n�

�
Xjkÿ1

j�ÿ1

X
n

b�n; j�w�2jxÿ n� 8 f 2 Vjk �9�

The wavelet spectrum b�n; j� can be used for a spatially
localized analysis of the signal behavior, providing in
this way a very useful tool (over classical Fourier-based
methods) for spectral studies of irregularly varying
®elds. Detailed algorithms for the computation of the
wavelet coe�cients b�n; j� from the scaling coe�cients
a�n� can be found in many places in the wavelet
literature and they will not be given here (see e.g. Mallat
1998). These algorithms cover all possible cases, from
the simplest one where the translates of both the scaling
function u�x� and the mother wavelet w�x� provide
orthonormal bases for their corresponding spaces, to the
most complicated case where the translates of u�x� and/
or w�x� create just general non-orthogonal Riesz bases.

3 Optimal linear approximation and data resolution

In this section, the optimal linear approximation
problem for an unknown deterministic ®eld, g 2 L2�R�,
will be solved in such a way that the immediate
connection between the approximated ®eld ĝ and the
available data resolution will explicitly appear in the
solution formulas. In particular, the ®nal optimal
estimate ĝ will be seen to depend only on a basic kernel
u 2 L2�R�, which is scaled accordingly to `match' the
given data resolution level. We will assume that the
available discrete data represent noiseless point values
g�nh� of the unknown ®eld itself, taken on a uniform
grid with known resolution level h. The ®eld will be
considered as 1D for simplicity. The multi-dimensional
case [i.e. when the unknown ®eld belongs in the L2�R2�

or in the L2�R3� Hilbert space] is just a straightforward
extension of the following derivations.

3.1 General formulation

Since we are seeking a linear approximation, the
recovered signal ĝ�x� will have the general form

ĝ�x� �
X

n

g�nh�un;h�x� �10�

where un;h�x� is a family of unknown base functions
which should be optimally selected to approximate g�x�.
The dependence (if any) of these base functions on the
data resolution is introduced through the use of the
subscript h. If we further impose the condition of
translation-invariance for the estimated ®eld ĝ with
respect to the reference system used to describe the
position of the data points (in the multi-dimensional case
this becomes invariance under more general transforma-
tions of the reference system), then the family un;h�x�
should be generated from a single kernel uh�x�, such that

un;h�x� � uh�xÿ nh� �11�
and Eq. (10) becomes

ĝ�x� �
X

n

g�nh�uh�xÿ nh� �12�

The above approximation formula can now be illustrat-
ed in terms of the linear ®ltering procedure shown in
Fig. 2. Applying the Fourier transform to the previous
convolution equation, we obtain

Ĝ�x� � �Gh�x�Uh�x� �13�
where Ĝ�x� and Uh�x� are the Fourier transforms of the
approximated signal and the basic ``interpolating'' kernel
uh�x�, respectively. The term �Gh�x� corresponds to the
periodic Fourier transform of the generalized function

�gh�x� � g�x�
X

n

d�xÿ nh� �
X

n

g�nh� d�xÿ nh� �14a�

and it has the form (Oppenheim and Schafer 1989)

�Gh�x� � 1

h

X
k

G x� 2pk
h

� �
�
X

n

g�nh�eÿixnh �14b�

with G�x� being the Fourier transform of the true
unknown signal g�x� and d�x� the classic Dirac delta
function.

Fig. 2. Filtering con®guration of linear, translation-invariant signal
approximation using discrete samples
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Note that the previous frequency domain formulas
imply that we have sampled the unknown signal
g�x� 2 L2�R� over its entire (®nite or in®nite) support. If
the available data grid g�nh� covers only some limited
part of the signal's support, then the previous Fourier
transform formalism is certainly not valid and a rect-
angular window function should be additionally incor-
porated. In order to avoid such complications, we will
assume that the unknown ®eld g�x� covers only the re-
gion inside the given data grid boundaries. Although
such an assumption may be unacceptable for applica-
tions involving temporal signals with ®nite data grids
(where predictions into the future may be required), it
nevertheless provides a very reasonable framework for
local approximation studies in spatial ®elds. It should
also be emphasized that, even though g�x� is assumed
zero outside the data grid boundaries, its approximation
ĝ�x� by Eq. (12) may exhibit a non-zero pattern outside
the data grid. Of course, the theoretical case of in®nitely
extended 1D data grids is still embedded in all the pre-
vious equations.

Another, more technical, condition that should also
be imposed in order for the previous frequency domain
framework to be rigorously correct, is to assume that the
available data sequence g�nh� is always `measurable',
in the following sense:X

n

jg�nh�j <1 �15�

Indeed, under such a condition the periodic Fourier
transform �Gh�x� in Eq. (14b) will always converge
uniformly to a ®nite, continuous function of x (see
e.g. Oppenheim and Schafer 1989, p. 47).

3.2 A spatio-statistical optimal principle

The approximation error, in both the space and the
frequency domain, for the given data con®guration
g�nh� is
e�x� � g�x� ÿ ĝ�x�; E�x� � G�x� ÿ Ĝ�x� �16�
and its power spectrum can easily be derived by taking
Eq. (13) into account, i.e.

E�x�j j2 � E�x�E��x�
� G�x�G��x� ÿ U�h�x�G�x� �G�h�x�
ÿ Uh�x� �Gh�x�G��x�
� Uh�x�U�h�x� �Gh�x� �G�h�x� �17�

where the asterisk * denotes complex conjugation.
The sampled sequence g�nh�, however, is not the only

possible information that we could have extracted from
the unknown signal at the given resolution level h.
If we shift the sampler (or impulse train)

P
n d�xÿ nh�

by an amount xo, an in®nite number of di�erent data
sequences can be obtained, which all represent di�erent
sampling schemes for the same unknown signal at the
same resolution. This situation is illustrated in Fig. 3,

from which we can see that (at a speci®c resolution
value h) all the possible sampled sequences of g�x� can be
described by the general form g�nhÿ xo�, where the
sampling phase parameter xo varies in the range
ÿh=2 � xo � h=2.

