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Abstract The coordinate frame transformation (CFT)
problem in geodesy is typically solved by a stepwise
approach which entails both inverse and forward treatment of
the available data. The unknown transformation parameters
are first estimated on the basis of common points given in
both frames, and subsequently they are used for transform-
ing the coordinates of other (new) points from their initial
frame to the desired target frame. Such an approach, despite
its rational reasoning, does not provide the optimal accuracy
for the transformed coordinates as it overlooks the stochas-
tic correlation (which often exists) between the common and
the new points in the initial frame. In this paper we present a
single-step least squares approach for the rigorous solution
of the CFT problem that takes into account both the intra-
frame and inter-frame coordinate covariances in the available
data. The optimal estimators for the transformed coordinates
are derived in closed form and they involve appropriate cor-
rections to the standard estimators of the stepwise approach.
Their practical significance is evaluated through numerical
experiments with the 3D Helmert transformation model and
real coordinate sets obtained from weekly combined solu-
tions of the EUREF Permanent Network. Our results show
that the difference between the standard approach and the
optimal approach can become significant since the magni-
tude of the aforementioned corrections remains well above
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the statistical accuracy of the transformation results that are
obtained by the standard (stepwise) solution.
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1 Introduction

The transformation of a coordinate set from a reference frame
to another is a fundamental task in geodetic work with pro-
found importance for Earth science applications (e.g. Leick
and van Gelder 1975; Soler 1998; Altamimi et al. 2002; Tre-
goning and van Dam 2005; Bevis and Brown 2014). As in
many problems encountered in geodesy, coordinate frame
transformation (CFT) has a dual character and it can be
viewed as a forward or inverse problem depending on the
prior knowledge of the associated parameters of the frame
transformation model. Considering the general case where
the underlying model parameters are not known beforehand,
the frame transformation problem is usually split into two
steps by combining both an inverse and a forward treatment.
In particular, a least squares (LS) adjustment is first imple-
mented for estimating the transformation model parameters
on the basis of common points given in both frames. The
coordinate accuracy of the common points in each frame is
taken into account, at this step, through an appropriate weight
matrix within the LS adjustment algorithm. To complete the
task at hand, a forward computation step is further required
to transform the known coordinates from their initial frame
to the desired target frame using the estimated parameters
from the previous step. This is a rather straightforward pro-
cedure which has provided the standard framework for CFT
problems in geodetic practice.
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Fig. 1 Schematic
representation of the typical data
structure in geodetic CFT
problems. The stepwise
transformation approach treats
the common and the new points
independently by neglecting the
cross-CV matrix �X′Z′
(intra-frame covariances) of
their initial coordinates. The
inter-frame cross-CV matrices
�XX′ and �XZ′ are also ignored
in the stepwise approach
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The previous stepwise approach is not flawless as it over-
looks (a crucial part of) the stochastic error model of the ini-
tial coordinates, a fact that can degrade the accuracy of their
transformed values in the target frame. Typically, the group
of points that needs to be analyzed consists of two subsets: a
set of reference stations whose coordinates are known in both
frames (hereafter called “common” points) and another set
of stations whose coordinates are only known in the initial
frame while the estimation of their spatial positions in the
target frame is often the prime objective of the problem at
hand (hereafter called “new” points). The second subset is left
out of the LS inversion step since it does not contribute any
information for the estimation of the transformation parame-
ters, and its role is solely confined within the forward step of
the transformation procedure. Despite its rational reasoning,
such an approach is not based on any objective optimality
criteria for the transformed coordinates of the new points
and it cannot assure their best estimation accuracy from the
available data.

A shortcoming in the standard CFT methodology arises
if the coordinates of the common and the new points (in the
initial frame) are stochastically correlated with each other
due to their concurrent estimation from the same observa-
tion set. A common example is the transformation problem
for an adjusted geodetic network that needs to be referred
to another coordinate frame with the help of reference sta-

tions which participate in the network solution (e.g. Altamimi
2003). In such cases a reciprocal link exists between the
common and the new points which is reflected in the cross-
covariance part of the joint covariance (CV) matrix of their
adjusted coordinates, yet it remains unexploited by the step-
wise approach in CFT problems. This causes a negligence of
the prior stochastic characteristics of the geodetic network
and it implies a sloppy treatment of its spatial configura-
tion under the transformation procedure. In fact, from a sta-
tistical estimation perspective, the transformed coordinates
through the stepwise approach remain unbiased but they will
not have an optimal accuracy level as a result of mishandling
the full stochastic model for the available data—this will
be explained in more detail in the following sections of the
paper. A schematic illustration of this situation is depicted in
Fig. 1.

The aim of this paper is to solve the CFT problem by
a single-step optimal inversion which employs all available
data in the initial frame, that is the common and new sta-
tion coordinates with their joint CV matrix, and thus exploit-
ing the error covariance structure of the entire point set to
be analyzed. To the authors’ knowledge such an integrated
approach has not been pursued in the geodetic literature and
the present study is an attempt to reveal its significance for
related applications, having particularly in mind the analysis
of permanent GPS networks. Starting from the standard step-
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wise approach (Sect. 2), an enhanced data adjustment model
is formulated to derive the optimal LS estimators for the geo-
detic CFT problem (Sect. 3). The characteristic of the new
solution is that it leads to transformed coordinates with bet-
ter statistical accuracy (i.e. smaller error variances) than the
standard solution without changing the usual LS estimate of
the frame transformation parameters. The considered intra-
frame covariances between common and new points will be
shown to affect the transformed coordinates through a correc-
tion term that is similar to a LS collocation predictor. The role
of this term towards the transformation accuracy improve-
ment is verified by the comparison of the error CV matrices
of the final results obtained by the two approaches. Further-
more, its practical significance is evaluated in Sect. 4 through
numerical experiments with the 3D Helmert transformation
model and real coordinate sets obtained from weekly com-
bined solutions of the EUREF Permanent Network (EPN).
Our results show that the omission of this correction term
causes a bias-like offset of several mm in the transformed
coordinates of new points, whereas the corresponding influ-
ence for the common points is considerably larger but with a
more random-like behaviour. Both of these effects are quite
significant as their magnitude remains well above the statis-
tical accuracy of the transformation results that are obtained
by the standard (stepwise) solution.

