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Abstract The estimated coordinates from a minimum-
constrained (MC) network adjustment are generally influ-
enced by two different error sources, that is the data noise
from the available measurements and the so-called datum
noise due to random errors in the fiducial coordinates that
are used for the datum definition with regard to an exter-
nal reference frame. Although the latter source does not
affect the estimable characteristics of a MC solution, it still
contributes a datum-related noise to the estimated positions
which reflects the uncertainty of the coordinate system itself
for the adjusted network. The aim of this paper is to develop
a new type of MCs which minimizes both of the aforemen-
tioned effects in the final coordinates of an adjusted network.
This particular problem has not been treated in the geodetic
literature and the solution which is presented herein offers
an elegant unification of the classic inner constraints into a
more general framework for the datum choice problem of
network optimization theory. Furthermore, the findings of
our study provide a useful and rigorous tool for frame den-
sification problems by means of an optimal MC adjustment
in geodetic networks.
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1 Introduction

The determination of station positions from geodetic mea-
surements through a least squares network adjustment is
an ‘ill-posed’ estimation problem of profound importance
for several applications. Typically, a unique solution of
this problem is obtained from the generalized inversion of
a rank-deficient system of normal equations with the aid
of the so-called minimum constraints (MCs); see Blaha
(1971). Depending on the network’s observational model,
the primary role of these constraints is to specify the non-
estimable components of the coordinate system (i.e. ori-
gin, orientation, scale, and their temporal evolution) with
respect to which the station positions will be computed with-
out affecting the estimable characteristics of the adjusted
network. Their use enables the hierarchical alignment of
geodetic networks within a unified spatial framework and
the densification of global reference frames over regional
networks through the realization of high-quality terrestrial
reference frames (TRFs) from space geodetic data. The
formulation of minimum constraints according to a novel
optimization scheme for the estimated coordinates in net-
work adjustment problems is the main objective of the present
paper.

The search for an optimal type of MCs had received con-
siderable attention in the past decades mainly in tandem with
the zero-order design (ZOD) or datum choice problem of net-
work optimization theory (Grafarend 1974; Schmitt 1982;
Papo and Perelmuter 1981; Blaha 1982; Dermanis 1985,
1998; Schaffrin 1985; Teunissen 1985). A solution to this
problem is known to be given by the so-called inner con-
straints which lead to the minimum-trace error covariance
(CV) matrix for the estimated coordinates at the network sta-
tions. This particular type of MCs was originally introduced
by Meissl (1969) yet it was Blaha (1971) and Pope (1971)
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who first established in detail their optimality with regard to
the statistical properties of the estimated coordinates in MC
networks.

It should be noted that the optimality of inner constraints
is restricted to the minimization of the propagated data noise
on the adjusted network coordinates (hereafter called data
noise effect). Therefore it does not consider the additional
effect of random errors in the known coordinates of the ref-
erence stations which are commonly used for the practical
implementation of MCs in geodetic networks. The latter does
not influence the geometrical form of a MC solution yet
it contributes a datum-related noise to the estimated posi-
tions which reflects the uncertainty of the coordinate system
itself for the adjusted network (hereafter called datum noise
effect—more details to be given later in the paper). The min-
imization of the datum noise is an important issue for the
MC adjustment of a geodetic network with respect to a given
TRF, yet it has not been treated within the theoretical realm of
the datum choice problem and the ZOD optimization frame-
work.

From a strict perspective of statistical estimation theory,
the station coordinates in network adjustment problems are
not estimable quantities and, thus, the optimization of their
CV matrix with respect to different datum choices can be
considered as a mathematical artifice with no actual physical
relevance. Specifically, in the context of MC networks, the
estimated coordinates (and their CV matrix) act as a ‘depos-
itory’ of information for the computation of estimable para-
meters (and their corresponding accuracy) that remain invari-
ant under any choice of MCs for the underlying network
(Grafarend and Schaffrin 1974, 1976). In this way, when it
comes to specifying the statistical accuracy of the estimated
coordinates it may be prudent to speak about their ‘apparent’
accuracy which depends directly on the datum choice and,
obviously, it does not provide an objective quality measure
of the MC network from the available data (Dermanis 2012).
The use of inner constraints yields an optimal solution which
makes only the final coordinates to have a seemingly better
accuracy under the influence of the data noise effect, without
offering any actual improvement for the geometrical accu-
racy of the adjusted network. In fact, if one is interested only
to the shape analysis of a MC network (or to the error analysis
of the available measurements) there is nothing to be gained
from an ‘optimal’ datum choice through a preferred set of
MCs.

The above viewpoint overlooks an important aspect of
MCs, namely their role as a datum transfer and frame den-
sification tool in network adjustment problems. Minimum-
constrained adjustment schemes are often used to tie a geo-
detic network to a reference frame through a set of a pri-
ori known coordinates (and velocities in case of dynamic
networks) at a number of fiducial stations (Altamimi et al.
2002). From this perspective, the choice of MCs poses a

meaningful concern for practical applications since it affects
the quality of the datum implementation in the adjusted
network (e.g. single-station MCs are known to have sig-
nificantly worse ‘frame alignment’ accuracy for regional
GNSS networks compared to the no-net-translation con-
dition over a number of reference stations).1 The fact is
that different sets of MCs may offer different stability for
the realized coordinate frame over the same network in
the sense that the adjusted station positions may exhibit
higher or lower sensitivity to small perturbations (=ran-
dom errors) in the used fiducial coordinates—this corre-
sponds, in loose terms, to what we previously identified
as datum noise effect. Some general aspects and practical
examples related to this issue have been recently discussed
in Kotsakis (2012) while a heuristic treatment within a
rather different context can be found in the study by Coulot
et al. (2010). The crucial problem to be exposed herein
refers to the optimal filtering of the datum noise within
the minimum-constrained adjustment of a geodetic net-
work in support to its connection to an existing reference
frame.