In accordance with the translation-invariance condi-
tion for the approximation framework, the general lin-
ear equation for the approximated signal from an
arbitrary sampled sequence at the resolution level h will
have the form

ĝ�x; xo� �
X

n

g�nhÿ xo�uh�x� xo ÿ nh� �18�

The Fourier transform of Eq. (18), considered as a
function of x only, yields

Ĝ�x; xo� � 1

h
Uh�x�

X
k

G x� 2pk
h

� �
eÿi2pk

h xo �19�

where it is again assumed that all possible sampled
sequences g�nhÿ xo� of the unknown ®eld g�x� are
always measurable in the sense of Eq. (15). Thus, for
each di�erent sampling phase value xo we will have a
correspondingly di�erent approximation error e�x; xo�,
i.e.

e�x; xo� � g�x� ÿ ĝ�x; xo� �20a�
whose Fourier transform is

E�x; xo� � G�x� ÿ 1

h
Uh�x�

X
k

G x� 2pk
h

� �
eÿi2pk

h xo

�20b�
The optimal criterion for choosing the best estimation
kernel Uh�x� will be

Pe�x� � 1

h

Zh=2
ÿh=2

E�x; xo�j j2 dxo � min �21�

Equation (21) represents a minimum mean-square-error
(MMSE) principle, expressed in the frequency domain.
The above quantity Pe�x� is nothing other than the mean

Fig. 3. Di�erent sampling con®gurations at a given resolution level h
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error power spectrum. Note that the term `mean' is not
used in a probabilistic sense (as in the classic Wiener
linear prediction theory), but rather it has a spatio-
statistical meaning. In other words, the optimization of
the linear approximation algorithm does not employ
the classic expectation operator considering di�erent
`experiment repetitions', but it is based on the average
error over all possible sampling con®gurations for the
given data resolution level h. In Appendix A it is proven
that

Zh=2
ÿh=2

E�x; xo�j j2 dxo� hC�x� ÿ U�h�x�C�x� ÿ Uh�x�C�x�

� Uh�x�U�h�x� �Ch�x� �22�
where C�x� is the Fourier transform of the spatial
covariance (CV) function c�x� of the unknown deter-
ministic signal g�x�. This spatial CV function has the
usual `stationary' form

c�x� �
Z

g�y�g�y � x�dy  != C�x� � G�x�G��x�

� G�x�j j2 �23�
where the symbol = in the last equation denotes
a Fourier transform pair. The term C�x� is thus just
the usual signal power spectrum, and the term �Ch�x�
denotes its following periodization (see Appendix A):

�Ch�x� � 1

h

X
k

C x� 2pk
h

� �
�24�

Using Eqs. (21) and (22), we can ®nally obtain the
optimal approximation ®lter as follows:

Uh�x� � C�x�
�Ch�x�

� h
C�x�P

k C x� 2pk
h

ÿ � �25�

For justi®cation of the mathematical procedure
that leads to the above result, see Bendat and Piersol
[1986, Sect. 6.1.4, Eqs. (6.55)±(6.57)], or Sideris [1995,
Eqs. (11)±(13)]. The corresponding optimal space do-
main kernel uh�x� can be now expressed through the
scaling relationship

uh�x� � u
x
h

� �
�26�

where the generating scaling function u�x� is de®ned in
the frequency domain as follows:

u�x�  != U�x� � C x
h

ÿ �P
k C x

h � 2pk
h

ÿ � �27�

The above result can be easily veri®ed by taking into
account the fundamental scaling property of the Fourier
transform. Finally, if we combine Eqs. (12) and (26), the
optimal translation-invariant linear estimation formula
for an unknown deterministic ®eld g�x� according to the
MMSE principle of Eq. (21), using its discrete samples

on a uniform grid with resolution level h, will have the
wavelet-like form

ĝ�x� �
X

n

g�nh�u x
h
ÿ n

� �
�28�

It is worth mentioning that the basic reconstructing
kernel u�x� will always be a symmetric function, since its
Fourier transform in Eq. (27) is always real-valued [i.e.
the signal power spectrum C�x� is always a real-valued
function].

3.3 Comments

The approximation of unknown deterministic functions
in terms of convolution-based linear models of the form
of Eq. (28) is very common in many signal processing
applications in the context of classical interpolation,
quasi-interpolation, and multi-scale approximation
through projections into multiresolution subspaces
(see e.g. Aldroubi and Unser 1994; Unser and Daube-
chies 1997; Blu and Unser 1999). In such cases, however,
the selection of the kernel u�x� is usually made a priori
(e.g. sinc-based interpolation, polynomial spline inter-
polation, etc.), and its performance is evaluated accord-
ing to an assumed behavior for the unknown signal
(e.g. band-limitedness, spectrum decay rate, smoothness,
etc.) and/or certain theoretical error bounds which
depend on the form of the used kernel (i.e. Strang±Fix
conditions); for more details, see Unser and Daubechies
(1997). In the present paper, on the other hand, we
have a priori introduced a spatio-statistical error
power spectrum as a speci®c accuracy measure for
the linear approximation algorithm, which is then
optimized in order to choose the `best' approximation
kernel u�x� for the speci®c unknown signal g�x�. The
translation-invariance condition, which was also
imposed in the estimation procedure, makes this opti-
mal kernel to depend only on the `stationary' spatial
CV function of the unknown ®eld under consideration,
according to Eq. (27). The additional dependence
of u�x� on the data resolution level h, as it is evident
from Eq. (27), will be discussed in detail in the next
section.

In our derivations we never required that the opti-
mally approximated signal should reproduce the avail-
able noiseless data, i.e. ĝ�nh� � g�nh�. However, this will
always be satis®ed since the optimal kernel u�x�,
de®ned by Eq. (27), is a cardinal (sampling) function.
This simply means that

u�n� � 1; n � 0
0; n � �1;�2;�3; . . .

�
�29a�

Indeed, using Eq. (27) we easily see that the Fourier
transform U�x� of the optimal approximation kernel
satis®es the relationX

n

U�x� 2pn� �
P

n C x�2pn
h

ÿ �P
k C x

h � 2pk
h

ÿ � � 1 �29b�
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which assures, through the well-known Poisson summa-
tion formula, that the corresponding space domain
function is cardinal. Some mild technical conditions on
the signal power spectrum C�x�, required to ensure the
validity of Eq. (29b), will be discussed in the next
sections.

An interesting similarity exists between the derived
optimal approximation ®lter in Eq. (25) and the classic
Wiener ®lter for noisy, stationary random signals. Ac-
cording to Wiener's linear prediction theory, the optimal
®lter is de®ned as the ratio between the power spectral
densities (PSDs) of the noiseless stochastic signal and the
noisy input signal; see Sideris (1995). This is very similar to
Eq. (25), where the numerator C�x� is the Fourier trans-
form of the spatial CV function of the true deterministic
signal g�x�, and the denominator �Ch�x� can be identi®ed
as the Fourier transform of the CV function of the `noisy'
input signal �gh�x� [see Eq. (14a)]. In our case, the noise
takes the form of the lost signal information due to the
discretization of g�x� (aliasing error), shown in Fig. 2.

