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Abstract The aim of this paper is to investigate the influ-
ence of the minimum constraints (MCs) on the reference
frame parameters in a free-net solution. The non-estima-
ble part of these parameters (which is not reduced by the
available data) is analysed in terms of its stability under a
numerical perturbation of the constrained datum function-
als. In practice, such a perturbation can be ascribed either to
hidden errors in the known coordinates/velocities that partic-
ipate in the MCs or to a simple change of their a priori values
due to a datum switch on a different fiducial dataset. In addi-
tion, a perturbation of this type may cause a nonlinear varia-
tion to the estimable part of the reference frame parameters,
since it theoretically affects the adjusted observations that
are implied by the network’s nonlinear observational model.
The aforementioned effects have an impact on the quality of a
terrestrial reference frame (TRF) that is established via a min-
imum-constrained adjustment, and our study shows that they
are both controlled through a characteristic matrix which is
inherently linked to the MC system (the so-called TRF sta-
bility matrix). The structure of this matrix depends on the
network’s spatial configuration and the ‘geometry’ of the
datum constraints, while its main role is the filtering of any
MC-related errors into the least-squares adjustment results.
A number of examples with different types of geodetic net-
works are also presented to demonstrate the theoretical find-
ings of our study.
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1 Introduction

The establishment of terrestrial reference frames (TRFs) is a
fundamental task in geodesy, closely related to the zero-order
design or datum choice problem of network optimization the-
ory (Grafarend 1974; Teunissen 1985; Dermanis 1998). Due
to the inherent datum deficiency in all types of geodetic mea-
surements, a set of external conditions is always required to
obtain a unique and well-defined TRF realization from a geo-
detic network adjustment. The use of minimum constraints
signifies an optimal choice of such conditions in the sense
that they provide the required information for the datum defi-
nition without interfering with the network’s estimable char-
acteristics (e.g. Grafarend and Schaffrin 1974). As a result,
a minimum-constrained network is theoretically free of any
geometrical distortion that could originate from the exter-
nal datum conditions, while its estimable TRF parameters (if
any) are determined solely from the available measurements
without being affected by the user’s minimum constraints.
The latter affect only the non-estimable part of the reference
frame parameters which is not reduced (defined) by the data,
yet they influence the quality of the entire coordinate-based
representation of the adjusted network (e.g. the covariance
matrix of the estimated positions and their external reliability
level).

Starting from the early works of Meissl (1969), Blaha
(1971a) and Baarda (1973), several aspects of the mini-
mum-constrained network adjustment and the datum choice
problem have been investigated in the geodetic literature,
focusing on topics like free networks and the role of inner
constraints (Wolf 1973; Perelmuter 1979; Papo and Perel-
muter 1981; Blaha 1982a,b; Papo 1986; Dermanis 1994),
S-transformation (van Mierlo 1980; Strang van Hees 1982;
Teunissen 1985), estimability analysis and invariance prop-
erties in network adjustment (Grafarend and Schaffrin 1974,
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1976; Grafarend and Livieratos 1978; Delikaraoglou 1985),
zero-order network optimization (Grafarend 1974; Der-
manis 1985; Schaffrin 1985; Teunissen 1985), hypothesis
testing of non-estimable functions in network adjustment
models (Koch 1985; Xu 1995) and nonlinear aspects in net-
work datum definition (Xu 1997; Dermanis 1998). A com-
prehensive review on the use of minimum constraints for the
least-squares inversion of rank-deficient geodetic models and
their fundamental role within the ITRF methodology can be
found in Sillard and Boucher (2001); see also Altamimi et al.
(2002a,b), Altamimi and Dermanis (2009).

A realized TRF through a network adjustment is subject
to quality limitations originating from the type of minimum
constraints that are used for the datum definition. This is
a well-known fact to geodesists which is theoretically jus-
tified by the dependency of the covariance matrix of the
estimated positions with regard to the selected minimum
constraints. The propagated data noise on the realized TRF
depends strongly on the chosen datum conditions, a fact that
has been the foundation of the zero-order network optimi-
zation and the formulation of the so-called inner constraints
for geodetic network adjustment problems (e.g. Blaha 1971a,
1982a). An equally important issue, which however has not
been systematically investigated in the geodetic literature,
is the frame stability that can be achieved from a network
adjustment with a given set of minimum constraints. This
represents a crucial aspect for the overall quality of a TRF
realization and the objective comparison of different datum
definition strategies. The basic question associated with this
issue is not concerned with the propagated effect of the mea-
surement errors into the adjustment results, but rather with the
identification and quantification of the criteria under which
a set of minimum constraints can provide a more stable TRF
than another set of minimum constraints for the same net-
work. A recent study by Coulot et al. (2010) tackled the
above problem in the context of an optimal search for global
reference sub-networks that guarantee better orientation sta-
bility of the weekly SLR solutions with respect to ITRF2005;
see also Heinkelmann et al. (2007) for a relevant study on the
comparison of global VLBI solutions under different datum
choices for their TRF realization.

The main objective of this paper is to present a general
framework for analysing the frame stability in minimum-
constrained networks. For this purpose, the influence of min-
imum constraints H (x − xo) = c on the realized TRF is
studied via a perturbation analysis for the network solution
under a variation dc of the constrained ‘datum functionals’.
In practice, such a variation can be attributed either to existing
errors in the coordinates/velocities of the reference stations
that participate in the datum conditions, or to a change of
their a priori values due to a datum-switch into a different
fiducial dataset (note that a well-designed geodetic network
should be fairly robust against such datum disturbances). Our

analysis will show that a fundamental matrix always exists
which characterizes the frame stability of any set of mini-
mum constraints in a given network and it can be used as a
criterion matrix for an objective analysis of different datum
definition strategies.