In addition to the classic version of the geodetic CFT prob-
lem, the last part of our study (Sect. 5) presents a more com-
prehensive treatment with two crucial extensions from the
usual setting of Fig. 1. Firstly, the prior realization of the
target frame shall not be restricted on the so-called common
points but it will also consider the additional information
from other (non-common) reference points that belong to
a larger network which provides the full realization of the
desired target frame for the underlying transformation prob-
lem. Secondly, the intra-frame and inter-frame covariances
among all point subsets will be taken into account, thus lead-
ing to the most general case for the stochastic model of the
available coordinate data. Those theoretical generalizations
may seem unnecessary in the current context of geodetic
practice, however they provide a valuable all-inclusive view
of the CFT problem that is missing from the geodetic litera-
ture.

2 Standard stepwise approach for geodetic frame
transformation

2.1 Background

In this section we outline the main characteristics of the geo-
detic CFT problem and the related notation that will be used
throughout the paper.

2.1.1 General mathematical model

The geodetic CFT problem is generally treated in terms of a
linearized differential model

X = X′ + Gθ (1)

where X′ and X denote the Cartesian coordinate vectors of a
m-point set with respect to an initial frame and a target frame,
respectively. The matrix G is dictated by the type of frame
transformation and the vector θ contains its associated para-
meters. The above model covers all variants of the Helmert
transformation (e.g. similarity transformation, rigid transfor-
mation, shift-only transformation, rotational transformation)
that are used in geodetic practice for static or time-dependent
frames (Petit and Luzum 2010). For example, in the case of
3D similarity transformation, the parameter vector θ consists
of three translation components, three rotation angles and a
scale factor, whereas the transformation matrix has the well
known form (e.g. Sillard and Boucher 2001)

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 −Z1 Y1 X1

0 1 0 Z1 0 −X1 Y1

0 0 1 −Y1 X1 0 Z1
...

...
...

...
...

...
...

1 0 0 0 −Zm Ym Xm

0 1 0 Zm 0 −Xm Ym

0 0 1 −Ym Xm 0 Zm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

In general, Eq. (1) represents a “close to the identity” formula
which is valid for the coordinate transformation between ref-
erence frames with sufficiently small (<10−5) orientation
and scale differences. This allows us to discard any lineariza-
tion errors associated with Eq. (1) or, at least, to safely assume
that they are absorbed by the noise level of the available data.

Strictly speaking, in the context of the linearized Helmert
transformation, the matrix G is formed by the initial frame
coordinates and, thus, some of its elements are affected by
the random errors of the coordinate vector X′. Since the mag-
nitude of the rotation and scale parameters multiplying those
noisy elements does not exceed a few arcsec and a few ppm,
respectively, we may easily neglect the stochastic character
of the matrix G in geodetic CFT problems. In the rest of
the paper, the design matrix of Eq. (1) is therefore treated
as a fixed deterministic element without having the need to
rely on total LS adjustment theory (e.g. Schaffrin and Wieser
2008; Mahboub 2012).

2.1.2 Coordinate datasets and true coordinate vectors

Given a set of points with known noisy coordinates in an
initial frame, the problem at hand is to determine their coor-
dinates, and their associated accuracy, with respect to a target
frame which is realized by the known (and also noisy) coordi-
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nates in a subset of these points. The available data and their
CV matrix in the initial frame are expressed in the partitioned
form
[

X′
Z′

]
,

[
�X′ �X′Z′

�Z′X′ �Z′

]
(3)

where X′ and Z′ denote the coordinate vectors of the common
and new points, respectively. We consider a non-zero corre-
lation between the two subsets (�X′Z′ �= 0) in line with our
motivating discussion in Sect. 1. For the common points, an
additional set of coordinates and their CV matrix, denoted as
X and �X, are also available with respect to the target frame.

It will be assumed that the coordinate vectors are uncor-
related between the two frames, that is

�XX′ = 0 and �XZ′ = 0 (4)

The above simplification is justified if the known coordi-
nates in the respective frames are obtained from different
procedures and independent observation sets. For the sake
of completeness and for the interested readers, the general
treatment of the CFT problem without the presence of the
last assumption is given later in the paper.

The general model of Eq. (1) provides the theoretical rela-
tionship between the two frames that are involved in our prob-
lem. This means that the systematic coordinate differences
at the common points are presumably described as

E{X − X′} = Gθ (5)

or, equivalently

x = E{X′} + Gθ (6)

where E{} denotes the expectation operator on a stochastic
vector. A similar equation is also presumed for the new points

z = E{Z′} + G̃θ (7)

where G̃ is the design matrix of the transformation model
that refers to the new points. The lower case letters x and z
correspond to the true coordinate vectors of the common and
new points with respect to the target frame. Both of these
vectors, together with the frame transformation parameters,
constitute the unknowns of the geodetic CFT problem.

2.2 Standard CFT solution and its accuracy

The primary unknown in the CFT problem is the parameter
vector θ which can be directly estimated from the available
data. By applying Eq. (1) over the common points and taking
into account their coordinate noise in both frames, we get the
system of observation equations

X − X′ = Gθ + vX−X′ , vX−X′ ∼ (0,�X + �X′) (8)

which leads to the optimal LS estimate for the transformation
parameters

θ̂ =
(

GT (�X + �X′)−1G
)−1

GT (�X + �X′)−1(X − X′)
(9)

The transformed coordinates in the target frame are then
obtained via the forward implementation of Eq. (1), that is

x̂st = X′ + Gθ̂ (10)

for the common points, and

ẑst = Z′ + G̃θ̂ (11)

for the new points. The above formulae yield unbiased esti-
mates of the true coordinates in accordance to the modeling
assumptions given in Eqs. (6) and (7). The superscript “st”
indicates their association to the standard approach and it
distinguishes them from the improved LS estimates that will
be presented in Sect. 3.