The aim of this study is to devise a new type of MCs based
on the joint minimization of the data and datum noise effects
in geodetic network adjustment. Using a straightforward ana-
lytic approach we derive a set of datum constraints that min-
imizes the trace of the complete error CV matrix (i.e. the one
including the combined contribution of the data noise and the
random errors within the fiducial station coordinates) for the
estimated positions in a MC network. Our treatment covers
also the case of the separate minimization of the datum noise
effect which leads to a weighted type of inner constraints for
the reference frame realization in a geodetic network. It is
noted that the aforementioned minimum-trace property has
not been used as an independent criterion for determining
an optimal set of MCs—to the author’s knowledge such an
approach has only appeared in (Blaha 1971, pp. 53–68)—but
it is deduced as an intrinsic property of the inner constraints
in the context of generalized inverse theory for symmetric
matrices and singular normal equations systems (Teunissen
1985; Koch 1999). The present paper extends Blaha’s origi-
nal approach (without the use of generalized inverses) and it
leads to an elegant unification of the classic inner constraints
into a more general optimization framework for the datum
choice problem.

1 To facilitate the reader’s view at this point we note that different
choices of MCs, such as H(x − xext) = 0 vs. H̃(x − xext) = 0, includes
also the case H̃ = HPx where Px is a weight matrix which controls the
contribution of the reference stations towards the datum definition in
the underlying network.
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2 Preliminaries

The adjustment of geodetic networks is generally formulated
as a parameter estimation problem in a nonlinear and rank-
deficient Gauss-Markov model

y = f(x) + v, v ∼ (0, σ 2P−1) (1)

whose weighted least squares inversion yields a singular con-
sistent system of linearized normal equations (NEQs)

(ATPA)
︸ ︷︷ ︸

N

(x − xo) = ATP (y − f(xo))
︸ ︷︷ ︸

u

(2)

where y is the measurement vector, xo is an initial approxima-
tion of the unknown parameters, A = fx (xo) is the Jacobian
matrix of the observables and P is the data weight matrix.
Depending on the network type, the parameters x stem from
a static (coordinates only) or dynamic (coordinates and veloc-
ities) modeling of the geodetic observables with respect to an
appropriate reference system. Without loss of generality we
assume that any nuisance parameters have been eliminated
beforehand from the NEQ system, so that the term x − xo

contains only the unknown corrections to the approximate
positions of the network stations.

The determination of a single solution of Eq. (2) consti-
tutes the so-called datum choice problem that is generally
resolved with the help of a consistent set of linear (or lin-
earized) MCs

H(x − xo) = c = H(xext − xo) (3a)

or, in equivalent form

H(x − xext) = 0 (3b)

which lead to the extended full-rank NEQ system

(N + HTH)(x − xo) = u + HTc (4)

The above system has a unique solution (termed here as MC
solution)

x̂ = xo + (N + HTH)−1u + (N + HTH)−1HTc (5)

which satisfies both the singular NEQs in Eq. (2) and the
MCs in Eq. (3a, 3b) (the necessary algebraic conditions for
the matrix H are omitted here for brevity, for more details
see Schaffrin 1985; Koch 1999).

The classic inner constraints correspond to a special
choice of the MC matrix, denoted as H = E, which fulfills
the orthogonality property AET = 0, and thus NET = 0, and
it minimizes the propagated data noise on the final solution
of Eq. (5) (Blaha 1971). The structure of the inner constraint
matrix E depends on the network’s datum defect and it orig-
inates from the so-called Helmert matrix that is associated
with the linearized similarity transformation for Cartesian

coordinate frames (ibid.). Of particular importance for our
study are the following formulae:

(N + HTH)−1N = I − ET(HET)−1H (6)

(N + HTH)−1HT = ET(HET)−1 (7)

where H denotes an arbitrary MC matrix for the underlying
network. The analytic proof of the above equations can be
found in Kotsakis (2012).

The vector xext in Eq. (3a, 3b) refers to a set of known
coordinates from an ‘external’ reference frame with respect
to which the MC network is aligned. The preceding formu-
lation implies a one-to-one correspondence between the vec-
tors x and xext, and thus it implicitly assumes that the external
frame information is available over all network stations. For
the purpose of this paper we consider the (more realistic)
case where the network is composed of two distinctive parts
x1 and x2: the first contains the fiducial stations with a priori
known coordinates xext

1 while the second includes the new
stations. The rationale of our study relies on the premise that
the datum definition involves only stations for which there
exists prior information for their positions (and also their
accuracy) with respect to an external reference frame. Hence,
the MC formulation in Eq. (3a, 3b) and the corresponding
solution from Eq. (5) will be considered in the context of the
partition scheme

H = [ H1 0 ], x =
[

x1

x2

]

, xext =
[

xext
1

0

]

(8)

where the necessary algebraic conditions for the MC subma-
trix H1 are again omitted for brevity.

An important remark should be given regarding the use
of a weight matrix for the incorporation of MCs in network
adjustment problems. Theoretically such a matrix will not
affect the estimated coordinates since the NEQ system of
Eq. (4) is equivalent to the weighted NEQ system2:

(N + HTWH)(x − xo) = u + HTWc (9)

for any symmetric positive-definite matrix W (e.g. Kotsakis
2012). Therefore, any prior weighting for the non-estimable
part of the coordinate system (which is induced by a weight
matrix for the datum related quantities c) is a non-essential
task in MC network adjustment, although for practical pur-
poses it may be useful for improving the numerical condition
of the final NEQ system. It is important to point out that prior
weighting of the fiducial stations participating in the MCs can
be an influential factor for the final solution, which never-
theless cannot be ‘passed’ into the adjusted coordinates (and
their accuracy) through the aforementioned weight matrix W.
It is actually one of this paper’s merits to reveal how an

2 This algebraic equivalency is theoretically valid only for minimum-
constrained NEQs and it does not generally hold in cases of over-
constrained network adjustment schemes.

123



C. Kotsakis

appropriate weighting for the fiducial station coordinates xext
1

should be implemented to ensure certain optimal properties
for the estimated positions in a MC network.

The objective of our study is to find the MC matrix H,
or rather its non-zero submatrix H1, that optimizes the accu-
racy of the estimated network coordinates with respect to
the reference frame realized by the fiducial stations. For this
purpose we shall consider the total noise effect in the MC
solution, including the part caused by the random errors in
the fiducial coordinates which is ‘hidden’ within the last term
of Eq. (5). In practice this term is often set to zero by select-
ing the approximate coordinates of the fiducial stations to be
equal to the a priori known values xext

1 (i.e. c = 0). This of
course does not eliminate the presence of the datum noise
effect which should be accounted for through the covariance
propagation scheme that is described in the next section.