An important aspect that is also treated in our study is
the geometrical distortion on a minimum-constrained net-
work due to the aforementioned variation of the constrained
datum functionals. This is an indirect nonlinear effect that
remains hidden within the linearized framework of least-
squares adjustment in rank-deficient nonlinear models, yet
it theoretically exists and it can affect the estimable charac-
teristics of a dc-perturbed network solution. From a geodetic
perspective, such an effect corresponds to a nonlinear propa-
gation of datum-related errors into the adjusted observations
of a minimum-constrained network, and it may cause a deg-
radation of the actual accuracy level that is implied by their
formal covariance matrix. In the present paper it is shown
that the significance of these ‘higher-order’ errors is con-
trolled, to a certain extent, by the frame-stability matrix of
the underlying network.

The structure of the paper is organized as follows: in
Sect. 2 a brief overview of the free-network solution concept
and the role of minimum constraints is given, along with a
discussion on the frame instability and the geometrical dis-
tortion that may occur in a minimum-constrained network;
in Sect. 3 a number of important algebraic formulae for the
free-net adjustment and the S-transformation are reviewed—
some of these formulae are not usually found in the classic
geodetic literature so their mathematical proofs are also given
in a related appendix; Sect. 4 is fully devoted to the pertur-
bation analysis for free-net solutions and the role of the TRF
stability matrix (the latter being a newly introduced concept
in this paper); a number of practical examples with different
types of geodetic networks are given in Sect. 5; a stochas-
tic perspective for the frame stability in free-net solutions
is presented in Sect. 6 and a concluding summary is finally
provided in Sect. 7.

2 Free networks and minimum constraints

2.1 General background

A m × m singular system of the so-called normal equations
(NEQs)

N(x − xo) = u (1)

provides the fundamental setting for network adjustment
problems and the establishment of spatial reference frames
from terrestrial and/or space geodetic data. Typically, the
above system is deduced from the linearized least-squares
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(LS) inversion of a coordinate-based nonlinear parametric
model (y = f(x) + v) that describes a noisy set of geodetic
measurements in a local, regional or global network. Its ana-
lytic form depends on the rank-deficient Jacobian matrix
A = fx(xo) of the network observables, according to the
well-known relationships (e.g. Blaha 1971a)

N = ATPA and u = ATP(y − f(xo)) (2)

where xo is an initial approximation of the model parameters,
P is the data weight matrix and x is the unknown vector orig-
inating either from a static (coordinates only) or a dynamic
(coordinates and velocities) modelling of the network sta-
tions with respect to an Earth-fixed reference system.

Any solution of Eq. (1) corresponds to what is com-
monly known as a free-network (free-net) solution (Sillard
and Boucher 2001) and it holds a key role for the optimal
analysis of a geodetic network on the basis of datum-defi-
cient noisy measurements. Such solutions are theoretically
equivalent to each other in the sense that they produce the
same linearly adjusted observables ŷ and thus maintaining
the same information about the network’s estimable charac-
teristics that are embedded in the given measurements (e.g.
Grafarend and Schaffrin 1976). Their basic characteristic is
that they provide an unequivocal least-squares fit to the data
vector y, and they offer the standard framework for the real-
ization of TRFs that directly reflect the data quality without
being distorted by external datum-related biases.

The differences between free-net solutions are rigorously
described through a linear transformation that depends on
the frame parameters which are not reduced (defined) by the
geodetic observables in the underlying network. This trans-
formation is known in the geodetic literature as S-transforma-
tion (Baarda 1973; van Mierlo 1980) and it provides a funda-
mental tool for the analysis of network adjustment problems.

2.2 Minimum constraints

The determination of a single solution of Eq. (1) requires a
set of external conditions to specify a coordinate frame with
respect to which the adjusted positions of the network stations
shall be computed. A free-net solution is always associated
with a set of k independent linear equations

H(x − xo) = c (3)

whose number is equal to the rank defect of the normal matrix
(k = m-rankN). These equations constitute the so-called
minimum constraints (MCs), and they are theoretically sat-
isfied by one, and only one, solution of the rank-deficient
system N(x−xo) = u (Koch 1999). The terms H and c char-
acterize completely a free-net solution and they provide the
necessary information for its numerical computation either
through a constrained LS estimator from the data vector y,

or through a S-transformation based on another solution of
the same NEQ system.

From a theoretical perspective, the k × m matrix H needs
to be of full-row rank and it has to satisfy the algebraic con-
dition (Blaha 1971a)

rank

[
N
H

]
= rankN + rankH = (m − k) + k = m (4)

whereas the k-dimensional vector c is free to take any val-
ues within the column space (also called the range) of the
matrix H. The previous condition ensures the inversion of
the extended NEQ system

(
N + HTWH

)
(x − xo) = u + HTWc (5)

which contains the (minimum) required information for the
datum definition in terms of a ‘pseudo-observation’ vector c
that is associated with a ‘design’ matrix H and a symmetric
positive definite ‘weight’ matrix W. Given the condition in
Eq. (4), the extended NEQs have a unique solution that sat-
isfies both the original NEQ system (1) and the MC system
(3), and it is independent of the weight matrix W (a fact that
is sometimes overlooked in the geodetic literature)1; see also
Sect. 3 and the related proofs given in the Appendix.

The theoretical freedom in the numerical selection of the
auxiliary vector c could result in free-net solutions that are
mathematically correct (in the sense that they satisfy both
the singular NEQs and the imposed MCs) yet geodetically
problematic due to the unreasonable magnitude of the esti-
mated positions and/or the significant distortion in the geo-
metrical characteristics of the linearly adjusted network; for
some practical examples, see Xu (1997). In fact, even a MC
vector c with arbitrarily small entries may have a ‘distorting
influence’ on the free-net solution from Eq. (5) if a slight per-
turbation in its values is significantly amplified by the matrix(
N + HTWH

)−1 HTW. Note that this effect does not imply
an ill-conditioned form for the constrained normal matrix
N + HTWH, yet it points to a frame-related instability for
the adjusted network with respect to the adopted MCs.