The formal accuracy of the transformed coordinates in
the target frame is determined by their CV matrices through
straightforward error propagation to Eqs. (10) and (11).
Hence, we have

Transformation accuracy at “common” points

�st
x̂ = �X′ + G�

θ̂
GT − �X′(�X+�X′)−1G�

θ̂
GT

− G�
θ̂
GT(�X + �X′)−1�X′

(12)

Transformation accuracy at “new” points

�st
ẑ = �Z′ + G̃�

θ̂
G̃T − �Z′X′(�X + �X′)−1G�

θ̂
G̃T

− G̃�
θ̂
GT (�X + �X′)−1�X′Z′

(13)

where �
θ̂

is the CV matrix of the estimated transformation
parameters

�
θ̂

=
(

GT (�X + �X′)−1G
)−1

(14)

If the a priori coordinates of the common points in the target
frame are considered errorless (�X � 0) then Eq. (12) is
simplified as

�st
x̂ = �X′ − G�

θ̂
GT (15)

and it reveals that the transformed coordinates at the common
points will have better accuracy than their original values
in the initial frame. This conditional improvement does not
necessarily occur for the transformed coordinates at the new
points. As a matter of fact, if the coordinate vectors of the
common and new points are uncorrelated with each other
then Eq. (13) takes the form

�st
ẑ = �Z′ + G̃�

θ̂
G̃T (16)
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and it shows that the transformed coordinates become more
dispersed than their original values in the initial frame. The
influence of the cross-CV matrix �X′Z′ may or may not alter
this situation.

In any case, and regardless of the treatment of the a priori
coordinates in the target frame (�X = 0 or �X �= 0), the
transformation results obtained from the standard approach
are non-optimal as explained in the next section.

2.3 Remarks

In contrast to the LS solution for the frame transformation
parameters, the determination of the transformed coordinates
is not embedded in an optimal estimation framework. It is just
based on the transformation model of Eq. (1) using the noisy
initial coordinates and the estimated parameters in a forward
manner, that is

[
x̂st

ẑst

]
=

[
X′

Z′

]
+

[
G

G̃

]
θ̂ (17)

Such an approach is certainly not wrong, however it is not
optimal either as it violates the theoretical requirements of the
best linear unbiased estimation (BLUE, e.g., Koch 1999) due
to the stochastic dependence between the original data and
the frame transformation parameters, both of which appear
at the right side of the last equation. The transformed coordi-
nates are linearly related to a BLUE-type parameter estimator
and they depend also on the additive terms X′ and Z′ which
are directly correlated with that estimator. Indeed, X′ is hid-
den in θ̂ as per Eq. (9) while Z′ is supposed to be correlated
with X′ and, thus, also with θ̂. As a result, the generalized
Gauss-Markov theorem does not hold in this case and there-
fore Eq. (17) will not provide the best (minimum variance)
linear unbiased solution for the transformed coordinates in
the target frame1.

In simple words, the drawback of the standard stepwise
approach is that the data noise is partially minimized in the
result of Eq. (17) and only for the part contained in the frame
transformation parameters. The existing noise in the addi-
tive vectors X′ and Z′ is not mitigated in the standard CFT
solution and it is fully absorbed by the transformed coordi-
nates.

1 According to this theorem (Koch 1999, pp. 156–158) the BLUE of a

linear function q = Qθ+c of a parameter vector is given by q̂ = Qθ̂+c,

where θ̂ is the BLUE of the parameter vector while Q and c are fixed
(deterministic) quantities. The transformed coordinates in Eq. (17), on

the other hand, have the form q̂ = Qθ̂ + c′, where c′ corresponds to an
observed vector which is correlated with the parameter estimator.

3 Optimal LS approach for geodetic frame
transformation

3.1 Enhanced adjustment model

Two straightforward augmentations in the classic adjustment
model for CFT problems are employed in this section to
derive the optimal LS estimators for the transformed coordi-
nates in the target frame.

3.1.1 Inclusion of the new stations

A first step is the inclusion of the initial coordinates of the
new points into the LS adjustment process. Following the
formulation from the previous section, we may set up the
extended system of observation equations

X − X′ = Gθ + vX−X′ , vX−X′ ∼ (0,�X + �X′) (18)

and

Z′ = z − G̃θ + vZ′ , vZ′ ∼ (0,�Z′) (19)

The random error vectors in the above system are correlated
with each other in accordance with the adopted stochastic
model for the coordinate datasets (see Sect. 2.1.2). Consid-
ering that X is uncorrelated with both X′ and Z′, we have

E{vX−X′vT
Z′ } = −�X′Z′ (20)

The system of Eqs. (18)–(19) is expressed in block-matrix
notation as
[

X − X′
Z′

]
=

[
G 0

−G̃ I

] [
θ

z

]
+

[
vX−X′

vZ′

]
(21)

and it can be used for the joint LS estimation of (1) the frame
transformation parameters and (2) the transformed coordi-
nates of the new points. The weight matrix of the input data
has the form

P =
[

�X + �X′ −�X′Z′
−�Z′X′ �Z′

]−1

(22)

and it takes into account the full stochastic model of the entire
point set to be analyzed.

From the weighted LS adjustment of Eq. (21) we obtain
the solution (see Appendix)

θ̂ =
(

GT (�X + �X′)−1G
)−1

GT (�X + �X′)−1(X − X′)
(23)

ẑ = Z′ + G̃θ̂ + �Z′X′(�X + �X′)−1(X − X′ − Gθ̂) (24)

The optimal estimate θ̂ remains the same as the one obtained
by the standard approach in Sect. 2.2. This was actually
expected since the inclusion of the new points does not con-
tribute any additional information for the estimation of the
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frame transformation parameters. On the other hand, the opti-
mal estimate ẑ differs from the standard estimate ẑst that was
given in Eq. (11). The latter has lower statistical accuracy
than the optimal estimate of Eq. (24) which is accompanied
by the CV matrix (after straightforward covariance propaga-
tion)

�ẑ = �Z′ + G̃�
θ̂
G̃T − �Z′X′(�X + �X′)−1G�

θ̂
G̃T

− G̃�
θ̂
GT (�X + �X′)−1�X′Z′

−�Z′X′(�X + �X′)−1(�X + �X′ − G�
θ̂
GT )

× (�X + �X′)−1�X′Z′ (25)

Recalling the CV matrix of ẑst from Eq. (13), we can express
the last equation in the equivalent form

�ẑ = �st
ẑ − ��ẑ (26)

where

��ẑ = �Z′X′(�X + �X′)−1(�X + �X′ − G�
θ̂
GT )

× (�X + �X′)−1�X′Z′ (27)

The matrix ��ẑ is non-negative definite (the proof is trivial
considering that the central term in the last equation is the CV
matrix of the adjusted residuals at the common points) and
therefore the transformed coordinates from Eq. (24) will have
smaller error variances than the transformed coordinates by
the standard stepwise approach.