It should be noted that, in contrast to Wiener ®ltering
theory, no stochastic concepts are used in the present
paper for the linear approximation problem. The term
covariance function, which has been used throughout this
section, should be understood in a purely deterministic
spatial sense [Eq. (23)] and not in any stochastic context
under some stationarity and ergodicity assumption. This
is especially important in view of the `stationarity
restriction' problem which is believed to exist in the
statistical collocation framework. Our formulation can
be considered as `stationary' only in the sense that we use
a 1D covariance function for 1D signals, which results
solely from the logical requirement of having a transla-
tion-invariant approximation scheme (i.e. independent of
the origin of the reference system used to describe the
position of the data points). See also the related discus-
sion given in Sanso (1980). This, however, does not mean
that the approximated/unknown signals have (or should
have) a uniform behavior across their domain, and it
certainly does not exclude us from obtaining localized
information for this varying behavior.

4 Statistical collocation as a multiresolution
approximation

The ®nal result of Sect. 3.2 is quite general and it did not
involve any special concepts from Mallat's multiresolu-
tion theory. The fact that the statistical collocation
framework actually leads to a scale-invariant signal
approximation scheme (i.e. independent of the scale of
the reference system used to describe the position of the
gridded data points), similar to the one encountered in
wavelet approximation theory, is rather remarkable.
However, there is a signi®cant di�erence between the
optimal collocation model of Eq. (28) and the classic
wavelet-based approximation methodology, due to the
fact that the optimal kernel u�x� associated with the
collocation case is now changing for every di�erent data
resolution level h, according to the frequency domain
form in Eq. (27).

The most appropriate way to describe the behavior of
the signal approximation model of Eq. (28), with the
associated kernel u�x� de®ned by the optimal frequency
domain form in Eq. (27), is to characterize it as: (1)
translation-invariant, (2) scale-invariant and (3) data-
resolution-dependent. Regardless of the origin and the
scale of the reference system used to describe the phys-
ical/spatial position of a given set of gridded data points,
the approximated ®eld according to the statistical col-
location algorithm will always have the same form/
shape. Let us brie¯y demonstrate the scale-invariance
aspect of the collocation algorithm (a similar
methodology can also be employed for the translation-
invariance aspect). If we use a new reference system
x0 � x=a to describe the original unknown ®eld
g�x� and the position of its point data values g�nh�,
then we basically want now to approximate a new
unknown ®eld g0�x� � g�ax� using its point data values
g0�nh0� � g0�nh=a� � g�nh�. The application of the basic
estimation formula of Eq. (28) yields

ĝ0�x� �
X

n

g0�nh0�u x
h0
ÿ n

� �
�
X

n

g0 n
h
a

� �
u

x
h=a
ÿ n

� �
�
X

n

g�nh�u ax
h
ÿ n

� �
� ĝ�ax�

�30�

which demonstrates the scale-invariance property of the
spatio-statistical collocation. Note that the sampling
resolution of the unknown deterministic ®eld g is the
same for both reference systems x0 and x (i.e. we use the
same point data values each time). The above situation
of scale-invariant signal approximation, for a certain
data resolution level h, is illustrated in an abstract way
in Fig. 4.

Fig. 4. Scale-invariant signal approximation at a certain data
resolution level h (the value of the scaling parameter a is assumed
a > 1)
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The optimal kernel u�x� in the statistical collocation
model of Eq. (28) is appropriately scaled (shrunk or ex-
panded) in order to `match' the resolution level h of the
given data grid g�nh�, as this is expressed in the scale of the
used reference system. The ®nal approximated ®eld ĝ�x� is
then formed by adding translates of the scaled optimal
kernel u�x=h�, which are centered at all data points.
Although such a linear approximation scheme obeys very
closely the classic multiresolution/wavelet spirit, it cannot
really be identi®ed as such since the actual form of u�x� is
also a function of the data resolution h itself. On the other
hand, the standard wavelet approximation theory re-
quires the use of a ®xed scaling kernel u�x�, which is
just tuned in the desired resolution level of the signal
approximation by proper dyadic scalings (see Sect. 2).

In order to better understand the above essential
di�erence, we should express the optimal kernel u�x�
associated with the statistical collocation procedure in
the following parameterized form [see Eq. (27)]:

u�x; h�  != U�x; h� � C x
h

ÿ �P
k C x

h � 2pk
h

ÿ � �31a�

where the data resolution h plays just the role of an
additional constant parameter in the last equation.
According to the fundamental scaling property of the
Fourier transform, the scaled version u�x=h� � uh�x� of
the optimal approximation kernel u�x� will thus have
the following frequency domain form:

u
x
h
; h

� �
 != hU�hx; h� � h

C�x�P
k C x� 2pk

h

ÿ � �31b�

which is identical to the optimal Wiener-like approxi-
mation ®lter that was determined in Sect. 3.2, Eq. (25).
For each di�erent value of the data resolution parameter
h, the optimal kernel u�x� in Eq. (31a) will assume a
correspondingly di�erent waveform, and hence the basic
estimation model of Eq. (28) will not employ scaled
versions of the same u�x� for every data sampling level h.
Therefore, we see that the statistical collocation concept
not only produces a scale-variant signal approximation,
but in addition also `forces' the behavior of its basic
approximation kernel to be adapted to the current data
resolution in a certain optimal fashion, as suggested by
Eq. (31a). It is very important to note that, regardless
of the actual value of h, the function u�x; h� always
corresponds to a cardinal (sampling) kernel, as was
explained in Sect. 3.3.

The varying behavior of the optimal approximation
kernel u�x; h�, for di�erent data resolution levels h,
is shown in Figs. 5 and 6. Two di�erent models for the
power spectrum C�x� of the underlying unknown signal
are used. In particular, Fig. 5 shows the Fourier trans-
form U�x; h� from Eq. (31a) for the case where the
signal power spectrum has a Gaussian form, i.e.

C�x� � Beÿx2 �32a�
whereas Fig. 6 illustrates the Fourier transform of the
optimal approximation kernel for the case where the
signal power spectrum follows a slower decaying pattern
than the Gaussian, as follows:

C�x� � B
1� x2

�32b�

Fig. 5. Fourier transform F(x, h)
of the optimal approximation
kernel u(x, h) for various data
resolutions levels h. The under-
lying unknown signal is assumed
to follow a Gaussian power
spectrum C(x)
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with the symbol B denoting just an arbitrary constant
value for both cases.