Remark on terminology. The terms free-net solution and
minimum constraints occasionally appear with different
meanings in the geodetic literature. For example, a free-
net solution is sometimes referred to as the solution of a
(nearly) singular NEQ system without explicitly introducing
any datum conditions, whereas the notion of MCs in several

1 The independence of the solution of Eq. (5) from the weight matrix
W does not hold if the system H(x − xo) = c contains more equations
than the network datum defect (k > m-rankN). In this case the solution
of Eq. (5) will not generally satisfy Eqs. (1) and (3); such ‘over-con-
strained’ adjustment schemes are not treated in this paper.
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papers is often identified with the implementation of inner
constraints on the non-estimable TRF parameters. Herein, we
adhere to the meaning of these terms as described in the pre-
vious paragraphs, without hopefully causing any confusion
to readers who are used to a different denotation.

2.3 Algebraic versus geodetic admissibility of minimum
constraints

The admissibility of the minimum constraints H(x−xo) = c,
as stated in most geodetic textbooks and related papers, relies
on the fundamental condition (4) or on some of its algebraic-
equivalent forms that can be found in the relevant literature
(Blaha 1971a, 1982a; Schaffrin 1985; Koch 1999; Sillard
and Boucher 2001). This (algebraic) admissibility depends
on the structure of the matrices H and N, and it is generally
fulfilled by the datum definition strategies that are employed
in geodetic practice (e.g. fixing a minimum number of station
positions or applying inner constraints on the non-estimable
frame parameters over some or all of the network stations).
A point of concern is the existence of degenerate network
configurations that may cause a problematic adjustment for
certain options of datum constraints due to the remaining
rank deficiency in the extended NEQ system. Such special
cases of singular MCs were investigated by Blaha (1971b);
Tsimis (1973) and later by Papo (1987), but it was Veis (1960)
who first pointed out the possibility of singularities in the
LS adjustment of satellite geodetic networks due to a geo-
metrical faulty structure of the datum constraints; see also
Delikaraoglou (1985) and the references given therein.

An algebraically admissible set of minimum constraints
guarantees the inversion of the augmented normal matrix
N + HTWH, yet it is not sufficient to secure a geodetically
meaningful solution for the original NEQs. In order to bet-
ter understand the meaning of this peculiar statement, it is
helpful to clarify the role of the system H(x − xo) = c in the
context of free-net adjustment. The primary aim of this sys-
tem is not the designation of any arbitrary coordinate frame,
but the establishment of a coordinate frame in the neighbour-
hood of an existing frame that is realized by the approximate
positions of the network stations. The need to refer a free-
net solution into a TRF which is close to the one implied
by the initial vector xo stems from the linearization that is
implicitly associated with the formation of the NEQ system
in Eq. (1). An attempt to overcome this restriction was pre-
sented some years ago from Xu (1997) by assimilating into
the singular NEQs the non-estimable frame parameters of the
network adjustment problem. Despite the theoretical interest
of his over-parameterization approach, a free-net adjustment
is (still) based on the logic of a ‘linearized datum imple-
mentation’ whose practical significance is revealed from the
example mentioned in the following remark:

B

•

x

y

xBxA

yA network rotation about A

• : approximate positions      
of network stations

A

B

•

• •

• •

•

Fig. 1 The minimum constraints xA = const., yA = const. and xB =
const. for the adjustment of a horizontal trilateration network do not the-
oretically yield a unique datum definition, since they cannot distinguish
between the two symmetrical solutions that are shown in the above fig-
ure. However, a unique adjusted solution is practically obtained through
these constraints, which is the one that lies closer to the approximate
coordinates of the network stations

Remark The fixation of a minimum number of station coor-
dinates to some a priori values does not (always) represent a
valid datum definition scheme under a nonlinear treatment of
the rank-deficient network. Nevertheless, such an option is
valid for the linearized minimum-constrained adjustment as
it leads to a unique datum specification relative to the frame
of the initial (approximate) station coordinates; a straightfor-
ward example is depicted in Fig. 1.

The constant vector of the MC system controls the close-
ness between the TRFs of the adjusted coordinates and the
approximate coordinates on the basis of a minimum number
of ‘datum functionals’ c. It is critical, though, that this term
does not cause any detectable disturbance on the true (non-
linear) geometrical characteristics ŷ = f(x̂) of the adjusted
network and the TRF parameters that are already reduced
by the available data. Moreover, a small variation of the ele-
ments of c (e.g. due to coordinate/velocity errors at the refer-
ence stations that participate in the datum constraints) should
not spawn an instability in the TRF of the adjusted network,
neither interfere with its estimable characteristics. These are
the main aspects behind a geodetically meaningful free-net
solution which cannot be guaranteed by an admissible MC
matrix H, as they are directly influenced by the MC vector c
and the sensitivity of the constrained NEQs with respect to
its disturbance. From a geodetic perspective, the MC vector
cannot take any values within the range of the MC matrix,
a fact that creates a convoluted dependence among the basic
components of the free-net adjustment problem.

Let us give a didactic example concerning the minimum-
constrained adjustment of a horizontal trilateration network
based on the fixation of three coordinates over its stations,
namely xA, yA and xB (see Fig. 2). In this case, the terms H
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and c have the general form:

H =
⎡
⎣ 1 0 0 0 . . . 0

0 1 0 0 . . . 0
0 0 1 0 . . . 0

⎤
⎦ , c =

⎡
⎣ x̃A − xo

A
ỹA − yo

A
x̃B − xo

B

⎤
⎦ (6)

where xo
A, yo

A, xo
B are the approximate values of the datum-

specifying coordinates, and x̃A, ỹA, x̃B denote their fixed val-
ues which jointly define the TRF origin and orientation of the
horizontal network. In the absence of any geometrical config-
uration defect, the matrix H will fulfill the condition (4) and it
will impose a valid datum definition for the linearly adjusted
network. However, if the value x̃B (or, more precisely, the
value of the difference x̃B − x̃A) exceeds a certain threshold
then the free-net solution will be deformed, thus affecting
the network scale that is implicitly defined through the dis-
tance measurements (see Fig. 2). The initial configuration of
the network stations (xo) plays a key role in quantifying the
threshold for the reference coordinates’ variation that could
cause such a problematic solution. In the particular example
it is evident that, as the point B lies closer to the x axis, the
adjusted network could be effectively distorted under smaller
disturbances of the MC vector. Note that even if the differ-
ence x̃B − x̃A does not exceed a critical limit, the orientation
of the free-net solution becomes increasingly unstable in this
case (see Fig. 2).