3.1.2 Stacking of the common stations

The previous formulation does not provide directly an opti-
mal LS estimate for the transformed coordinates at the com-
mon points. To obtain such an estimate we should use a more
extended system of observation equations

X = x + vX, vX ∼ (0,�X) (28)

X′ = x − Gθ + vX′ , vX′ ∼ (0,�X′) (29)

Z′ = z − G̃θ + vZ′ , vZ′ ∼ (0,�Z′) (30)

or, equivalently, in block-matrix notation

⎡
⎣

X
X′
Z′

⎤
⎦ =

⎡
⎣

0 I 0
−G I 0
−G̃ 0 I

⎤
⎦

⎡
⎣

θ

x
z

⎤
⎦ +

⎡
⎣

vX

vX′
vZ′

⎤
⎦ (31)

The above scheme incorporates explicitly the target frame
coordinates of the common points to the unknown parameters
of the CFT problem. Note that by subtracting Eqs. (28) and
(29) we can eliminate the unknown term x and we obtain the
same system of observation equations that was analyzed in
the previous section.

The data weight matrix associated with Eq. (31) has the
form

P =
⎡
⎣

�X 0 0
0 �X′ �X′Z′
0 �Z′X′ �Z′

⎤
⎦

−1

(32)

and it (also) considers the full stochastic model for the avail-
able data. Note the sign difference compared to the weight
matrix in Eq. (22) due to the new algebraic structure of the
observation equations. The more general case, yet still unre-
alistic in geodetic practice, of a full weight matrix by assum-
ing non-zero coordinate correlation between the two frames
is treated later in Sect. 5.

The LS adjustment of Eq. (31) using the aforementioned
weight matrix leads to the solution (see Appendix)

θ̂ =
(

GT (�X + �X′)−1G
)−1

GT (�X + �X′)−1(X − X′)
(33)

x̂ = X′ + Gθ̂ + �X′(�X + �X′)−1(X − X′ − Gθ̂) (34)

ẑ = Z′ + G̃θ̂ + �Z′X′(�X + �X′)−1(X − X′ − Gθ̂) (35)

The optimal estimates θ̂ and ẑ remain the same with the ones
obtained by the weighted LS adjustment in Sect. 3.1.1—this
is not surprising since they are in any case the unique BLUE
of the problem at hand. The gain from the current scheme is
the optimal estimate x̂ which differs from the standard esti-
mate x̂st given in Eq. (10). Their difference has the form of
a prediction-like term of similar structure with the one that
appears in the transformed coordinates of the new points.
The presence of this term improves the accuracy of the trans-
formed coordinates at the common points, a fact that can be
inferred from their CV matrix

�x̂ = �X′ + G�
θ̂
GT − �X′(�X + �X′)−1G�

θ̂
GT

− G�
θ̂
GT (�X + �X′)−1�X′

−�X′(�X + �X′)−1(�X + �X′ − G�
θ̂
GT )

× (�X + �X′)−1�X′ (36)

Taking into account the CV matrix of x̂st from Eq. (12), the
last equation can be expressed as

�x̂ = �st
x̂ − ��x̂ (37)

where

��x̂ = �X′(�X + �X′)−1(�X + �X′ − G�
θ̂
GT )

× (�X + �X′)−1�X′ (38)

The matrix ��x̂ is non-negative definite (again, the proof is
trivial considering that the central term in the last equation
is the CV matrix of the adjusted residuals at the common
points) and therefore the transformed coordinates from Eq.
(34) will have smaller error variances than the transformed
coordinates by the standard stepwise approach.
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3.2 Discussion

The traditional methodology for geodetic frame transforma-
tion does not provide an optimal solution for the computed
coordinates in the target frame. Our previous analysis showed
that the BLUE estimators for the transformed coordinates are
related to the standard estimators of Eq. (17) via the expres-
sion
[

x̂
ẑ

]
=

[
x̂st

ẑst

]
+

[
�X′

�Z′X′

]
(�X + �X′)−1 (X − X′ − Gθ̂)︸ ︷︷ ︸

X−x̂st

(39)

or, in a more compact form

[
x̂
ẑ

]
=

[
x̂st

ẑst

]
+

[
δx̂
δẑ

]
(40)

The prediction-like correction terms that appear in the above
equations are similar to those found in least squares collo-
cation theory, and they contain the required updating for the
transformed coordinates obtained by the standard stepwise
approach. From a computational viewpoint, these corrections
do not require any additional matrix inversion other the one
already used for the determination of the frame transforma-
tion parameters. It is worth noting that Eq. (39) is closely
related to the so-called covariance adjustment technique for
the approximation of a BLUE estimator as a sum of a lin-
ear unbiased estimator and a linear zero-mean estimator; for
more details see Schwarz (1974).

At this point it is useful to clarify the main aspects of the
terms δx̂ and δẑ in view of their contribution to the increased
accuracy of the transformation results. Both of them are
obtained from a stochastic mapping of the zero-mean resid-
uals at the common points X − x̂st (which are often used for
the statistical empirical assessment of the standard CFT solu-
tion) into appropriate corrections for the transformed coor-
dinates. These corrections carry the statistical information
for the available data that is either overlooked or misused in
the context of the stepwise approach while their role is to
minimize the propagated noise from the initial coordinates
to their transformed values with respect to the target frame—
see also the discussion in Sect. 2.3.