3 Datum-dependent error covariance matrices in MC
networks

3.1 General formulae

The error CV matrix of the estimated coordinates from a
minimum-constrained NEQ system can be expressed as a
sum of two independent components

� x̂ = �obs
x̂ + �mc

x̂ (10)

according to the analytic forms

�obs
x̂ = σ 2(N + HTH)−1N(N + HTH)−1

= σ 2(N + HTH)−1 − σ 2ET(HET)−1(EHT)−1E (11)

�mc
x̂ = ET(HET)−1�c(EHT)−1E (12)

The above formulae are obtained from a clear-cut error prop-
agation to Eq. (5) by taking into account the fundamental
relationships in Eqs. (6) and (7).

Considering that the matrix �obs
x̂ is invariant with respect

to any symmetric positive-definite weight matrix W, that is

(N + HTH)−1N(N + HTH)−1

= (N + HTWH)−1N(N + HTWH)−1 (13)

and subsequently

(N + HTH)−1 − ET(HET)−1(EHT)−1E

= (N + HTWH)−1 − ET(HET)−1W−1(EHT)−1E (14)

it is easily shown that the (total) error CV matrix of a MC
solution takes the compact ‘Bayesian form’ (the proofs of
the last two equations are given in the Appendix):

� x̂ = �obs
x̂ + �mc

x̂ = σ 2(N + σ 2HT�−1
c H)−1 (15)

The CV matrices �obs
x̂ and �mc

x̂ contain the contribu-
tions from separate (and formally independent) error sources,
namely the data and datum noise effects both of which are
influenced by the choice of the MC matrix H. Each of these
matrices is rigorously singular, yet their sum yields a full-
rank error CV matrix provided that the matrix �c is invert-
ible.

The CV matrix �c specifies the statistical accuracy of the
pseudo-observation vector c that appears in the MC formu-
lation as per Eq. (3a, 3b). Its form is dictated by the selected
type of MCs and the a priori accuracy of the fiducial station
coordinates. In view of Eqs. (3a) and (8), we have

�c = H1�
prior
x HT

1 (16)

where �
prior
x is the known CV matrix of the coordinate vector

xext
1 .

In the context of our study the CV matrices �obs
x̂ and �mc

x̂
can be expressed in the equivalent forms

�obs
x̂ = σ 2(N + HTH)−1 − σ 2ET(H1ET

1 )−1

×(E1HT
1 )−1E (17)

�mc
x̂ = ET(H1ET

1 )−1H1�
prior
x HT

1 (E1HT
1 )−1E (18)

where E1 is the submatrix of the total inner-constraint matrix
that corresponds to the fiducial stations, i.e. E = [E1 E2],
in accordance with the partitioning of the MC matrix H =
[H1 0] that was introduced in Eq. (8).

3.2 The matrix �obs
x̂

The CV matrix �obs
x̂ is always singular and it contains the full

effect of the data noise on the MC solution. Its rank defect is
equal to the datum defect of the available observations and
its elements do not carry any accuracy information for the
(non-estimable part of the) coordinate system of the adjusted
network. This matrix corresponds to a scaled (by σ 2) sym-
metric reflexive generalized inverse of the singular normal
matrix N, and it is always positive semi-definite (Koch 1999,
pp. 52–53).

The minimization of the trace�obs
x̂ , or for a part of it, has

been the main goal of the ZOD or datum choice problem in
network optimization theory (Grafarend 1974; Schmitt 1982;
Schaffrin 1985). It is well known that this problem is resolved
through the classic inner constraints in full or partial form, i.e.
H = E or H = [E1 0], depending whether the minimization
of the trace�obs

x̂ is sought over all or some of the network
stations (Koch 1999, pp. 62–64).

It is emphasized that the choice of classic inner constraints
yields the optimal datum definition for a MC network only
with regard to the data noise effect on the estimated coor-
dinates. The trace of the second CV component in Eq. (10)
is not necessarily minimized under this choice, and thus the
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Table 1 Anatomy of the error CV matrices for the statistical accuracy assessment of a MC solution

optimal treatment of the datum noise effect remains an open
problem in geodetic network adjustment theory.

3.3 The matrix �mc
x̂

The CV matrix �mc
x̂ is always singular with its rank being

equal to the datum defect of the geodetic observations in the
underlying network. Its role is to specify the accuracy of the
adjusted coordinates in a MC solution due to the uncertainty
of the (non-estimable part of the) coordinate system that is
caused from the erroneous fiducial coordinates. The essential
role of this matrix is revealed by the following ‘covariance
mapping’ expression

�mc
x̂ = ET�θE (19)

where the CV matrix �θ specifies the accuracy of the non-
estimable frame parameters which are fixed by the chosen
MCs (i.e. H1(x1 − xext

1 ) = 0)

�θ = (H1ET
1 )−1H1�

prior
x HT

1 (E1HT
1 )−1 (20)

The last two equations are deduced from the analytic expres-
sion in Eq. (18) and they were originally presented, within a
more general context, in Kotsakis (2012).

The consideration of the matrix �mc
x̂ is necessary for the

accuracy assessment of TRF realizations by means of MCs
over a number of fiducial stations in geodetic network adjust-
ments. Loosely speaking, this matrix activates the stochas-
ticity of the datum definition due to the noise presence in the
fiducial coordinates, and it enables the dissemination of the
total accuracy of the adjusted network positions in a straight-
forward statistical fashion (i.e. use of �−1

x̂ = (�obs
x̂ +�mc

x̂ )−1

as a weight matrix for future use in other estimation prob-
lems).

The minimization of the trace�mc
x̂ signifies a zero-order

optimization problem which has not been tackled in the geo-

detic literature. Its solution will lead to the datum definition
scheme (i.e. the MC submatrix H1) that ensures the most
accurate alignment of a geodetic network with an external
reference frame which is characterized by a given CV matrix
�

prior
x over the fiducial stations. This issue has been briefly

discussed in Kotsakis (2012) and it will be analyzed in detail
throughout the following sections of the paper.