These graphs help considerably in understanding the
(somewhat peculiar) behavior of the optimal approxi-
mation kernel in the statistical collocation framework.
Under proper mild conditions on the signal power
spectrum C�x�, the function u�x; h� in Eq. (31a) will
asymptotically converge to a well-de®ned L2�R� cardinal
kernel as h! 0. All the individual members (i.e. func-
tions) of this convergent sequence will be L2�R� cardinal
kernels as well. In the case of Fig. 5, for example, it is
obvious that the optimal approximation kernel will
gradually converge to the sinc�x� function. On the other
hand, as the data sampling resolution decreases
�h!1�, the optimal approximation kernel u�x; h� will
gradually become the zero function in the L2�R� sense,
as it is evident from the behavior of its Fourier trans-
form in both Figs. 5 and 6. The rigorous mathematical
proof of the above statements, as well as the derivation
of the necessary mild conditions on the signal power
spectrum C�x�, are beyond the scope of the present
paper and they will not be presented here. Some relevant
details can be found in the next section.

5 A new constructive framework
for generalized multiresolution analyses

In this section we will explore in more detail the actual
connection between the statistical collocation approxi-
mation model of Eqs. (27) and (28), and the classic

MRA approximation framework which was brie¯y
presented in Sect. 2. We will also attempt to clarify a
few mathematical details that were left unjusti®ed in the
previous sections. In particular, it will be shown that
under certain mild conditions on the spatial CV function
and the power spectrum of the unknown signal g�x�,
the corresponding optimal kernel u�x; h� of Eq. (31a)
produces a generalized MRA-type approximation
scheme in the Hilbert space L2�R�.

5.1 Basic MRA properties of the optimal
approximation kernel

First, we need to establish that the optimal kernel in
statistical collocation, as it is given in Eq. (27) or Eq.
(31a), is a well-de®ned function in the L2�R� Hilbert
space for any real positive value of the data resolution h.
Using Eq. (31a), the L2 norm of the optimal kernel
u�x; h� takes the following form:

u�x; h�k k2L2 � 1

2p

Z1
ÿ1

U�x; h�j j2 dx

� 1

2p

Z1
ÿ1

C x
h

ÿ ��� ��2P
k C x

h � 2pk
h

ÿ ��� ��2 dx

� 1

2p

Z2p
0

P
k C x�2pk

h

ÿ ��� ��2P
k C x

h � 2pk
h

ÿ ��� ��2 dx

Fig. 6. Fourier transform
F(x, h) of the optimal approxi-
mation kernel u(x, h) for various
data resolutions levels h. The
underlying unknown signal is
assumed to follow the power
spectrum model C(x) given in
Eq. (32b)
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� 1

2p

Z2p
0

P
k

1
h C x

h � 2pk
h

ÿ �8: 9;2

P
k
1
h C x

h � 2pk
h

ÿ �8: 9;2
dx

� 1

2p

Z2p
0

�M2p�x�dx �33�

where �M2p�x� is an auxiliary 2p-periodic function, given
by the formula

�M2p�x� �
P

k
1
h C x

h � 2pk
h

ÿ �8: 9;2

P
k
1
h C x

h � 2pk
h

ÿ �8: 9;2
�

P
k a2kP

k ak

8: 9;2
�34a�

and the discrete in®nite sequence ak has of course the
general form

ak � 1

h
C

x
h
� 2pk

h

� �
�34b�

Let it be reminded that the signal power spectrum C�x�
is always a real-valued, non-negative and even function,
which belongs in the L1�R� space [i.e. since the unknown
signal g�x� is assumed to belong in the L2�R� Hilbert
space]. The in®nite series

P
k ak corresponds to the 2p-

periodic Fourier transform of a space domain sequence
b�n� constructed from the discrete signal covariance
values as follows (see e.g. Oppenheim and Schafer 1989):

b�n� � c�nh� �35�
Therefore, if the discrete sequence b�n� is absolutely
summable, the series

P
k ak will always converge uni-

formly to a ®nite, continuous, 2p-periodic function of x
(Oppenheim and Schafer 1989, p. 47). In this way, we
will impose the following basic condition on the signal
CV function c�x�:
Condition I :

X
n

c�nh�j j <1; 8 h > 0 �36�

Note that the above condition is always satis®ed in the
case where the underlying unknown ®eld g�x� has a ®nite
support in the space domain. A simple example of a CV
function with in®nite support, for which the above
condition is valid, is the Gaussian function. Under
condition (36), the series

P
k ak will converge uniformly

for every value of x and h, and since all its individual
terms ak are always non-negative, the series

P
k a2

k will
also converge to a ®nite 2p-periodic function of x for
every data resolution level h.

It is also essential to ensure the validity of the fol-
lowing relationship:X

k

ak �
X

k

1

h
C

x
h
� 2pk

h

� �
6� 0; 8 x 2 R; h > 0

�37�
There are various di�erent types of conditions, non-
contradictory with the ®rst condition given in Eq. (36),

that can be imposed on the signal power spectrum
C�x� in order for Eq. (37) to be true. For the purpose
of this paper, we shall simply assume one of the
following:

Condition II : �38�
1. C�x� � G�x�j j2 > 0; 8 x 2 R or
2. C�x� is allowed to vanish only at a ®nite number of

arbitrary isolated points, and/or in a ®nite number of
closed frequency intervals. The signal power spectrum
C�x� is also allowed to vanish at an in®nite number
of isolated points without destroying the validity of
Eq. (37), as long as these in®nite points are not
equidistant.

The justi®cation of the previous restrictions on C�x�
depends basically on the physical properties of the
unknown ®eld that we want to approximate. The case
where the signal power spectrum C�x� vanishes in an
in®nite frequency interval [i.e. the unknown ®eld g�x� is
a band-limited signal] requires special consideration, and
it will be treated separately in a future publication.

If we further assume that the signal power spectrum
C�x� is a continuous function, i.e.

Condition III : C�x� is continuous for every x 2 R

�39�
then, under the three previous conditions, the auxiliary
term �M2p�x� in Eq. (34a) will always converge to a well-
de®ned, ®nite (bounded), strictly-positive, continuous
and 2p-periodic function, and therefore its integral in
Eq. (33) will always be a ®nite number. This makes the
optimal approximation kernel u�x; h� a proper L2�R�
function for any real positive value of the data
resolution level h.