Interestingly enough, Eq. (39) resembles a Kalman-type
filtering which improves the standard estimates of the trans-
formed coordinates by exploiting the noise characteristics of
the various datasets (Gibbs 2011). In the case of the common
points, this improvement essentially stems from a weighted
averaging of their available coordinates in the target frame.
In fact from Eq. (39) we have

x̂ = (I − �X′(�X + �X′)−1)x̂st + �X′(�X + �X′)−1X

(41)

and by taking into account the well known matrix identities2

A(A + B)−1 = I − (A−1 + B−1)−1A−1

= (A−1 + B−1)−1B−1 (42)

we get the equivalent expression

x̂ = (�−1
X + �−1

X′ )−1
(
�−1

X′ x̂st + �−1
X X

)
(43)

which represents a weighted average of the coordinate vec-
tors x̂st and X. This procedure reduces the noise that exists in
the standard estimate of the transformed coordinates [actu-
ally the noise part caused by the additive vector X′ in Eq.
(17)] by taking advantage of the prior information for the
common points in the target frame.

In the case of the new points, the improvement of the
transformation solution is linked to the minimization of the
propagated noise from the data vector Z′ to their transformed
coordinates (note that the standard estimate ẑst totally ignores
this noise effect). For this purpose the following correction
term is employed

δẑ = �Z′X′(�X + �X′)−1(X − x̂st) (44)

which is predicted from the adjusted residuals at the common
points by exploiting the cross-CV matrix �Z′X′ .

3.2.1 Does the optimal CFT solution in Eq. (39) refer to the
same frame with the standard CFT solution
in Eq. (17)?

In principle, the frame consistency between the BLUE and
the standard estimates for the transformed coordinates is ver-
ified by the unbiasedness property

E{x̂} = E{x̂st} = x and E{ẑ} = E{ẑst} = z (45)

which holds true provided that no systematic discrepancies
exist between the initial and the target frame other than those
already absorbed by the transformation parameters θ̂; see also
Sect. 2.1.2.

Alternatively, the nullification of the posterior LS estimate
of the frame transformation parameters

θ̂
post =

⎧⎪⎨
⎪⎩

(GT WG)−1GT W(X − x̂st) = 0
and

(GT WG)−1GT W(X − x̂) = 0
(46)

can also confirm that the BLUE and the standard estimates
of the transformed coordinates refer to the same frame as the
prior coordinates X of the common points. The matrix W

2 These identities are directly obtained from the general matrix
property (e.g. Blewitt 1998, p. 248) (�1 ± �12�

−1
2 �T

12)
−1 =

�−1
1 ∓ �−1

1 �12(�2 ± �T
12�

−1
1 �12)

−1
�T

12�
−1
1 by substituting �1 =

A, �−1
2 = B and �12 = �T

12 = I.
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denotes a weight matrix which does not necessarily remain
the same in both cases.

In the case of the standard solution (x̂st) is easily shown
that

X − x̂st =
(

I − G
(

GT (�X + �X′)−1G
)−1

× GT (�X + �X′)−1
)
(X − X′) (47)

and by substituting the above expression into Eq. (46) we

confirm that θ̂
post

=0 under the weight matrix choice W =
(�X + �X′)−1. On the other hand, the optimal solution (x̂)

satisfies the filtering relationship

X − x̂ = �X(�X + �X′)−1(X − x̂st) (48)

which, in conjunction with Eq. (47), implies the nullifica-

tion of θ̂
post

under the weight matrix choice W = �−1
X . The

difference in the respective weight matrices corroborates the
fact that x̂ has always higher statistical accuracy than x̂st as
already discussed in the previous sections.

3.2.2 What happens when the prior coordinates in the
target frame are considered errorless?

This is a special case that should be understood in a relative
sense without assigning necessarily the meaning of noise-
free coordinates to the data vector X. Practically, if the a priori
coordinate accuracy of the common points is significantly
better in the target frame compared to the initial frame, that
is

�X + �X′ � �X′ and �X′(�X + �X′)−1 � I (49)

then the optimally transformed coordinates at the common
points become

x̂ � x̂st+ (X − x̂st) = X (50)

thus reproducing the prior high-quality coordinates in the
target frame. The corresponding solution for the transformed
coordinates at the new points takes the form

ẑ � ẑst + �Z′X′�−1
X′ (X − x̂st) (51)

Note that the magnitude of the correction vectors δx̂ and δẑ
will generally increase as the CV matrix �X tends to zero, a
fact that can be inferred from the analytic expressions in Eq.
(39); see also the numerical examples in the next section.

In the opposite scenario, that is if the a priori coordinate
accuracy of the common points is significantly better in the
initial frame compared to the target frame

�X + �X′ � �X, �X′(�X + �X′)−1 � 0,

�Z′X′(�X + �X′)−1 � 0 (52)

then the optimal estimates for the transformed coordinates
become

x̂ � x̂st and ẑ � ẑst (53)

for the common and the new points, respectively.

4 Numerical examples

The optimal CFT scheme that was described in the previous
section will be evaluated herein using actual real-network
data. As an example we consider the Helmert transformation
of a weekly combined solution of the EUREF permanent net-
work (EPN) to the International Terrestrial Reference Frame
2008 (ITRF08). The used EPN coordinates and their full
CV matrix refer to GPS week 1762 and were obtained from
the corresponding SINEX file produced by the BKG (Bun-
desamt für Kartographie und Geodäsie) data analysis center.
This particular solution contains 244 stations, 95 of which are
included in the ITRF08 realization of the global IGS network.
The ITRF08 coordinates and their full CV matrix for these 95
stations have been extracted from the solution file ITRF2008-
TRF-IGS.SNX which was obtained from the IGN/ITRF pub-
lic ftp site, and they were subsequently reduced to the mean
epoch of the weekly EPN solution.

Two different cases are considered for the treatment of the
ITRF08 reference coordinates at the common points, namely
(1) the “noise-free” case by setting their prior CV matrix
to zero, and (2) the fully-weighted case by incorporating
their actual CV matrix into the LS adjustment procedure.
The estimated Helmert transformation parameters between
the weekly EPN solution and ITRF08 have been computed
from Eq. (33) and they are given in Table 1.