The influence of the MC vector on a free-net solution that
is obtained from a set of minimum constraints H(x−xo) = c
has not been systematically treated in the geodetic literature.
In previous studies the role of this term was investigated in
the context of its deterministic or stochastic interpretation and
the resulting implications on the statistical properties of the
optimal estimate x̂ (e.g. Blaha 1982a). Our main focus in this
paper, on the other hand, is directed towards its frame-dis-
turbance effect and the algebraic framework that is required
to analyse such an effect in practice.

Concluding this section, we need to make a final comment
in view of the nonlinear character of LS network adjustment.
Since a free-net solution is practically determined through
an iterative adjustment scheme, any set of k = m − rank(N)

datum conditions H(x − xo) = c yielding a convergent LS
estimate should always lead to the same geometrical form
ŷ = f(x̂) for the adjusted network (note, however, that a rig-
orous convergence analysis for the linearized LS solution in
rank-deficient nonlinear models does not currently exist in
the geodetic literature). The crucial point to be emphasized
here is that a convergent free-net solution does not neces-
sarily realize a stable TRF over the network stations, and
its geometrical characteristics may be affected under a small
perturbation dc of the constrained datum functionals. These
important issues are schematically described in Fig. 2 for the
simple case of a horizontal network, and they will be analysed
under a more general setting in Sect. 4.

3 Mathematical background

A number of important algebraic formulae that are relevant
to the free-net adjustment problem are reviewed in this sec-
tion. Our presentation gives only an overview of the required
material for the TRF stability analysis in the next sections,
without focusing on mathematical details but rather outlin-
ing the essential theoretical tools for the purpose of this
paper.

3.1 Basic relationships

The general solution of a singular NEQ system N(x−xo) = u
can be expressed by the formula

x̂ = xo + N−u + (I − N−N)z (7)

where N− is a generalized inverse of the normal matrix N
and z is an arbitrary vector. The above expression is valid in
view of the fundamental property NN−AT = AT that applies
when N = ATPA (Koch 1999, p. 51).

The primary link of Eq. (7) with the formulation of
the free-net adjustment problem is rooted in the basic
formula:

N− = (N + HTWH)−1 (8)

which gives the generalized inverse of a symmetric semi-
positive definite matrix N in terms of a full-row rank
matrix H that satisfies the algebraic condition (4) and
an arbitrary symmetric positive definite matrix W (see
Appendix).

When the NEQs generalized inverse originates from Eq.
(8) then the condition HN−AT = 0 is always fulfilled (see
also Appendix). Consequently, by multiplying both sides
of Eq. (7) with the matrix H, we deduce that the general
NEQs’ solution complies with a system of independent lin-
ear equations

H(x̂ − xo) = Hz (9)

which corresponds to the required MCs for the datum defi-
nition in a free-net solution. Note that the MC vector is now
identified as c = Hz, a fact that reveals an important issue
which was mentioned in our previous discussions: the mini-
mum constraints should form a consistent linear system and
thus their constant vector must belong to the range of the MC
matrix. Fortunately, the way that the MC vector is numeri-
cally constructed in the geodetic practice conforms to such
a mathematical requirement, as it will be explained later in
the paper.

The weight matrix W that is used in the computation of
N− does not affect the NEQ solution in Eq. (7), and it does not
interfere with the validity of the minimum constraints in Eq.
(9); a proof is provided in the Appendix. A free-net solution
remains therefore independent of the weighting with which
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ˆ
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Fig. 2 A schematic description for the distorting effect that the min-
imum constraints may cause on the free-net solution of a horizontal
trilateration network. The datum conditions refer to the fixation of the
x and y coordinates of point A and the x coordinate of point B. If
the difference of the fixed x-coordinates exceeds a critical value then
a distortion will occur in the geometrical form ŷ = f(x̂) of the line-
arly adjusted network (in such case a convergent LS solution cannot be
achieved through an iterative adjustment scheme). Note that the critical

value corresponds to the adjusted geometrical distance between points
A and B. The free-net solution (b) is more vulnerable than the free-net
solution (a) due to the weak configuration of the network stations with
respect to the coordinate reference frame. The lower two graphs depict
the orientation disturbance of the minimum-constrained solution under
a small change in the fixed x-coordinate of B (the numerical graph is
based on an adjusted geometrical distance between A and B of 10 km)

the MCs are implemented into the LS adjustment algorithm;
however, its statistical accuracy assessment may account for
the prior uncertainty of the MC vector (see also Sect. 6).

For any m × m NEQ system with rank defect k =
m-rankN there exists a class of k × m full-row rank matrices
E with the fundamental property (Blaha 1971a; Koch 1999)
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AET = 0 and thus NET = 0 (10)

These matrices are identified in this paper as type-E matri-
ces and they hold a crucial role in network adjustment
problems. Any type-E matrix is an algebraically admissi-
ble MC matrix that generates the so-called inner constraints
E(x − xo) = c with well-known optimal statistical proper-
ties for the corresponding solution of the NEQ system. For
more details, see Blaha (1982a), van Mierlo (1980), Papo and
Perelmuter (1981).

In the context of our present study, the following equa-
tions are of particular importance (their proof is given in the
Appendix):

(N + HTWH)−1N = I − ET(HET)−1H (11)

(N + HTWH)−1HTWH = ET(HET)−1H (12)

where H corresponds to any MC matrix that can be associ-
ated with the original NEQ system. The above expressions
define the fundamental projector matrices which are used in
the formulation of the S-transformation, as described in the
next section.