Finally, the condition that the optimal kernel u�x; h�
in statistical collocation has a non-vanishing integral
(just like the scaling function of an MRA should have a
non-vanishing integral; see Sect. 2.1) requires that its
Fourier transform U�x; h� does not vanish at the origin.
Taking into account Eq. (31a), this is transformed to the
following simple condition for the signal power spec-
trum:

Condition IV: C�x�x�0 6� 0 �40�
We are now in position to consider an in®nite sequence
fVjgj2Z of closed linear Hilbert subspaces in L2�R�. Each
element of this sequence is de®ned as the closed linear
span of the set

u
x
hj
ÿ n; hj

� �
jn 2 Z

� �
where u�x; hj� is the optimal approximation kernel given
by Eq. (31a), and hj > 0 denotes the data resolution
level associated with each subspace Vj. We will further
assume that

Condition V: hj > hj�1; 8 j 2 Z �41�
which makes fVjg a subspace sequence of increasing
resolution in the Hilbert space L2(R). Note that the
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scaling parameter hj is not restricted now to dyadic
values (i.e. hj � 2ÿj), as happens in the classic MRA case
(see Sect. 2.1). By de®nition, the above subspace
sequence satis®es the third (translation-invariance) basic
property of an MRA [see Eq. (1c), Sect. 2.1] for any
possible form of the scaling parameter hj, i.e.

f �x� 2 Vj , f �x� nhj� 2 Vj; 8 n 2 Z �42�
In order for the speci®c sequence fVjg to satisfy the ®rst
`nesting' property of an MRA [see Eq. (1a), Sect. 2.1],
we have to impose some additional restriction on the
way that the value of the scaling parameter hj changes
from one subspace Vj to the next Vj�1. In particular,
we have to assume that for every j 2 Z

Condition VI :
hj

hj�1
� aj; where aj 2 Z� ÿ f1g

�43�
The above condition implies that any two successive
scaling parameters associated with the subspace sequence
fVjg should be related through an arbitrary positive
integer number, di�erent from unity. Note that the
actual integer value aj may change from one subspace
pair �Vj; Vj�1� to another �Vj�1; Vj�2�. However, Eq. (43)
will ensure that the scaling parameters associated with
an arbitrary pair of subspaces �Vj; Vk�j<k are always
related through a positive integer number as follows:

hj

hk
� aj aj�1 . . . akÿ1; 8 j < k 2 Z �44�

The special case where the scaling ratio in Eq. (43)
assumes a ®xed positive integer value a (i.e. independent
from the index j) occurs if we restrict the data resolution
level hj to take the following exponential form:

hj � aÿj; 8 j 2 Z �45�

where a is now a ®xed positive integer number, di�erent
from unity. Dyadic subspace schemes (as in the classic
MRA framework) will of course arise if we set the value
of a in Eq. (45) to be equal to 2. Nevertheless, the
general condition of Eq. (43) is all that we actually need
in order for the speci®c subspace sequence fVjg to be
nested. The proof is very easy and it can be found in
Appendix B.

Furthermore, the subspace sequence fVjg constructed
from the optimal approximation kernel u�x; hj� will also
satisfy the fourth (`completeness') basic property of an
MRA [see Eq. (1d), Sect. 2.1]. In order to see that, we
have to recall the fact that the optimal kernel u�x; hj� is
always a cardinal/sampling function, regardless of the
actual value of the data resolution level hj. In this way,
every signal that belongs in an arbitrary subspace
Vj � L2�R� of the multiresolution sequence fVjg will
have the general form

f �x� �
X

n

f �nhj�u x
hj
ÿ n; hj

� �
; 8 f �x� 2 Vj �46a�

By taking into account Eq. (31a) and applying the
Fourier transform to the last equation, we obtain the
general frequency domain form of every signal f �x�
belonging in an arbitrary subspace of the multiresolu-
tion sequence fVjg, i.e.

F �x� � C�x�P
k C x� 2pk

hj

� �X
n

F x� 2pn
hj

� �
;

8 f �x� 2 Vj �46b�
As the resolution index j increases, the data resolution
level hj associated with the corresponding subspace Vj
becomes smaller and smaller, according to the general
condition imposed by Eq. (41). Obviously, when hj
becomes in®nitely small �j!1, hj ! 0�, then
Eq. (46b) will be reduced to a simple identity, i.e.

F �x� � F �x� �47a�
which is naturally satis®ed by every signal in the Hilbert
space L2�R�. In other words

lim
j!1

Vj � L2�R� �47b�

On the other hand, when the resolution index j decreases,
then the magnitude of the corresponding scaling param-
eter hj will be increasing. In the limit, where hj becomes
arbitrarily large �j! ÿ1, hj ! 1�, the right-hand
side of the frequency domain equation, Eq. (46b),
will be reduced to the form 0 � 1, which is equal to zero
(Halmos 1991). This simply means that the multiresolu-
tion subspace sequence fVjg will be ®nally `shrunk' to the
zero space in the L2�R� sense, i.e.
lim

j!ÿ1
Vj � f0g �48�

Lastly, we have to check if the family of translates

u
x
hj
ÿ n; hj

� �
jn 2 Z

� �
of the optimal approximation kernel forms a Riesz basis
for every element of the multiresolution subspace
sequence fVjg that is spanned by this family. This ®nal
MRA property [see Eq. (1e), Sect. 2.1] is especially
important, since it will ensure stable signal estimation
schemes from their discrete samples within every
multiresolution subspace Vj. A necessary and su�cient
condition for this last property is (Unser and Daube-
chies 1997)

0 < A �
X

k

jU�x� 2pk; hj�j2 � B < �1;

8x 2 R; hj > 0 �49�
where A and B are some strictly positive bounds, and
U�x; hj� is the Fourier transform of the optimal
approximation kernel u�x; hj� at data resolution level
hj. If we take into account Eq. (31a), the above
inequality can be easily expressed as a function of the
signal power spectrum C�x� in the following way:
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0 < A �
P

k
1
hj

C x
hj
� 2pk

hj

� �8: 9;2

P
k

1
hj

C x
hj
� 2pk

hj

� �8: 9;2
� �M2p�x� � B < �1;

8 x 2 R; hj > 0 �50�
where �M2p�x� is the same 2p-periodic auxiliary function
that was de®ned and used previously in Eq. (34a). In the
beginning of this section we had already established that
(under conditions I, II and III) the term �M2p�x� will
always converge to a well-de®ned, ®nite (bounded),
strictly-positive, continuous and 2p-periodic function of
x, for every value of the data resolution level hj. In this
way, the existence of both bounds A and B in the double
inequality of Eq. (50) is always guaranteed. Hence, the set
of integer translates of the optimal approximation kernel

u
x
hj
ÿ n; hj

� �
jn 2 Z

� �
will provide a Riesz basis for every corresponding multi-
resolution subspace Vj associated with the scaling
parameter hj. Note that the actual numerical values of
the two bounds, A and B, will change as hj changes,
which basically means that the level of stability of the
individual Riesz bases formed by the optimal approx-
imation kernel will not be the same for each Vj.