To assess the significance of the rigorous CFT approach
we investigate the differences between the optimal and the
standard estimates for the transformed coordinates in the
underlying network. For this purpose, the correction vec-
tors δx̂ and δẑ have been respectively determined by the
prediction-like expressions in Eq. (39) for each weighting
choice of the ITRF08 reference coordinates (i.e. �X = 0
and �X �= 0). The statistics of their Cartesian components
are shown in Table 2 from which the following conclusions
can be drawn.

The coordinate corrections at the new points (δẑ) amount
to several mm for all three Cartesian components. Compar-
ing the respective mean and rms values in Table 2, it is evi-
dent that the major part of these corrections is related to an
“apparent bias” that is hidden in the (suboptimal) transformed
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Table 1 Estimated Helmert transformation parameters between the EPN weekly combined solution (GPS week 1762) and ITRF08

Treatment of the ITRF08
reference coordinates
at the common points

tx [cm] ty [cm] tz [cm] εx [mas] εy [mas] εz [mas] δs [ppb]

“Noise-free” −2.1 −3.9 6.6 0.46 −6.97 5.48 −6.7

Fully-weighted −4.8 −8.5 10.0 1.99 −8.27 4.83 −7.1

All 95 common points were used in the computations

Table 2 Statistics of the
corrections vectors δx̂ and δẑ
for the transformed EPN weekly
solution (GPS week 1762)

All values in mm

δx̂ (at 95 common pts) δẑ (at 149 new pts)

max min mean rms max min mean rms

“Noise-free” case: �X = 0

Cartesian component X 204.1 −115.1 2.1 36.1 9.6 −18.9 −3.3 6.4

Cartesian component Y 249.6 −578.0 −2.5 70.5 7.4 −8.3 −4.5 5.1

Cartesian component Z 377.1 −125.5 5.9 48.3 20.6 −13.4 8.3 9.2

Fully-weighted case: �X �= 0

Cartesian component X 44.7 −45.1 −0.0 12.7 3.4 −9.9 −2.7 3.3

Cartesian component Y 63.6 −16.2 −0.4 10.5 1.5 −4.2 −2.3 2.4

Cartesian component Z 27.1 −95.2 1.2 15.1 8.8 −2.6 2.2 2.6

coordinates by the stepwise approach. In contrast, the coor-
dinate corrections at the common points (δx̂) exhibit a more
random-like pattern, a fact that can be confirmed from the
larger discrepancy between the mean and rms values in the
corresponding columns of Table 2; see also Figs. 1 and 2.
The latter corrections reach up to several cm (or even dm
in the case �X = 0) and they are significantly larger from
the respective corrections which are associated with the new
points.

The actual differences between the optimal and the stan-
dard estimates for the transformed coordinates are plotted
in Fig. 2 (noise-free case) and Fig. 3 (fully-weighted case).
The magnitude of these differences is evaluated in terms of
their signal-to-noise ratio (SNR) which is also depicted in
the same figures. For the SNR computation at each point we
have used the formula

SN R = 10 log10

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∣∣∣X̂i − X̂ st
i

∣∣∣/σX̂ st
i∣∣∣Ŷi − Ŷ st

i

∣∣∣/σŶ st
i∣∣∣Ẑi − Ẑ st

i

∣∣∣/σẐ st
i

(54)

where the accuracy of the standard estimates is obtained from
the rigorous CV matrices in Eqs. (12) and (13). The above
equation quantifies (in dB) the significance of the Cartesian
components of the coordinate corrections at each EPN sta-
tion. In general, negative SNR values correspond to a statis-
tically negligible effect while SNR values higher than ∼4.8
indicate a strong correction signal which exceeds the 99 %
uncertainty level of the stepwise transformation approach.

The SNRs of the correction vector δẑ lie well above 5 dB
(noise-free case) and 15 dB (fully-weighted case) for most of
the 149 new stations, thus indicating a significant difference
between the optimal and the standard estimates of their trans-
formed coordinates. On the other hand, the correction vector
δx̂ shows a stronger variability over the 95 common stations
and a smaller apparent bias in their transformed coordinates
which are obtained by the stepwise approach. However the
magnitudes of these corrections are considerably larger and
even more significant as they have higher SNRs from the
respective corrections that are associated with the new sta-
tions.

5 A (more) general CFT problem

The optimal treatment of the CFT problem, as presented in
Sect. 3, can support all related applications in current geo-
detic practice. The improved estimators in Eq. (39) take into
account the intra-frame covariances between common and
new points which are commonly present, yet usually ignored,
in network solutions that need to be aligned to another coor-
dinate frame. On the other hand, the inter-frame covariances
in the available datasets have been disregarded in the weight
matrix of the LS adjustment model [see Eq. (32)], a fact
that makes our previous estimators suboptimal in the general
sense. Although the consideration of this effect seems diffi-
cult to be implemented in practical cases (due to the absence
of knowledge of the corresponding cross-CV matrices), it is
nevertheless essential for a complete and thorough treatment
of the CFT problem.
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Fig. 2 Cartesian components
and their corresponding SNRs
of the correction vectors for the
transformed coordinates at the
95 common points (a) and 149
new points (b) in the EPN
weekly solution (GPS week
1,762). The results refer to the
noise-free case (�X = 0). The
straight red line in the
right-column plots indicates the
average SNR value
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Another point of interest stems from the fact that, in
most cases, the prior coordinates of the common points in
the target frame (i.e. X, �X) do not constitute a “stand-

alone” dataset. In fact these reference coordinates are
often estimated jointly with the coordinates of additional
stations through a LS adjustment of a larger network
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Fig. 3 Cartesian components
and their corresponding SNRs
of the correction vectors for the
transformed coordinates at the
95 common points (a) and 149
new points (b) in the EPN
weekly solution (GPS week
1,762). The results refer to the
fully-weighted case (�X �= 0).
The straight red line in the
right-column plots indicates the
average SNR value
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which provides the full realization of the desired target
frame for our transformation problem. A legitimate con-
cern is therefore the handling of the coordinate correla-

tion between (1) the employed common stations and (2)
the other (non-common) reference stations in the target
frame, and its possible influence on the final results. A
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Fig. 4 A schematic
representation of the classic and
the extended version of the
geodetic CFT problem

(b) Extended CFT problem
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schematic overview of the two aforementioned issues is given
in Fig. 4.