3.2 S-transformation

The S-transformation is a key tool that relates different free-
net solutions of the same singular NEQ system (e.g. Koch
1999, p. 192). In its simplest form, it can be expressed by the
following formula:

x̂ = x̂′ + ETθ (13)

where E is a full-row rank matrix that satisfies the fundamen-
tal property (10). The vector θ reflects the degrees of freedom
in the inversion of the rank-deficient normal matrix N, and it
quantifies the difference between free-net solutions through
k ‘datum transformation parameters’.

Since there are infinitely many type-E matrices, the trans-
formation parameters θ are not uniquely defined and they
depend on the choice of E that appears in Eq. (13). Their
values can be determined in a straightforward way by multi-
plying both sides of the previous equation with an arbitrary
MC matrix and then solving for θ, in which case we get

θ = (H̃ET)−1H̃(x̂ − x̂′) (14)

The above result is invariant with respect to the MC matrix H̃
and/or the possible use of a positive definite weight matrix P̃
(i.e. θ = (H̃P̃ET)−1H̃P̃(x̂ − x̂′)) provided that both vectors
x̂ and x̂′ correspond to distinct solutions of the same NEQ
system.

Based on Eq. (14), the forward S-transformation may also
be expressed by the equivalent model

x̂ = x̂′ + ET(H̃ET)−1H̃(x̂ − x̂′) (15)

where H̃ denotes again an arbitrary MC matrix. The above
formula admits a straightforward geometrical interpretation
within the parameter space Rm of the free-net adjustment

problem, in view of the projection property
(

P2
H̃

= PH̃

)
of

the matrix PH̃ = ET
(

H̃E
T
)−1

H̃.

If the S-transformed vector x̂ needs to satisfy a particular
set of minimum constraints H(x − xo) = c, then Eq. (15)
takes the following form:

x̂=(I − ET(HET)−1H)x̂′+ET(HET)−1 (c+Hxo) (16)

The last equation provides the fundamental basis for analys-
ing the effect of the MC vector c (and its disturbance) on the
geodetic admissibility of a free-net solution that is compliant
with a given MC matrix H.

3.3 ‘Helmertization’ of S-transformation

For every singular NEQ system there exists a type-E
matrix which (i) is independent of the data weighting and
(ii) depends only on the datum defect and the spatial
configuration of the network stations (xo). The correspond-
ing S-transformation parameters θ admit a straightforward
interpretation and they reflect (the differences of) the non-
estimable TRF parameters in x̂ and x̂′ due to the different
datum conditions that were used in each solution.

The aforementioned matrix E is formally known as the
inner-constraint matrix and it stems from the linearized
Helmert transformation that describes a differential similar-
ity between ‘nearby’ Cartesian coordinate frames over an
N -point network (Blaha 1971a, p.23)

xTRF = x′
TRF′ + GTq (17)

where the Helmert transformation matrix G is

G =

tx
ty

tz
εx

εy

εz

δs

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . . . . 1 0 0
0 1 0 . . . . . . 0 1 0
0 0 1 . . . . . . 0 0 1
0 z′

1 −y′
1 . . . . . . 0 z′

N −y′
N−z′

1 0 x ′
1 . . . . . . −z′

N 0 x ′
N

y′
1 −x ′

1 0 . . . . . . y′
N −x ′

N 0
x ′

1 y′
1 z′

1 . . . . . . x ′
N y′

N z′
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(18)

and the vector q contains the seven parameters of the lin-
earized similarity transformation, namely three translations
(tx , ty, tz), three small rotation angles ( εx , εy, εz) and one
differential scale factor (δs); see Leick and van Gelder (1975).

The inner-constraint matrix E consists of the particular
rows of G that correspond to the non-estimable TRF param-
eters of the observed network. In case of dynamic networks,
where both coordinates and velocities need to be jointly esti-
mated from a combined adjustment of time-dependent data,
the matrix G (and also E) should be expanded to include
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additional rows for the rates of the TRF parameters accord-
ing to the time-varying similarity transformation model; see
Sillard and Boucher (2001); Altamimi et al. (2002a,b); Soler
and Marshall (2003).

Note that the inner-constraint matrix E should be formed
by the approximate coordinates of the network stations, upon
which the design matrix A and the normal matrix N were
also computed—otherwise Eq. (10) will not theoretically
hold true. Hence, the S-transformation parameters between
two free-net solutions x̂ and x̂′ are not strictly identical to
their Helmert transformation parameters, since the latter cor-
respond to a linearization of the similarity transformation
model with respect to either x̂ or x̂′ (and not xo). For practi-
cal purposes, though, this difference is negligibly small and
it does need to be further considered.

The Helmert matrix G and the parameter vector q of the
linearized similarity transformation model, for a given net-
work, can be generally decomposed as

G =
[

E
Ē

]
, q =

[
θ

θ̄

]
(19)

where E is the inner-constraint matrix that refers to the non-
estimable TRF parameters θ of the underlying network, and
Ē is the complement matrix corresponding to the estimable
TRF parameters θ̄ that are inherently defined through the net-
work observations. The above partition will be later used in
the discussion on the nonlinear distortion of minimum-con-
strained networks (see Sect. 4.2).

4 MC-perturbation analysis of free networks

The behaviour of a free-net solution under a perturbation of
its associated MCs reflects (an important part of) the TRF
quality that can be achieved through a geodetic network
adjustment. Our aim in this section is to study the above
effect and to expose any problems related to the geodetic
admissibility of a set of MCs for a given network.

4.1 Effect on the network’s non-estimable characteristics

Let x̂ be a free-net solution of a singular NEQ system that
is compliant with a particular set of minimum constraints,
namely H(x − xo) = c. The disturbance of such a solution
due to a variation of the constant vector c is given from the
expression:

dx̂ = ET
(

HET
)−1

dc (20)

which is obtained by differentiating the S-transformation for-
mula in Eq. (16). Alternatively, the previous equation may
be derived through the differentiation of the free-net solution

from the extended NEQs in Eq. (5) taking also into account
the fundamental relationship in Eq. (12).