5.2 Remarks

We have established the fundamental result that: the
solution of the linear approximation problem for an
unknown deterministic ®eld from its discrete and
regularly gridded samples, under the condition of
translation-invariance and the spatio-statistical MMSE
optimal principle of Eq. (21), gives rise to a generalized
MRA-type structure fVjg in the Hilbert space L2�R�.
The main di�erence between this multiresolution sub-
space structure and the classic MRAs according to
Mallat (1989a, b) is that its basic scaling kernel does not
have a ®xed form, but varies for every di�erent scale
level hj associated with the corresponding subspace Vj.
In this case, the power spectrum of the unknown signal
under consideration provides the `generator' of the
scaling kernel u�x; hj� at each resolution level hj,
according to the frequency domain form given in
Eq. (31a). Certain conditions have also to be satis®ed
by the spatial CV function and the power spectrum of
the unknown signal, which were discussed in detail in
the previous section.

The only traditional MRA property that will not
necessarily be satis®ed by the subspace sequence fVjg,
which is generated through the optimal kernel u�x; hj�
of statistical collocation, is the `self-similar' dyadic
scaling condition between the individual subspaces [see
Eq. (1b), Sect. 2.1], i.e.

f �x� 2 Vj , f �2x� 2 Vj�1 �51�
In a way, the above property has now been replaced by
the freedom to use a much more ¯exible rule according

to which the scaling parameter (data resolution level) hj
decreases from one nested subspace Vj to the next Vj�1,
based on the general formula of Eq. (43). Note that the
optimal kernel u�x; hj� essentially generates not just a
single nested sequence fVjg of multiresolution subspaces
in L2�R�, but an in®nite number of such subspace
sequences. Each of these sequences will depend on a
speci®c formula that we choose to generate the various
scale levels hj [based on the two general conditions of
Eqs. (41) and (43)], as well as on the value of a reference
scale level ho. A list of such di�erent alternatives is given
in Table 1. The classic case, where the nested subspace
sequence fVjg is associated with a dyadic scale para-
meter hj, is shown in the last two columns of Table 1 for
some selected reference values. Even for such dyadic
scaling schemes, however, the property in Eq. (51) will
not necessarily be satis®ed by the generalized MRA
sequence fVjg associated with the optimal approxima-
tion kernel, unless we impose some further conditions on
the signal power spectrum C�x�.

It is worth mentioning that all the derivations in
Sect. 5.1 are valid even if the frequency domain function
C�x� in the basic equation (31a) does not correspond to
the true signal power spectrum. This means that we are
allowed to use a certain model for the signal power
spectrum in the construction of the approximation ker-
nel u�x; hj�, without destroying its cardinal/sampling
and MRA properties (as long as this model is compat-
ible with the basic conditions given previously, or any
other conditions that may be equivalently derived for
the same purpose). More importantly, in this case the
signal approximation obtained by the statistical collo-
cation algorithm will still converge in a stable way to the
true ®eld in the L2�R� topology, as the data resolution
increases �hj ! 0�. The optimal MMSE principle of
Eq. (21), however, will not be rigorously satis®ed in such
cases. Nevertheless, the frequency domain structure of
Eq. (31a) provides a useful general recipe for building
generalized MRAs, based on appropriately selected
Fourier transform functions C�x� that satisfy the mild
conditions given in the previous section.

Table 1. Sample of scale level values hj associated with di�erent
generalized MRA sequences fVjg which are generated from the
same scaling kernel u�x; hj�

Scale level generator [see Eq. (43)]
hj

hj�1
� 2j2 � 3

hj

hj�1
� 2jjj�1

hj

hj�1
� 2

Reference scale value

h0 = 1 h0 = 0.3 h0 = 1 h0 = 0.3 h0 = 1 h0 = 0.3

h3 1/165 1/550 1/64 3/640 1/8 0.0375
h2 1/15 0.02 1/8 0.0375 1/4 0.075
h1 1/3 0.1 0.5 0.15 1/2 0.15
h0 1 0.3 1 0.3 1 0.3
h)1 5 1.5 4 1.2 2 0.6
h)2 55 16.5 32 9.6 4 1.2
h)3 1155 346.5 512 153.6 8 2.4
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The previous developments open a new interesting
viewpoint for the result of the statistical collocation
algorithm in Eq. (28). Under certain conditions, the
approximated ®eld ĝ�x� will always belong in some
multiresolution Hilbert subspace Vj � L2�R� of a
generalized MRA sequence, the scale level hj of which is
dictated from the sampling resolution of the available
discrete data. The actual collocation approximation
algorithm can be considered as the application of a
stable sampling theorem associated with the speci®c
subspace Vj, since the set of translates

u
x
hj
ÿ n; hj

� �
jn 2 Z

� �

of the optimal approximation kernel will always consti-
tute a sampling Riesz basis for Vj. This result is in very
close connection with similar mathematical studies,
where it was shown that for (almost) every dyadic
MRA there exists a unique sampling Riesz basis in each
of its nested subspaces (see e.g. Walter 1992; Xia and
Zhang 1993). The idea of using sampling expansions for
representing gravity ®eld signals is certainly not new,
and it has already been discussed by many authors in the
context of optimal linear approximation (see e.g. Moritz
1976; Schmidt 1981).

It is also interesting to mention the essential
di�erence between the approximation concept of classic
dyadic MRAs according to Mallat (1989a, b), and the
present collocation-basedmultiresolution approximation
scenario. Mallat's initial idea was based on the orthog-
onal projection of the unknown signal g�x� onto a
dyadic MRA subspace Vj (see Sect. 2.2). Under this
approach, the approximation ĝ�x� and the original
signal g�x� will not necessarily agree at the data points
xn � n2ÿj, which is not a desirable property within a
noiseless data setting. Mallat's procedure could be
thought of as starting from the top of a pyramid
(i.e. MRA), and by successive orthogonal projections
onto more and more detailed resolution subspaces Vj we
®nally return to the top. In the statistical collocation
approach, on the other hand, we start from the `bottom'
of a generalized MRA structure and by obtaining denser
and denser sampled values of the unknown ®eld (and
correspondingly applying the sampling theorem associ-
ated with the `pyramid') we ®nally reach the top. It can
actually be shown that this `bottom-to-top' multireso-
lution approximation, through the use of a scaling
cardinal kernel u�x; hj�, corresponds to a certain oblique
projection scheme within the subspace sequence fVjg;
see Blu and Unser (1999).