In order to properly model the effects of the intra-frame
and inter-frame covariances, and also to account for the infor-
mation coming from other (non-common) reference stations
in the target frame, we shall extend the system of observation
Eqs. (28)–(30) as follows

Y = y + vY, vY ∼ (0,�Y) (55)

X = x + vX, vX ∼ (0,�X) (56)

X′ = x − Gθ + vX′ , vX′ ∼ (0,�X′) (57)

Z′ = z − G̃θ + vZ′ , vZ′ ∼ (0,�Z′) (58)

or, in block-matrix form
⎡
⎢⎢⎣

Y
X
X′
Z′

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 I 0 0
0 0 I 0

−G 0 I 0
−G̃ 0 0 I

⎤
⎥⎥⎦

⎡
⎢⎢⎣

θ

y
x
z

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

vY

vX

vX′
vZ′

⎤
⎥⎥⎦ (59)

where the coordinate vector Y refers to a set of reference sta-
tions in the target frame which is correlated with the common
and new points in the underlying network. The data weight

matrix that is associated with the above system is considered
to be a full matrix

(60)

where each CV submatrix is assumed known beforehand.
The weighted LS adjustment of Eq. (59) leads to the follow-
ing solution (see appendix for the proof)

Estimated transformation parameters

θ̂ =
(

GT �−1
X−X′G

)−1
GT �−1

X−X′(X − X′) (61)

Estimated transformed coordinates at the common and new
points

[
x̂
ẑ

]
=

[
x̂st

ẑst

]
+

[
�X′ − �X′X

�Z′X′ − �Z′X

]
�−1

X−X′(X − x̂st) (62)
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Estimated (“updated”) coordinates at the non-common ref-
erence stations

ŷ = Y + (�YX′ − �YX)�−1
X−X′(X − x̂st) (63)

The auxiliary terms x̂st and ẑst correspond to the transformed
coordinates according to the stepwise approach (see Sect. 2)
and the CV matrix �X−X′ is

�X−X′ = �X + �X′ − �XX′ − �T
XX′ (64)

From Eqs. (61)–(63) we notice that:

– The general optimal estimators for the transformed coor-
dinates retain the Kalman filtering structure of the corre-
sponding optimal estimators given in Eq. (39);

– The inter-frame covariances affect the estimated transfor-
mation parameters and the corrections to the standard esti-
mates of the transformed coordinates through the cross-
CV matrices �X′X and �Z′X. In the absence of this effect,
the optimal estimators θ̂, x̂ and ẑ become identical to the
(simpler) optimal estimators given in Sect. 3;

– The consideration of the prior information of the non-
common reference stations (Y) does not affect the results
of the CFT problem even when these coordinates are cor-
related with the prior coordinates of the common and new
points;

– The knowledge of the cross-CV matrices �YX′ and �YX

allows us to update the prior coordinate vector Y via Eq.
(63). This is an important procedure, at least from a statis-
tical perspective, if one wants to retain optimal coordinate
consistency among all point subsets in the target frame.

The practical applicability of Eqs. (61)–(63) is limited by
the lack of the cross-CV matrices between the “reference”
network (X, Y) and the “new” network (X′, Z′); see Fig. 4.
However, there are examples where such inter-frame covari-
ances are inherently present. Be it enough to mention here
the case that the reference and the new network are sepa-
rately determined from GPS phase observations which are
partly common in both networks due to overlapping perma-
nent stations. The noise of the common observations will be
spread by the adjustment to both networks, thus resulting to
correlated errors in their estimated coordinates. Indeed, to
come to know such error covariances might be as difficult as
solving the problem by adjusting the two networks together
in a batch solution. So the formulae derived in this section
have primarily a theoretical interest, although they might be
used for instance to get a priori bounds on the coordinate
correction terms δx̂ and δẑ.

6 Conclusions

In this paper the CFT problem has been analyzed under dif-
ferent hypotheses on the stochastic model of the known coor-
dinates which are involved in the frame transformation proce-
dure. If we take into account only the internal CV matrices of
the coordinates of the common points in the two frames, �X

and �X′ , and we ignore that the coordinates of the new points
Z′ are usually correlated with X′, we come out with a proce-
dure that determines first the parameters θ of the frame trans-
formation model and then the transformed coordinates in the
target frame. This is what we called a standard stepwise solu-
tion which represents the “orthodox” approach for CFT prob-
lems in geodetic practice. Of course, the standard solution for
the transformed coordinates is unbiased but not optimal in
the presence of internal covariances between X′ and Z′. The
optimal LS solution, however, has a simple analytic expres-
sion [cf. Eq. (39)] that can be easily implemented in practi-
cal computations, and it leads to less dispersed estimates for
the transformed coordinates, as shown in Sect. 3. This is by
far the most interesting case from a practical point of view
because all the required CV matrices, �X,�X′ ,�Z′ ,�X′Z′ ,
are easily available in network solutions obtained from space
geodetic techniques. A numerical example of the transforma-
tion of an EPN weekly solution to the ITRF08 frame shows
that the corrections to the transformed coordinates due to the
introduction of the full covariance matrix of the EPN weekly
network can amount from several millimeters up to several
centimeters

Also, in this study we have treated the most general CFT
problem of fully correlated coordinate sets between two over-
lapping geodetic network solutions. Although this is more of
theoretical interest since the cross-covariances between (X,
Y) and (X′, Z′) are usually not available, yet the optimal LS
solution looks interesting, displaying two general character-
istics. First, all the related estimators depend on the inversion
of �X−X′ which is always of manageable dimension in prac-
tical cases. Moreover, the transformed coordinates for the
new network are independent of the stochastic model of the
known coordinates of the (non-common) reference points (Y)
regardless of the inter-frame and intra-frame covariances that
may be present in their values. The influence of the above con-
siderations on the optimal analysis of coordinate time series
in permanent geodetic networks is an interesting topic that
will be the subject of future investigations.