The induced disturbance of the non-estimable TRF param-
eters in the adjusted network is

dθ = (HET)−1dc (21)

and it essentially corresponds to the S-transformation param-
eters between the initial solution (based on H and c) and the
disturbed solution (based on H and c+dc). Note that the aux-
iliary matrix W does not influence any of the previous terms
due to the algebraic insensitivity of free-net adjustment with
respect to the MCs weight matrix.

The last equation is important for the analysis of free net-
works as it dictates the influence of the MCs to each of the
non-estimable frame parameters. The inverse of the square
matrix HET controls the datum sensitivity in the network
solution and it has a key role for the frame stability in the
presence of a perturbation (error) in the selected minimum
constraints. This matrix is not necessarily diagonal, a fact
that signifies that each constraint may affect more than one,
or even all, of the non-estimable TRF components in the
adjusted network (we will return to this issue in later sec-
tions).

The geodetic admissibility of the minimum constraints
H(x − xo) = c is influenced by the form of the matrix
(HET)−1. Depending on the numerical structure of this
matrix, an ‘unstable’ free-net solution could emerge through
Eq. (5) or (16) in the sense that a small error in the datum con-
ditions may corrupt significantly not only the non-estimable
frame parameters but also the estimable information that is
contained in the linearly adjusted observations (see next sec-
tion). The occurrence of this unfavourable effect depends on
the spatial configuration of the underlying network in tan-
dem with the type of its datum deficiency and the ‘geometry’
of the selected MCs, all of which are reflected into the TRF
stability matrix (HET)−1.

As an example, let us recall the simple case of the hor-
izontal trilateration network given in Fig. 2. The minimum
constraints in this example refer to the fixation of the three
coordinates xA, yA, xB , and they lead to the following matrix
expressions:

HET =
⎡
⎣ 1 0 yo

A
0 1 −xo

A
1 0 yo

B

⎤
⎦ (22)

and

(HET)−1 = 1

yo
A − yo

B

⎡
⎣−yo

B 0 yo
A

xo
A yo

A − yo
B −xo

A
1 0 −1

⎤
⎦ (23)

If the azimuth between the datum points A and B is close
to ±90◦ (

yo
A ≈ yo

B

)
, then a LS adjustment with respect to

an ‘unstable’ datum will take place from which both the
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origin and the orientation of the realized TRF will be weakly
defined. Note that similar problems may also arise in other
types of static or dynamic 2D/3D networks whose datum def-
inition is associated with a ‘problematic’ matrix (HET)−1.

4.2 Effect on the network’s estimable characteristics

The estimable characteristics of a free network are rendered
into two basic components: the vector of the adjusted obser-
vations and the TRF parameters that are inherently reduced
through the available measurements. Theoretically, both of
these components remain invariant after a numerical pertur-
bation (dc) of the MCs or, more generally, under any S-trans-
formation applied to the estimated vector x̂. This property
is valid within the linearized framework of LS inversion in
rank-deficient nonlinear models, yet it does not provide an
exact assessment of the distortionless behaviour in any MC
solution. Some general aspects about the potential distortion
of the estimable characteristics of free networks will be now
outlined.

4.2.1 Adjusted observations

The vector of the linearly adjusted observations from a LS
network adjustment is given by the formula

ŷ = f(xo) + A(x̂ − xo)

= f(xo) + fx(xo)(x̂ − xo) (24)

Considering an iterative implementation of the network’s
adjustment algorithm (where the approximate vector xo is
replaced at each step by the previously estimated position
vector x̂ until a satisfactory convergence is achieved), the
above estimate after sufficient iterations is practically com-
patible with the original nonlinear observational model, that
is ŷ � f(x̂).

The coordinate-based disturbance of the adjusted obser-
vations is expressed as

dŷ = Adx̂ (25)

which, in view of Eq. (20), becomes

dŷ = AET(HET)−1dc = 0 (26)

thus confirming the invariance of the adjusted observations
under a MC disturbance within the free-net adjustment.

The previous property holds only to a first-order approx-
imation of the observational model since it neglects the
contribution of its nonlinear terms to the variation of the net-
work observables. Based on a second-order approximation,
for example, we would have that

ŷ(H,c+dc) = f(x̂ + dx̂)

� f(x̂) + Adx̂ + ξ

= ŷ(H,c) + Adx̂︸︷︷︸
0

+ξ (27)

where ξ denotes the second-order term in the Taylor series
expansion of the adjusted observables for the perturbed free-
net solution.

The disturbance of the adjusted observables, up to a sec-
ond order, is

dŷ = ŷ(H,c+dc) − ŷ(H,c) = ξ (28)

where each element of ξ is given by the quadratic expression

ξi = 1

2
dx̂TQi dx̂ (29)

and Qi is the Hessian matrix of the respective observable.
Taking into account Eq. (20), the previous equation takes the
form

ξi = 1

2
dcT(EHT)−1EQi E

T(HET)−1dc (30)

or equivalently

ξi = 1

2
dθTEQi E

Tdθ (31)

Therefore, a MC disturbance causes a change in the adjusted
observables which are implied by the original nonlinear
model and thus affects, in principle, the network’s estimable
characteristics. The last equation is particularly important as
it relates the nonlinear variation in each adjusted observable
to the perturbation of the non-estimable frame parameters.

4.2.2 The meaning of ξi

The terms ξi represent an important nonlinear element that
has been neglected up to now in geodetic network analysis.
Their values correspond to the geometrical effect of ‘trans-
formed linearization errors’ between TRFs with respect to
which a free-net solution can be determined. In our case,
the corresponding frames arise from the MC systems H(x −
xo) = c and H(x − xo) = c + dc, which do not necessarily
share the same behaviour regarding the influence of lineari-
zation errors in the free-net adjustment. From Eq. (30) we can
conclude that the TRF stability matrix plays a role in control-
ling whether a MC disturbance is able to trigger significant
linearization errors into the geometrical characteristics of the
adjusted network.