The previous extensions of the MRA concept suggest
that we may be able to achieve a similar extension of the
classic wavelet bases associated with Mallat's dyadic
MRAs. For example, the orthogonal complements Wj of
the various nested subspaces in the generalized MRA
structure fVjg, which is constructed by the optimal ap-
proximation kernel u�x; hj�, will most likely admit a
Riesz basis generated from the translates of a `wavelet'
kernel w�x; hj�. If such a step becomes successful, we

could essentially generate a `non-stationary' system of
base functions in L2�R� that will be directly associated
with the actual statistical collocation formula in
Eq. (28); i.e. the optimal approximation of the unknown
signal will give rise to a certain type of wavelet-like basis.
The potential of such a connection is quite remarkable,
in both theoretical and practical terms, and it will be
explored in future publications.

6 Conclusions and future work

The aim of this paper was to show that the concept of
multiresolution approximation theory lies at the very
core of some of the general estimation principles
involved in physical geodesy problems. This should
not come as a surprise, since MRA methods were
developed not as `brand new' theories, but rather as a
synthesis of various ideas which originated over the
years from di�erent disciplines including mathematics,
physics and signal processing. The common link that
physical geodesy shares with these areas is the arche-
typical problem of estimating an unknown ®eld from its
discrete values. It has been shown that the method of
statistical collocation, as expressed by the optimal
criterion in Eq. (21) and the classic translation-invari-
ance condition, leads to signal approximation models
similar to the ones encountered in Mallat's MRA
theory. It is the opinion of the author that Sanso's
spatio-statistical formulation for the collocation prob-
lem (Sanso 1980) should not be viewed only as a
`supplement' to Wiener's stochastic prediction theory
for geodetic approximation problems. It actually con-
stitutes a very powerful and autonomous modeling tool,
with remarkable connections to multiresolution approx-
imation theory and wavelets. One of the advantages of
this link is that it provides basically the means to
develop a useful generalization of Mallat's classic MRA
scheme, where the data resolution level is not restricted
to only dyadic values. Of course, much more theoretical
work is needed to establish the existence of wavelet-like
bases within the generalized MRA structure that was
developed in this paper.

Among the bene®ts of the present multiresolution
formulation for the collocation problem is the easiness
with which the non-stationarity issue is overcome.
Having its roots in the very much debated stochastic/
non-stochastic interpretation of the gravity ®eld, this
problem has been `ampli®ed' over the years by the
domination of the classic Fourier-based spectral tech-
niques in gravity ®eld modeling. Furthermore, the
original spatio-statistical treatment of collocation
according to Sanso (1980), where a `stationary' spatial
CV function is needed, has created the false belief
among many geodesists that we still need to model the
gravity ®eld as a stationary ergodic process. Although
stationarity is a stochastic term that cannot be theoret-
ically justi®ed in the present deterministic setting, I per-
sonally perceive this problem (in the context of optimal
linear estimation in deterministic ®elds) as the ability to
reconstruct and to study locally the unknown ®eld in a
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rigorous and consistent manner with the estimation
principles. With such an understanding of the problem,
MRA and wavelet theory can provide valuable tools
without deviating from the universally acceptable col-
location spirit (i.e. MMSE principle).

Many additional theoretical extensions of the issues
discussed herein are needed in order to cover the spec-
trum of all possible applications in gravity ®eld model-
ing. First, and most important, is the inclusion of the
observational (non-stationary in general) noise in
the multiresolution approximation framework, and the
development of optimal noise ®ltering methods in mul-
tiresolution estimation models. In the noiseless case,
e�cient algorithms for studying the behavior of the
signal error caused by the basic formula in Eq. (28), as a
function of the data resolution level h and the used kernel
u�x�, will be quite useful especially for simulation studies
with synthetic ®elds. The case where the available data
grids include not only sampled values of the unknown
®eld, but other linear functionals as well, should be also
carefully treated. Finally, the extension of all the above in
two and three dimensions (including compact spherical
domains) should be made.

Practical and computational issues have not been
discussed in this paper. Of special importance for our
purposes would be the development of e�cient (fre-
quency domain) algorithms for the computation of the
optimal scaling kernel in Eq. (31a) from the signal
power spectrum, at various data resolution levels hj.
Also, the possibility to model empirically not the CV
function (or the power spectrum) of the unknown ®eld,
but rather the optimal approximation kernel itself,
should be explored. In the same line of thought, a re-
verse approach which would compute the `induced'
signal power spectrum from the analytical expression
of already available scaling kernels [i.e. inversion
of Eq. (31a)] might help to identify which types of ker-
nels seem more realistic for approximating the actual
behavior of the gravity ®eld at various resolution levels.
All these practical algorithmic issues are extremely im-
portant and rather complicated (especially for higher
dimensions). It is interesting, ®nally, to note the com-
putational e�ciency that is achieved by using Eq. (28)
over the classic matrix formula of collocation; see also
Svensson (1983). Once the approximation kernel has
been selected, Eq. (28) corresponds to a single multi-
plication between two n-dimensional vectors, whereas
the matrix equation that utilizes the CV function of the
unknown ®eld would require n� 1 multiplications of
n-dimensional vectors plus an n� n symmetric matrix
inversion, where n is the number of the available data
points.
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Appendix A

In this appendix we will prove the following equation:

Zh=2
ÿh=2

E�x; xo�j j2 dxo� hC�x� ÿ U�h�x�C�x� ÿ Uh�x�C�x�

� Uh�x�U�h�x� �Ch�x� �A1�
Taking into account Eq. (20b), the error power spec-
trum at an arbitrary value of the sampling phase
parameter xo has the form