Remark The matrix �mc
x̂ does not contribute to the estima-

tion accuracy of the adjusted observations (or of any other
estimable quantity) in the underlying network, and it is thus
irrelevant for the quality assessment of the estimable charac-
teristics in a MC solution. This is true however only within
the linearized treatment of the least squares network adjust-
ment problem that we follow in this paper. Theoretically, the
datum noise effect may cause a disturbance to the estimable
parameters of a linearly adjusted geodetic network under a
nonlinear observational model, see Kotsakis (2012).

A summary of the various types of error CV matrices that
were presented in this section is given in Table 1.

4 Optimal datum definition for MC networks

4.1 Problem formulation

For the present study, the optimal datum definition in a MC
solution is linked to the minimization of an objective func-
tional that quantifies the total accuracy of the estimated coor-
dinates with respect to the reference frame realized by a set
of fiducial stations. A common choice for this functional is
the trace of the error CV matrix � x̂ which was analytically
described in the previous section.

Considering the partition of the MC matrix H = [H1 0] as
stated in Sect. 2 (i.e. the MCs are applied only to the fiducial
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stations of the network), the optimal datum choice problem
can be expressed as

min
H1

trace� x̂ (21)

or, equivalently, in terms of the matrix equation

∂trace�obs
x̂

∂H1
+ ∂trace�mc

x̂

∂H1
= 0 (22)

The previous formulation leads to a ‘complete’ datum opti-
mization in the sense that the MC submatrix obtained from
the solution of Eq. (22) will minimize the combined effect
of the data noise and datum noise on the adjusted network’s
coordinates. It is noted that in the geodetic literature the
datum choice problem has been tackled as a special case
of the above optimization scheme by ignoring the presence
of the error covariance matrix �mc

x̂ . In order to provide a uni-
fied approach that covers both cases, a more general criterion
will be adopted herein for the datum choice problem

min
H1

(trace�obs
x̂ + λtrace�mc

x̂ ) (23)

where λ is a non-negative factor that controls the relative
significance of the data noise and the datum noise on the
estimated network coordinates. Based on this formulation
the following matrix equation is obtained

∂trace�obs
x̂

∂H1
+ λ

∂trace�mc
x̂

∂H1
= 0 (24)

which can be explicitly solved for the desired submatrix H1

(see next section).
Note that the weight factor λ does not have a regularization

role within the datum choice problem, but it is merely used as
an auxiliary parameter allowing us to obtain a general result
for the optimal MC submatrix which can be specialized to
the pertinent cases: λ = 0 (optimization of the data noise
effect only), λ = ∞ (optimization of the datum noise effect
only) and λ = 1 (joint optimization of the data and datum
noise effects).

4.2 Derivation of optimal MCs

Following the previous formulation and in order to determine
the solution of Eq. (24), we need to obtain the partial deriv-
atives of the traces of the CV matrices �obs

x̂ and �mc
x̂ with

respect to the MC submatrix H1. Their analytic expressions
are (see Appendix for their proofs):

∂trace�obs
x̂

∂H1
= −2σ 2(EHT)−1E(I − ET(HET)−1H)

×(N + HTH)−1ST (25)

∂trace�mc
x̂

∂H1
= 2(E1HT

1 )−1EET(H1ET
1 )−1

×H1�
prior
x (I − HT

1 (E1HT
1 )−1E1) (26)

where the auxiliary matrix S has the block structure

S = [ I 0 ] (27)

with the dimensions of its submatrices being such that

H1 = [ H1 0 ]
[

I
0

]

= HST (28)

E1 = [ E1 E2 ]
[

I
0

]

= EST (29)

Obviously the following relationships also hold

HET = H1ET
1 and EHT = E1HT

1 (30)

SST = I (31)

Substituting Eqs. (25)–(26) into Eq. (24) and taking into
account the previous formulae, we get

− 2σ 2(EHT)−1E(I − ET(HET)−1H)(N + HTH)−1ST

+ 2λ(E1HT
1 )−1EET(H1ET

1 )−1

× H1�
prior
x (I − HT

1 (E1HT
1 )−1E1) = 0 ⇔

− σ 2(EHT)−1E(I − ET(HET)−1H)(N + HTH)−1ST

+ λ(EHT)−1EET(HET)−1

× HST�
prior
x (SST − SHT(EHT)−1EST) = 0 ⇔

− σ 2E(I − ET(HET)−1H)(N + HTH)−1ST

+ λEET(HET)−1HST�
prior
x S(I − HT(EHT)−1E)ST =0

(32)

By considering the fundamental relationship (see Eq. 6)

I − HT(EHT)−1E = N(N + HTH)−1 (33)

then Eq. (32) is reduced to the form

(−σ 2E+σ 2EET(HET)−1H+λEET(HET)−1HST�
prior
x SN)

×(N + HTH)−1ST = 0 (34)

which is equivalent to

(−σ 2HET(EET)−1E + σ 2H + λHST�
prior
x SN)

×(N + HTH)−1ST = 0 (35)

The orthogonal projection matrix ET(EET)−1E can be
expressed as (see Eq. 6)

ET(EET)−1E = I − (N + ETE)−1N (36)

and therefore Eq. (35) becomes

(−σ 2H(I − (N + ETE)−1N) + σ 2H + λHST�
prior
x SN)

×(N + HTH)−1ST = 0 (37)
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or equivalently

H(λST�
prior
x S + σ 2(N + ETE)−1)

×N(N + HTH)−1ST = 0 (38)

Recalling Eq. (33) and applying straightforward block-
matrix multiplications, we have

N(N + HTH)−1ST = (I − HT(EHT)−1E)ST

=
[

I − HT
1 (E1HT

1 )−1E1

0

]

(39)

and by representing the symmetric matrix (N + ETE)−1 as

(N + ETE)−1 =
[

M11 M12

MT
12 M22

]

(40)

where the above partitioning conforms to the dimensions of
the block matrix

ETE =
[

ET
1

ET
2

]

[

E1 E2
]

=
[

ET
1 E1 ET

1 E2

ET
2 E1 ET

2 E2

]

it is then a matter of simple matrix operations to verify that
Eq. (38) leads to the algebraic formula

H1(λ�
prior
x + σ 2M11)(I − HT

1 (E1HT
1 )−1E1) = 0 (41)

The solution of the last equation is given by the form

H1 = E1(λ�
prior
x + σ 2M11)

−1 (42)

which corresponds to the MC submatrix for the datum defi-
nition according to the optimization principle of Eq. (23).