4.2.3 Estimable TRF parameters

Following the notation given at the end of Sect. 3.3, let us
model the difference between the initial (x̂) and the perturbed

123



C. Kotsakis

(x̂ + dx̂) MC solutions in terms of a (full) similarity trans-
formation

dx̂ = GTdq

= ETdθ + ĒTdθ̄ (32)

where dθ and dθ̄ are the changes of the non-estimable and the
estimable TRF parameters, respectively. Based on a simple
LS adjustment of the above model and taking into account
that the vector dx̂ is given by the perturbation formula (20),
we obtain the result

dθ̄ = 0 and dθ = (HET)−1dc (33)

as it should be expected due to the theoretical invariance
of any estimable quantity under a MC perturbation within a
free-net solution.

However, the aforementioned invariance is an apparent
theoretical element that exists only within the linearized
framework of the differential similarity transformation. A
simple approach to quantify a likely variation of the esti-
mable TRF characteristics in a dc-perturbed free network is
to perform a stepwise LS estimation of the similarity trans-
formation parameters from certain types of nonlinear datum
functionals (the latter being respectively computed from the
vectors x̂ and x̂+dx̂). For example, a TRF scale-change fac-
tor may be directly estimated from chord differences over an
independent set of network baselines, whereas TRF rotation
parameters can be obtained from the differences of appropri-
ately formed directional angles among the network stations;
for more details on such stepwise schemes for transformation
parameter estimation, see Leick and van Gelder (1975) and
Han and van Gelder (2006). This approach has been actu-
ally implemented in a numerical example that is presented in
Sect. 5.

4.3 A note on the TRF stability matrix

In the preceding sections we exposed the role of the matrix
(HET)−1 in free-net adjustment problems. For any set of
minimum constraints H(x−xo) = c in a rank-deficient NEQ
system, the aforementioned matrix dictates (1) the stability
of the non-estimable frame parameters and (2) the second-
order nonlinear distortion of the geometrical characteristics
in the linearly adjusted network, under the presence of a per-
turbation (error) in the MC vector c.

In every network adjustment there exists an algebraic form
for the MCs such that their TRF stability matrix always
becomes a unit matrix. Indeed, if we multiply the original
system H(x − xo) = c with the matrix (HET)−1, then an
equivalent set of minimum constraints is obtained

(HET)−1H(x − xo) = (HET)−1c (34a)

or, in a more compact form

B(x − xo) = cθ (34b)

where B = (HET)−1H and cθ = (HET)−1c. Obviously, the
TRF stability matrix of the above MCs is

(BET)−1 = ((HET)−1HET)−1 = I (35)

whereas the perturbations of the non-estimable quantities in
the adjusted network are now given by the simplified expres-
sions

dx̂ = ETdcθ (36)

dθ = dcθ (37)

Hence, it seems that the MCs in Eq. (34) are more suitable for
the implementation of a free-net adjustment (compared with
the ‘short’ MCs given in (3)), as they ensure uniform stability
and zero aliasing on the frame parameters under an error in
the constrained datum functionals, see Eq. (21) versus Eq.
(37). This is, however, only a pseudo-regularization char-
acteristic of the constrained LS adjustment since the effect
of the original TRF stability matrix remains hidden within
the vector cθ (and its possible variation) as indicated by the
relationship

dcθ = (HET)−1dc (38)

From a geodetic perspective, the importance of the matrix
(HET)−1 is due to the fact that a type-dc disturbance of a
free network is more relevant than a generic type-dcθ distur-
bance. A brief explanation of this vital fact is provided in the
rest of this section.

Despite the equivalency of the MC systems H(x−xo) = c
and B(x − xo) = cθ (i.e. both of them give theoretically the
same free-net solution), their constrained elements are fun-
damentally different and they depend on some external TRF
information (xext) according to the hierarchical scheme:

xext → c = H(xext − xo) → cθ = (HET)−1H(xext − xo)

(39)

The vector c contains the reduced values for a minimum num-
ber of datum functionals, such as the coordinates at individual
points, the azimuth of a specific baseline, or other more com-
plicated types like the position/velocity of the network’s cen-
troid or the magnitude of the network’s angular momentum
over some or all of its stations. These values are determined
within a linear approximation from xext and xo—the MC
matrix H contains the partial derivatives of the constrained
datum functionals with respect to the network station posi-
tions. On the other hand, the vector cθ represents the (non-
estimable) frame transformation parameters between xext and
xo that are inferred from the differences of the preceding
datum functionals of each frame.
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Both of the previous MC systems force the free-net solu-
tion x̂ to be computed in the same frame as xext in the fol-
lowing sense:

θx̂,xext = (HET)−1H(x̂ − xext)

= (HET)−1H(x̂ − xo) − (HET)−1 H(xext − xo)︸ ︷︷ ︸
c

= (HET)−1(H(x̂ − xo) − c) (40)

= B(x̂ − xo) − cθ

= 0

that is, the (non-estimable) frame transformation parameters
between x̂ and xext vanish when their determination is based
on the datum functionals which are specified by the MC
matrix H.

Any hidden errors in the external TRF information imply
a disturbance to the constrained elements in Eq. (39), thus
causing a variation to the adjusted network as discussed in
Sects. 4.1 and 4.2. Therefore, the matrix (HET)−1 is the net-
work’s ‘filter’ against any xext-related datum errors (which
are given by dc = Hdxext) and it controls their propagated
effect into the various components of the free-net solution.
Remark The choice c = 0 is the one that has been mostly
treated in the geodetic literature, since the approximate vec-
tor xo is often formed on the basis of xext (although this is
not always the case and, certainly, it is not a requirement for
the implementation of a free-net adjustment). Such a case
represents only a special homogeneous form for the mini-
mum constraints, which does not affect the rationale of the
MC-perturbation analysis that was presented in the previous
sections.