E�x; xo�j j2 � G�x�G��x� ÿ U�h�x�G�x�S��x�
ÿ Uh�x�G��x�S�x�
� Uh�x�U�h�x�S�x�S��x� �A2�

where the auxiliary function S�x� is given by

S�x� � 1

h

X
k

G x� 2pk
h

� �
eÿi2pk

h xo �A3�

Integrating Eq. (A2) over xo, we obtain analytically for
every term

Zh=2
ÿh=2

G�x�G��x�dxo � G�x�G��x�h � hC�x� �A4�

Zh=2
ÿh=2

U�h�x�G�x�S��x�dxo

� U�h�x�G�x�
Zh=2
ÿh=2

1

h

X
k

G� x� 2pk
h

� �
ei2pk

h xo dxo

� 1

h
U�h�x�G�x�

X
k

G� x� 2pk
h

� � Zh=2
ÿh=2

ei2pk
h xo dxo

� 1

h
U�h�x�G�x�

X
k

G� x� 2pk
h

� � Zp

ÿp

h
2p

eikn dn

� U�h�x�G�x�
X

k

G� x� 2pk
h

� �
sin kp

kp

� U�h�x�G�x�G��x� � U�h�x�C�x� �A5�

Following similar derivations as in Eq. (A5), we obtain

Zh=2
ÿh=2

Uh�x�G��x�S�x�dxo � Uh�x�C�x� �A6�

Finally, the integration of the last term in Eq. (A2)
yields
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Zh=2
ÿh=2

Uh�x�U�h�x�S�x�S��x� dxo

� Uh�x�U�h�x�
Zh=2
ÿh=2

1

h2

X
n

X
m

G x� 2pn
h

� �

� G� x� 2pm
h

� �
ei2p�mÿn�

h xo dxo

� 1

h2
Uh�x�U�h�x�

X
n

X
m

G x� 2pn
h

� �

� G� x� 2pm
h

� � Zh=2
ÿh=2

ei2p�mÿn�
h xo dxo

� 1

h2
Uh�x�U�h�x�

X
n

X
m

G x� 2pn
h

� �

� G� x� 2pm
h

� � Zp

ÿp

h
2p

ei�mÿn�n dn

� 1

h
Uh�x�U�h�x�

X
n

X
m

G x� 2pn
h

� �
� G� x� 2pm

h

� �
sin p�mÿ n�

p�mÿ n�
� 1

h
Uh�x�U�h�x�

X
k

G x� 2pk
h

� �
G� x� 2pk

h

� �
� 1

h
Uh�x�U�h�x�

X
k

C x� 2pk
h

� �
� Uh�x�U�h�x� �Ch�x� �A7�

Combining together the results from Eqs. (A4) through
(A7), we obtain the initially claimed statement of
Eq. (A1).

Appendix B

In this appendix we will prove that the multiresolution
subspace sequence fVjg, which is constructed through
the optimal approximation kernel u�x; hj�, has the basic
nesting MRA property, i.e.

Vj � Vj�1; 8 j 2 Z �B1�
Each element Vj � L2�R� of this subspace sequence is
de®ned as the closed linear span of the set

u
x
hj
ÿ n; hj

� �
jn 2 Z

� �
where the kernel u�x; hj� is de®ned by Eq. (31a), and the
scaling parameter hj associated with each subspace Vj is
assumed to satisfy the two general conditions given in
Eqs. (41) and (43). Furthermore, the power spectrum
and the CV function [through which the optimal
approximation kernal u�x; hj� is de®ned] of the

unknown signal are assumed to satisfy all the conditions
given in Sect. 5.1.

Every signal fj�x� 2 Vj will have the general form

fj�x� �
X

n

bnu
x
hj
ÿ n; hj

� �
; 8 fj�x� 2 Vj �B2�

where fbng is a certain square-summable sequence of
coe�cients. Taking into account Eq. (31b), the last
equation can be equivalently expressed in the frequency
domain as follows:

Fj�x� � hj
C�x�P

k C x� 2pk
hj

� �X
n

bne
ÿixnhj

� hj
C�x�P

k C x� 2pk
hj

� � �B2p=hj�x�; 8 fj�x� 2 Vj

�B3�
where �B2p=hj�x� denotes a certain �2p=hj�-periodic
function with ®nite L2�0; 2p=hj� norm. In the same
way, every signal fj�1�x� that belongs in the subspace
Vj�1 will have the following frequency domain form:

Fj�1�x� � hj�1
C�x�P

k C x� 2pk
hj�1

� � �B2p=hj�1�x�;

8 fj�1�x� 2 Vj�1

�B4�

where hj�1 is the scaling parameter associated with Vj�1,
and �B2p=hj�1�x� denotes a certain �2p=hj�1�-periodic
function with ®nite L2�0; 2p=hj�1� norm. It is now quite
easy to transform Eq. (B3) in the form of Eq. (B4).
Indeed, starting from Eq. (B3) we will have

Fj�x�

� hj
C�x�P

k C x� 2pk
hj

� � hj�1
P

k C x� 2pk
hj�1

� �
hj�1

P
k C x� 2pk

hj�1

� � �B2p=hj�x�

� hj�1
C�x�P

k C x� 2pk
hj�1

� � hj
P

k C x� 2pk
hj�1

� �
hj�1

P
k C x� 2pk

hj

� � �B2p=hj�x�

� hj�1
C�x�P

k C x� 2pk
hj�1

� � �K2p=hj�1�x� �B2p=hj�x�

� hj�1
C�x�P

k C x� 2pk
hj�1

� � �N2p=hj�1�x�; 8 fj�x� 2 Vj �B5�

where the auxiliary function �K2p=hj�1�x� is de®ned by the
formula

�K2p=hj�1�x� �
hj
P

k C x� 2pk
hj�1

� �
hj�1

P
k C x� 2pk

hj

� � �B6�

Obviously, the above function will be �2p=hj�1�-period-
ic, since the two scaling parameters (hj and hj�1) are
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assumed to be related through a positive integer number,
according to condition VI in Eq. (43). For the same
reason, the product of the two periodic functions
�K2p=hj�1�x� and �B2p=hj�x�, which is denoted �N2p=hj�1�x�
in Eq. (B5), will also be a �2p=hj�1�-periodic function.

Furthermore, under conditions I and II both the
numerator and denominator in Eq. (B6) will converge
uniformly to ®nite, strictly-positive, continuous periodic
functions, for any pair of values of the scaling parame-
ters hj and hj�1. Hence, the periodic function �K2p=hj�1�x�
will certainly have a ®nite L2�0; 2p=hj�1� norm. As a
result, the auxiliary periodic function �N2p=hj�1�x� in
Eq. (B5) will also have a ®nite L2�0; 2p=hj�1� norm.
In this way, the ®nal frequency domain form of Eq. (B5)
corresponds exactly to the expression of a function be-
longing in the higher resolution subspace Vj�1, according
to the general formula (B4).
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