7 Appendix

The BLUE estimators related to the solution of the geodetic
CFT problem are analytically derived in this appendix. Our
proof scheme considers the most general case of the problem
by taking into account both the intra-frame and inter-frame
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covariances in the coordinate datasets. The optimal transfor-
mation formulae given in Sect. 3 [see e.g. Eq. (39)] stem
directly as special cases of the following derivations.

Let us first express the system of observation equations
from Eqs. (55)–(58) in the equivalent algebraic form

X − X′ = Gθ + vX−X′ (65)

X = x + vX (66)

Y = y + vY (67)

Z′ = z − G̃θ + vZ′ (68)

Using block-matrix notation the above system can be written
as

(69)

or, in a more compact form

[
δX
�

]
=

[
G 0
K I

] [
θ

ξ

]
+

[
vδX
v�

]
(70)

The meaning of all auxiliary terms in the last equation is
deduced from (69). The data weight matrix that is associated
with the above system has the general form

P =
[

P1 P12

PT
12 P2

]
=

[
�δX �δX,�

�T
δX,� ��

]−1

(71)

where

�δX = �X + �X′ − �XX′ − �T
XX′ (72)

�δX,� = [
�δX,X �δX,Y �δX,Z′

]
(73)

�� =
⎡
⎣

�X �XY �XZ′
�YX �Y �YZ′
�Z′X �Z′Y �Z′

⎤
⎦ (74)

Using elementary covariance propagation rules, we may
express the submatrices of the auxiliary cross-CV matrix
�δX,� in terms of the relationships

�δX,X = �X − �X′X (75)

�δX,Y = �XY − �X′Y (76)

�δX,Z′ = �XZ′ − �X′Z′ (77)

The weighted LS adjustment of (70) leads to the normal equa-
tions system

[
GT KT

0 I

] [
P1 P12

PT
12 P2

] [
G 0
K I

][
θ̂

ξ̂

]

=
[

GT KT

0 I

] [
P1 P12

PT
12 P2

] [
δX
�

]
(78)

from which we obtain the following equations for the optimal
estimators θ̂ and ξ̂

(
GT P1G + KT PT

12G + GT P12K + KT P2K
)

θ̂

+
(

GT P12 + KT P2

)
ξ̂

=
(

GT P1 + KT PT
12

)
δX +

(
GT P12 + KT P2

)
� (79)

and
(

PT
12G + P2K

)
θ̂ + P2ξ̂ = PT

12δX + P2� (80)

Solving the last equation for ξ̂ we get

ξ̂ = P−1
2 PT

12δX + � −
(

P−1
2 PT

12G + K
)

θ̂ (81)

and by substituting back to (79), and after several cancela-
tions of similar terms, we end up with the relationship

GT
(

P1 − P12P−1
2 PT

12

)
Gθ̂ = GT

(
P1 − P12P−1

2 PT
12

)
δX

(82)

Taking into account from (71) that

P1 − P12P−1
2 PT

12 = �−1
δX = �−1

X−X′ (83)

we finally obtain the optimal estimate of the frame transfor-
mation parameters

θ̂ =
(

GT �−1
X−X′G

)−1
GT �−1

X−X′(X − X′) (84)

Based again on (71) we have the useful formula

P−1
2 PT

12 = −�T
δX,��−1

δX (85)

which can be substituted to (81), thus leading to the optimal
estimate of the auxiliary vector ξ in terms of the expression

ξ̂ = � − �T
δX,��−1

δX

(
δX − Gθ̂

)
− Kθ̂ (86)
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or, in the equivalent form

⎡
⎣

x̂
ŷ
ẑ

⎤
⎦=

⎡
⎣

X
Y
Z′

⎤
⎦ −

⎡
⎢⎢⎢⎣

�T
δX,X

�T
δX,Y

�T
δX,Z′

⎤
⎥⎥⎥⎦�−1

δX

(
δX − Gθ̂

)
−

⎡
⎣

0
0

−G̃

⎤
⎦ θ̂

(87)

Using the covariance expressions from (75)–(77), the last
equation is expressed as
⎡
⎣

x̂
ŷ
ẑ

⎤
⎦=

⎡
⎣

X
Y

Z′+G̃θ̂

⎤
⎦−

⎡
⎣

�X − �XX′
�YX − �YX′
�Z′X − �Z′X′

⎤
⎦�−1

δX

(
δX−Gθ̂

)

(88)

and, by taking into account (72), in the equivalent form
⎡
⎣

x̂
ŷ
ẑ

⎤
⎦

=
⎡
⎣

X
Y

Z′ + G̃θ̂

⎤
⎦ −

⎡
⎣

�δX − �X′ + �X′X
�YX − �YX′
�Z′X − �Z′X′

⎤
⎦�−1

δX

(
δX − Gθ̂

)

(89)

Considering that δX = X − X′, equation (89) can be finally
reduced to the form

⎡
⎣

x̂
ŷ
ẑ

⎤
⎦

=
⎡
⎢⎣

X′ + Gθ̂
Y

Z′ + G̃θ̂

⎤
⎥⎦+

⎡
⎣

�X′ − �X′X
�YX′ − �YX
�Z′X′ − �Z′X

⎤
⎦�−1

X−X′
(

X − X′ − Gθ̂
)

(90)

From the last equation we explicitly obtain the optimal esti-
mates for the transformed coordinates from the initial frame
to the target frame at the common and new points, respec-
tively

x̂ = x̂st + (�X′ − �X′X) �−1
X−X′(X − x̂st) (91)

ẑ = ẑst + (�Z′X′ − �Z′X) �−1
X−X′(X − x̂st) (92)

and also the “updated” coordinates at the non-common ref-
erence points (in the target frame)

ŷ = Y + (�YX′ − �YX) �−1
X−X′(X − x̂st) (93)

Note that the terms x̂st and ẑst correspond to the transformed
coordinates according to the standard stepwise CFT approach
[see Eq. (17)].
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