Since the network solution x̂ is not affected if the MC
matrix H is multiplied by an arbitrary non-zero scalar (i.e.
this effect is absorbed by the non-essential weight matrix W
as explained in Sect. 2), the optimal MC submatrix of Eq. (42)
can be also expressed in the alternate form:

H1 = E1(�
prior
x + σ 2

λ
M11)

−1 (43)

Regarding the value of the auxiliary parameterλ, three impor-
tant cases can be identified as follows.

4.2.1 Optimization of the data noise effect
(trace�obs

x̂ = min)

In the case that λ = 0 the optimal MC submatrix from Eq.
(42) becomes

H1 = E1 (M11)
−1 (44)

(note that the presence of the multiplicative factor σ 2 can be
omitted for the reason explained before). The matrix M11 is
taken as per Eq. (40) and its inverse provides the required

weight matrix for the fiducial stations within the MC formu-
lation

E1 (M11)
−1 (x1 − xext

1 ) = 0 (45)

so that the data noise effect is minimized over the entire
network.

The above result yields a generalization of the classic
(unweighted) inner constraints

E1(x1 − xext
1 ) = 0 (46)

whose optimality is restricted to the minimization of the data
noise effect at the selected fiducial stations and not on other
parts of the adjusted network (e.g. Koch 1999, pp. 62–64).

4.2.2 Optimization of the datum noise effect
(trace�mc

x̂ = min)

In the case that λ = ∞ the optimal MC submatrix from Eq.
(43) becomes

H1 = E1(�
prior
x )−1 (47)

The weighting for the fiducial stations now employs the CV
matrix of their a priori coordinates xext

1 according to the MC
formulation

E1(�
prior
x )−1(x1 − xext

1 ) = 0 (48)

so that the datum noise effect is minimized over the entire
network.

It is noted that the minimization of the trace�mc
x̂ is alge-

braically equivalent to the minimization of the trace�θ (see
Appendix for a proof). This exemplifies the fact that the
weighted inner constraints in Eq. (48) provide the optimal
‘frame alignment’ for network densification problems in the
context of MC theory.

4.2.3 Joint optimization of the data/datum noise effects
(trace(�obs

x̂ + �mc
x̂ ) = min)

In the case that λ=1 the optimal MC submatrix from Eq.
(42) or (43) becomes

H1 = E1(�
prior
x + σ 2M11)

−1 (49)

and it leads to the most general form of weighted inner con-
straints for the optimal datum definition in a geodetic net-
work. In particular, the MCs

E1(�
prior
x + σ 2M11)

−1(x1 − xext
1 ) = 0 (50)

provide the network solution with the minimum-trace CV
matrix � x̂ for the total random error in the adjusted
coordinates.
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Table 2 Weighting schemes for the fiducial coordinates in MC adjustment of a geodetic network according to different optimality criteria

Network optimization criterion Weight matrix Px Objective

trace (�obs
x̂ + �mc

x̂ ) = min (�
prior
x + σ 2M11)

−1 Joint minimization of the data/datum noise effect

trace �mc
x̂ = min (equivalent to trace �θ = min) (�

prior
x )−1 Minimization of the datum noise effect

trace �obs
x̂ = min M−1

11 Minimization of the data noise effect

trace S�obs
x̂ ST = min I Minimization of the data noise effect

(over the fiducial stations only) (*)
(*) This is an already known case which has not been

proved anew in the paper; see e.g. (Koch 1999,
pp. 62-64)

The matrix M11 is defined according to Eq. (40) while the rest of the matrices have been described in Sects. 3 and 4

The matrix H1 in Eq. (49) depends on the data variance
factor σ 2 and thus it can be computed, in a rigorous way,
only if the accuracy of the network measurements is per-
fectly known beforehand. This theoretical obstacle suggests
the use of an iterative procedure for the implementation of the
optimal MCs in Eq. (50), where the unknown variance factor
σ 2 is replaced at each step by its a posteriori estimate σ̂ 2 that
was obtained in the previous step of the MC adjustment.

4.3 Recapitulation

The optimal MCs for the reference frame realization in geo-
detic network adjustment by means of known (and noisy)
fiducial coordinates have the general form

E1Px (x1 − xext
1 ) = 0 (51)

where E1 is the usual inner-constraint submatrix and Px is a
weight matrix that depends on the error source (or the combi-
nation of the error sources) whose effect on the MC solution
needs to be minimized. The possible cases with their respec-
tive weight matrices are summarized in Table 2.

The matrix Px should be distinguished from the weight
matrix W which may be used for incorporating any set of
MCs into a singular NEQ system, see Eq. (9). The latter pro-
vides a non-essential weighting for the pseudo-observation
vector of a general system of MCs H(x − xo) = c, whereas
the former assigns the required weights to the fiducial sta-
tions so that the weighted inner constraints in Eq. (51) lead
to an optimal network solution in a certain statistical sense
(see Table 2).

It is worth mentioning that Eq. (51) gives rise to a weighted
form for the no-net-translation (NNT) and no-net-rotation
(NNR) conditions in geodetic networks. Considering the ana-
lytic structure of the inner constraint matrix E (e.g. Sillard
and Boucher 2001), it is easily deduced that Eq. (51) results
in the datum-related conditions

generalized NNT condition
∑

i,k

Pik(xk
1 − xk,ext

1 ) = 0 (52)

generalized NNR condition
∑

i

[xi,o
1 ×]

∑

k

Pik(xk
1 − xk,ext

1 ) = 0 (53)

where Pik is the submatrix of the total weight matrix Px that
refers to the pair of the fiducial stations xk

1 and xi
1. In the

geodetic literature the NNT/NNR conditions have been usu-
ally considered in a weightless form or, at most, in a scalar-
weighted form (e.g. Angermann et al. 2004) assuming that

Pik =
{

0, i �= k
μkI, i ≡ k

(54)

where μk is a weight factor for each fiducial station whose
optimal selection has remained unclear. This paper has pre-
sented a rigorous framework for the formation of a full weight
matrix Px to be used within the NNT/NNR conditions in
accordance to specific optimal criteria for the realized refer-
ence frame in a MC network (see Table 2).

5 Conclusions

A class of optimal MCs for geodetic network adjustment,
with respect to a given TRF, has been developed in this study.
Our approach is based on a dual-objective optimization prin-
ciple of maximum accuracy for the estimated coordinates
which takes into consideration both the data noise and datum
noise in the MC solution. Each of these effects has a distinct
contribution to the total accuracy of the estimated coordi-
nates and their joint minimization is a desirable task for the
establishment of high-quality TRFs through a MC network
adjustment.

The analytic form of the optimal MCs, given by Eq. (51),
entails an a priori weighting of the fiducial stations within the

123



Generalized inner constraints for geodetic network densification problems

realm of the well-known inner constraints. Various options
for this weighting have been identified in the paper, depend-
ing on the optimization scenario for the CV matrix of the
adjusted network’s coordinates (see Table 2). Note that
simplified versions of such weighting schemes have occa-
sionally appeared in the geodetic literature (e.g. Angermann
et al. 2004, pp. 28–31), however this is the first time that their
implementation is justified on the basis of specific optimality
criteria for the estimated coordinates in the MC network. In
that sense, the theoretical findings of our study can provide
a useful and rigorous tool to be exploited for frame densifi-
cation problems by means of an optimal MC adjustment in
geodetic networks.
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Appendix

Proof of Eqs. (13) and (14)

Given a singular NEQ matrix N = ATPA and any MC matrix
H, then the following equation holds for every symmetric
positive-definite matrix W (Kotsakis 2012)

(N + HTWH)−1AT = (N + HTH)−1AT (55)

Hence, it also holds that

PA(N + HTWH)−1 = PA(N + HTH)−1 (56)

and, therefore, we have

(N + HTWH)−1N(N + HTWH)−1

= (N + HTWH)−1ATPA(N + HTWH)−1

= (N + HTH)−1ATPA(N + HTH)−1 (57)

= (N + HTH)−1N(N + HTH)−1

Furthermore, if we consider the general relationships (Kot-
sakis 2012)

(N + HTWH)−1N = I − ET(HET)−1H (58)

(N + HTWH)−1HTW = ET(HET)−1 (59)

then we have

(N + HTWH)−1N(N + HTWH)−1

=
(

I − ET(HET)−1H
)

(N + HTWH)−1

= (N + HTWH)−1

−ET(HET)−1W−1WH(N + HTWH)−1

= (N + HTWH)−1

−ET(HET)−1W−1(EHT)−1E (60)

which, in view of Eq. (57), leads to the relationship

(N + HTWH)−1 − ET(HET)−1W−1(EHT)−1E

= (N + HTH)−1 − ET(HET)−1(EHT)−1E (61)

Partial derivatives of trace�mc
x̂ and trace�obs

x̂ with respect to
the MC submatrix H1

The following derivations make use of the well-known
differentiation rules from matrix calculus (Harville 1997,
ch. 15):

∂A−1

∂t
= −A−1 ∂A

∂t
A−1 (62)

∂traceA
∂t

= trace
∂A
∂t

(63)

∂AB
∂t

= ∂A
∂t

B + A
∂B
∂t

(64)

where A and B are any matrices whose elements depend
on some variable t . If the latter corresponds to a particular
element A(i, k) of the matrix A, then we have

∂A
∂ A(i, k)

= ei eT
k ,

∂AT

∂ A(i, k)
= ekeT

i (65)

and

eT
i Aek = A(i, k) (66)

where ei , ek denote column unit vectors of appropriate
dimensions with their i th and kth element being respectively
equal to one. For our derivations we also use the partitioned-
matrix differentiation rule

Ã
k×m

=
[

A
k×m1

0
k×m2

]

(67)

∂Ã
∂ A(i, k)

= ei eT
k S,

∂ÃT

∂ A(i, k)
= STekeT

i (68)

where the unit vectors ei , ek have dimensions k×1 and m1×1
respectively, and the auxiliary matrix S is

S
m1×m

=
[

I
m1×m1

0
m1×m2

]

(69)

Based on the analytic form of �mc
x̂ given in Eq. (18), the

partial derivative of its trace with respect to an arbitrary ele-
ment of the MC submatrix H1 is:
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∂trace�mc
x̂

∂ H1(i, k)
= trace

{

∂�mc
x̂

∂ H1(i, k)

}

= trace

{

∂ET(H1ET
1 )−1H1�

prior
x HT

1 (E1HT
1 )−1E

∂ H1(i, k)

}

= trace

{

∂ET(H1ET
1 )−1H1

∂ H1(i, k)
�

prior
x HT

1 (E1HT
1 )−1E + ET(H1ET

1 )−1H1
∂�

prior
x HT

1 (E1HT
1 )−1E

∂ H1(i, k)

}

= trace

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

(

∂ET(H1ET
1 )−1

∂ H1(i,k)
H1 + ET(H1ET

1 )−1 ∂H1
∂ H1(i,k)

)

�
prior
x HT

1 (E1HT
1 )−1E

+ET(H1ET
1 )−1H1�

prior
x

(

∂HT
1

∂ H1(i,k)
(E1HT

1 )−1E + HT
1

∂
(

E1HT
1

)−1
E

∂ H1(i,k)

)

⎫

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎭

= trace

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

(−ET(H1ET
1 )−1 ∂H1ET

1
∂ H1(i,k)

(H1ET
1 )−1H1 + ET(H1ET

1 )−1 ∂H1
∂ H1(i,k)

)�
prior
x HT

1 (E1HT
1 )−1E

+ET(H1ET
1 )−1H1�

prior
x

(

∂HT
1

∂ H1(i,k)

(

E1HT
1

)−1
E − HT

1 (E1HT
1 )−1 ∂E1HT

1
∂ H1(i,k)

(

E1HT
1

)−1
E
)

⎫

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎭

= trace

⎧

⎪
⎨

⎪
⎩

(−ET(H1ET
1 )−1ei eT

k ET
1 (H1ET

1 )−1H1 + ET
(

H1ET
1

)−1
ei eT

k )�
prior
x HT

1 (E1HT
1 )−1E

+ET(H1ET
1 )−1H1�

prior
x

(

ekeT
i (E1HT

1 )−1E − HT
1 (E1HT

1 )−1E1ekeT
i (E1HT

1 )−1E
)

⎫

⎪
⎬

⎪
⎭

= trace

⎧

⎨

⎩

−ET(H1ET
1 )−1ei eT

k ET
1 (H1ET

1 )−1H1�
prior
x HT

1 (E1HT
1 )−1E

−ET(H1ET
1 )−1H1�

prior
x HT

1 (E1HT
1 )−1E1ekeT

i

(

E1HT
1

)−1
E

⎫

⎬

⎭

+ trace

⎧

⎨

⎩

ET(H1ET
1 )−1ei eT

k �
prior
x HT

1 (E1HT
1 )−1E

+ET(H1ET
1 )−1H1�

prior
x ekeT

i (E1HT
1 )−1E

⎫

⎬

⎭

= trace

{

(−ET(H1ET
1 )−1ei eT

k ET
1 (H1ET

1 )−1H1�
prior
x HT

1 (E1HT
1 )−1E)T

−ET
(

H1ET
1

)−1
H1�

prior
x HT

1

(

E1HT
1

)−1
E1ekeT

i (E1HT
1 )−1E

}

+ trace

{

(ET(H1ET
1 )−1ei eT

k �
prior
x HT

1 (E1HT
1 )−1E)T

+ET(H1ET
1 )−1H1�

prior
x ekeT

i

(

E1HT
1

)−1
E

}

= −2 trace{ET(H1ET
1 )−1H1�

prior
x HT

1 (E1HT
1 )−1E1ekeT

i (E1HT
1 )−1E}

+2 trace{ET(H1ET
1 )−1H1�

prior
x ekeT

i (E1HT
1 )−1E} (70)

For the second last equality in the above derivations we
have used the fact that traceAT = traceA. Taking into account
that traceAB = traceBA, the last equality of the previous
formula yields

∂trace�mc
x̂

∂ H1(i, k)
= −2 trace{eT

i (E1HT
1 )−1EET(H1ET

1 )−1

×H1�
prior
x HT

1 (E1HT
1 )−1E1ek}

+ 2 trace{eT
i (E1HT

1 )−1EET(H1ET
1 )−1H1�

prior
x ek}

= − 2 eT
i (E1HT

1 )−1EET(H1ET
1 )−1H1�

prior
x

×HT
1 (E1HT

1 )−1E1ek

+ 2 eT
i (E1HT

1 )−1EET(H1ET
1 )−1H1�

prior
x ek

= − 2 [(E1HT
1 )−1EET(H1ET

1 )−1

×H1�
prior
x HT

1 (E1HT
1 )−1E1]ik

+ 2 [(E1HT
1 )−1EET(H1ET

1 )−1H1�
prior
x ]ik (71)

Generalizing the above result for all elements of the MC
submatrix H1, we have

∂trace�mc
x̂

∂H1
= −2 (E1HT

1 )−1EET(H1ET
1 )−1

×H1�
prior
x HT

1 (E1HT
1 )−1E1

+ 2 (E1HT
1 )−1EET(H1ET

1 )−1H1�
prior
x (72)
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or, equivalently

∂trace�mc
x̂

∂H1
= 2(E1HT

1 )−1EET(H1ET
1 )−1

×H1�
prior
x (I − HT

1 (E1HT
1 )−1E1)

(73)

which is identical to Eq. (26) given in Sect. 4.2
Based on the general form of �obs

x̂ given in Eq. (11), the
partial derivative of its trace with respect to an arbitrary ele-
ment of the non-zero submatrix H1 is (note that the total MC
matrix is assumed to have the form H = [H1 0]):

∂trace�obs
x̂

∂ H1(i, k)
= trace

{

∂�obs
x̂

∂ H1(i, k)

}

= trace

{

∂σ 2
(

N + HTH
)−1 N

(

N + HTH
)−1

∂ H1(i, k)

}

= σ 2trace

{

∂
(

N + HTH
)−1 N

∂ H1(i, k)
(N + HTH)−1 + (N + HTH)−1N

∂(N + HTH)−1

∂ H1(i, k)

}

= σ 2trace

{

−(N + HTH)−1 ∂(N+HTH)
∂ H1(i,k)

(N + HTH)−1N(N + HTH)−1

−(N + HTH)−1N(N + HTH)−1 ∂(N+HTH)
∂ H1(i,k)

(N + HTH)−1

}

= −σ 2trace

⎧

⎨

⎩

(N + HTH)−1
(

∂HT

∂ H1(i,k)
H + HT ∂H

∂ H1(i,k)

)

(N + HTH)−1N(N + HTH)−1

+(N + HTH)−1N(N + HTH)−1
(

∂HT

∂ H1(i,k)
H + HT ∂H

∂ H1(i,k)

)

(N + HTH)−1

⎫

⎬

⎭

= −σ 2trace

{

(N + HTH)−1
(

STekeT
i H + HTei eT

k S
)

(N + HTH)−1N(N + HTH)−1

+(N + HTH)−1N(N + HTH)−1
(

STekeT
i H + HTei eT

k S
)

(N + HTH)−1

}

= −σ 2trace

⎧

⎪
⎪
⎨

⎪
⎪
⎩

(N + HTH)−1STekeT
i H(N + HTH)−1N(N + HTH)−1

+(N + HTH)−1HTei eT
k S(N + HTH)−1N(N + HTH)−1

+(N + HTH)−1N(N + HTH)−1STekeT
i H(N + HTH)−1

+(N + HTH)−1N(N + HTH)−1HTei eT
k S(N + HTH)−1

⎫

⎪
⎪
⎬

⎪
⎪
⎭

= −σ 2

⎛

⎜

⎜

⎝

eT
i H(N + HTH)−1N(N + HTH)−2STek

+eT
k S(N + HTH)−1N(N + HTH)−2HTei

+eT
i H(N + HTH)−2N(N + HTH)−1STek

+eT
k S(N + HTH)−2N(N + HTH)−1HTei

⎞

⎟

⎟

⎠

= −σ 2

⎛

⎜

⎜

⎝

eT
i H(N + HTH)−1N(N + HTH)−2STek

+eT
i H(N + HTH)−2N(N + HTH)−1STek

+eT
i H(N + HTH)−2N(N + HTH)−1STek

+eT
i H(N + HTH)−1N(N + HTH)−2STek

⎞

⎟

⎟

⎠

= −2σ 2
(

eT
i H(N + HTH)−1N(N + HTH)−2STek

+eT
i H(N + HTH)−2N(N + HTH)−1STek

)

(74)

Recalling from Eqs. (6) and (7) that

H(N + HTH)−1 = (EHT)−1E (75)

N(N + HTH)−1 = I − HT(EHT)−1E (76)

then we have

H(N + HTH)−1N(N + HTH)−1 = 0 (77)

H(N + HTH)−1(N + HTH)−1N

= (EHT)−1E(I − ET(HET)−1H) (78)

and by substituting the last two equations into (74) we get

∂trace�obs
x̂

∂ H1(i, k)
= −2σ 2eT

i (EHT)−1E(I − ET(HET)−1H)

×(N + HTH)−1STek

= −2σ 2[(EHT)−1E(I − ET(HET)−1H)

×(N + HTH)−1ST]ik (79)

Generalizing the above result for all elements of the MC
submatrix H1, we finally have
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∂trace�obs
x̂

∂H1
= −2σ 2(EHT)−1E(I − ET(HET)−1H)

×(N + HTH)−1ST
(80)

which is identical to Eq. (25) given in Sect. 4.2.

Equivalency of min
H1

trace�mc
x̂ and min

H1
trace�θ

Let us first determine the partial derivative of the trace�θ

with respect to the MC submatrix H1. Using Eq. (20) we
have:

∂trace�θ

∂ H1(i, k)
= trace

{

∂�θ

∂ H1(i, k)

}

= trace

{

∂(H1ET
1 )−1H1�

prior
x HT

1 (E1HT
1 )−1

∂ H1(i, k)

}

= trace

{

∂(H1ET
1 )−1H1

∂ H1(i, k)
�

prior
x HT

1 (E1HT
1 )−1 + (H1ET

1 )−1H1
∂�

prior
x HT

1 (E1HT
1 )−1

∂ H1(i, k)

}

= trace

⎧

⎪
⎪
⎨

⎪
⎪
⎩

(

∂(H1ET
1 )−1

∂ H1(i,k)
H1 + (H1ET

1 )−1 ∂H1
∂ H1(i,k)

)

�
prior
x HT

1 (E1HT
1 )−1

+(H1ET
1 )−1H1�

prior
x

(

∂HT
1

∂ H1(i,k)
(E1HT

1 )−1 + HT
1

∂(E1HT
1 )−1

∂ H1(i,k)

)

⎫

⎪
⎪
⎬

⎪
⎪
⎭

= trace

⎧

⎪
⎪
⎨

⎪
⎪
⎩

(

−(H1ET
1 )−1 ∂H1ET

1
∂ H1(i,k)

(H1ET
1 )−1H1 + (H1ET

1 )−1 ∂H1
∂ H1(i,k)

)

�
prior
x HT

1 (E1HT
1 )−1

+(H1ET
1 )−1H1�

prior
x

(

∂HT
1

∂ H1(i,k)
(E1HT

1 )−1 − HT
1 (E1HT

1 )−1 ∂E1HT
1

∂ H1(i,k)
(E1HT

1 )−1
)

⎫

⎪
⎪
⎬

⎪
⎪
⎭

= trace

{
(−(H1ET

1 )−1ei eT
k ET

1 (H1ET
1 )−1H1 + (H1ET

1 )−1ei eT
k

)

�
prior
x HT

1 (E1HT
1 )−1

+(H1ET
1 )−1H1�

prior
x

(

ekeT
i (E1HT

1 )−1 − HT
1 (E1HT

1 )−1E1ekeT
i (E1HT

1 )−1
)

}

= trace

{

−(H1ET
1 )−1ei eT

k ET
1 (H1ET

1 )−1H1�
prior
x HT

1 (E1HT
1 )−1

−(H1ET
1 )−1H1�

prior
x HT

1 (E1HT
1 )−1E1ekeT

i (E1HT
1 )−1

}

+ trace

{

(H1ET
1 )−1ei eT

k �
prior
x HT

1 (E1HT
1 )−1

+(H1ET
1 )−1H1�

prior
x ekeT

i (E1HT
1 )−1

}

= trace

⎧

⎨

⎩

(

−(H1ET
1 )−1ei eT

k ET
1 (H1ET

1 )−1H1�
prior
x HT

1 (E1HT
1 )−1

)T

−(H1ET
1 )−1H1�

prior
x HT

1 (E1HT
1 )−1E1ekeT

i (E1HT
1 )−1

⎫

⎬

⎭

+ trace

⎧

⎨

⎩

(

(H1ET
1 )−1ei eT

k �
prior
x HT

1 (E1HT
1 )−1

)T

+(H1ET
1 )−1H1�

prior
x ekeT

i (E1HT
1 )−1

⎫

⎬

⎭

= −2trace
{

(H1ET
1 )−1H1�

prior
x HT

1 (E1HT
1 )−1E1ekeT

i (E1HT
1 )−1

}

+2trace
{

(H1ET
1 )−1H1�

prior
x ekeT

i (E1HT
1 )−1

}

(81)

which is equivalent to

∂trace�θ

∂ H1(i, k)

= −2eT
i (E1HT

1 )−1(H1ET
1 )−1H1�

prior
x HT

1 (E1HT
1 )−1E1ek

+ 2eT
i (E1HT

1 )−1(H1ET
1 )−1H1�

prior
x ek

= −2[(E1HT
1 )−1(H1ET

1 )−1H1�
prior
x HT

1 (E1HT
1 )−1E1]ik

+ 2[(E1HT
1 )−1(H1ET

1 )−1H1�
prior
x ]ik (82)

Generalizing the above result for all elements of the MC
submatrix H1, we get

∂trace�θ

∂H1
= 2(E1HT

1 )−1(H1ET
1 )−1

×H1�
prior
x (I − HT

1 (E1HT
1 )−1E1) (83)

The solution of the optimization problem min
H1

trace�θ is

obtained by setting the above expression equal to zero, i.e.

(E1HT
1 )−1(H1ET

1 )−1H1�
prior
x (I − HT

1 (E1HT
1 )−1E1) = 0

(84)
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which is algebraically equivalent to

H1�
prior
x (I − HT

1 (E1HT
1 )−1E1) = 0 (85)

and it is obviously satisfied when the MC submatrix has the
form

H1 = E1(�
prior
x )−1 (86)

The above result is identical to the one obtained in Sect. 4
under the alternate optimization principle min

H1
trace�mc

x̂ .
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