5 Examples

5.1 Horizontal network

The adjustment of a horizontal network with measured dis-
tances was previously evoked as a simple example to explain
some of the concepts related to the present study. Here, we
present a few numerical tests for this example that reveal
the effect of the TRF stability matrix in free-net solutions.
The test network and its observed baselines are shown in
Fig. 3, the approximate coordinates of the network stations
are listed in Table 1, and the distance measurements are given
in Table 2.

Five different types of MCs are tested in this network,
namely

(1) fixing the x and y coordinates of point A and the x
coordinate of point B,

x 

y 

A 
B 

D 

E F 

K 

M 

C 

Fig. 3 A horizontal trilateration test network

Table 1 The approximate coordinates of the horizontal test network

Point x y

A 1,024.436 1,345.886

B 15,968.266 1,438.569

C 5,322.097 −4,507.417

D 11,343.332 −3,665.593

E 4,989.587 7,231.325

F 10,205.645 6,155.168

K 5,830.092 2,287.682

M 9,817.173 1,983.554

Units in meters

(2) fixing the x and y coordinates of point A and the x
coordinate of point E,

(3) fixing the x and y coordinates of point A and the azi-
muth of the baseline A–F,

(4) using inner constraints for the TRF origin and orienta-
tion over the points A, B, M,

(5) using inner constraints for the TRF origin and orienta-
tion over all network stations.

For each case we computed the TRF stability matrix
(HET)−1, its trace, and its condition number (i.e. the ratio
between its maximum and minimum eigenvalue), as well
as the condition number of the constrained normal matrix
N + HTH assuming that the data weight matrix and the MC
weight matrix are both equal to a unit matrix. All the results
are summarized in Table 3, from which the following con-
clusions can be drawn:

• the elements of the TRF stability matrix in case 1 have
significantly larger magnitudes than the other cases, sug-
gesting that the particular option leads to an unstable free-
net solution;

• the datum instability in case 1 is not reflected to the con-
dition number of the TRF stability matrix, but rather to
its trace and the large magnitudes of its off-diagonal ele-
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Table 2 The values of the
observed baselines in the
horizontal test network

Units in meters

SAC = 7,261.601 SB M = 6,175.190 SDK = 8,114.402 SE F = 5,325.915

SAE = 7,096.529 SC K = 6,814.065 SDM = 5,851.674 SF K = 5,839.768

SAK = 4,897.078 SC E = 11,743.450 SDF = 9,886.433 SF M = 4,189.663

SB D = 6,887.845 SC M = 7,895.462 SE K = 5,014.600 SK M = 3,998.668

SB F = 7,446.749 SC D = 6,079.788 SE M = 7,130.546

Table 3 The TRF stability matrix and its algebraic characteristics for different MCs

Type of MCs (HET)−1 Trace and condition number of (HET)−1 Condition number of N+HTH

Case 1 (three fixed coordinates)

⎡
⎣ 15.52 0.00 −14.52

−11.05 1.00 11.05
−0.01 0.00 0.01

⎤
⎦ 16.53 5.86 × 104 53.68

Case 2 (three fixed coordinates)

⎡
⎣ 1.23 0.00 −0.23

−0.17 1.00 0.17
−0.00 0.00 0.00

⎤
⎦ 2.23 9.59 × 103 64.44

Case 3 (one fixed station
and a fixed azimuth)

⎡
⎣ 1.00 0.00 −0.09

0.00 1.00 0.07
0.00 0.00 0.00

⎤
⎦ 2.00 1.51 × 104 1.02 × 102

Case 4 (partial inner constraints)

⎡
⎣ 0.36 −0.13 −0.00

−0.13 1.04 0.00
−0.00 0.00 0.00

⎤
⎦ 1.40 3.83 × 108 2.04 × 109

Case 5 (full inner constraints)

⎡
⎣ 0.13 −0.05 −0.00

−0.05 0.37 0.00
−0.00 0.00 0.00

⎤
⎦ 0.50 3.03 × 108 2.44 × 109

ments. Also, it does not affect the inversion of the con-
strained normal matrix N+HTH, which actually exhibits
its most stable form in this case (compared with the other
MCs choices);

• the TRF stability matrix in case 5 shows the best behav-
iour (i.e. it is closer to a diagonal matrix and it has the
smallest trace) among all datum definition schemes, a
fact that reveals the optimality of the full inner constraints
(H = E) towards the realization of a stable reference frame
through a minimum-constrained network adjustment.

Based on Eq. (21), we determined the variations of
the non-estimable TRF parameters under a perturbation in
the a priori coordinates of point A. The nonlinear effect on the
network’s scale was also estimated from the baseline-length
variations that were induced by the corresponding distur-
bance vector dx̂ in Eq. (20). The results from these exper-
iments are plotted in Figs. 4 and 5. The first figure clearly
depicts the datum instability in the free-net solution from
case 1: a change of a few cm in the a priori value xA causes
a TRF shift at the meter level and a TRF rotation up to 300
arcsec, whereas the corresponding effects for the other MCs
cases are smaller by at least an order of magnitude (up to
three orders in the case of inner constraints). A notable non-

linear change in the TRF scale is also seen in case 1, which
implies a potential distortion in the geometrical characteris-
tics of the linearly adjusted network under a perturbation of
the a priori value xA. This scale change amounts to a few
ppm when the latter varies by >15 cm, and it corresponds to
cm-level baseline distortions for the given network size. For
the other MCs cases the nonlinear scale disturbance due to
the xA change is practically negligible. On the other hand, a
change of the a priori value yA does not cause any notable
frame instability in any of the tested MCs types (see Fig. 5).

Note that a small change of the a priori value xB would
generate a significant frame instability in case 1, much simi-
lar to the one shown in Fig. 4. This can be easily inferred by
looking at the columns of the corresponding TRF stability
matrix (HET)−1 in Table 3, which represent the network’s
‘frame filter’ against the perturbations in each of the refer-
ence coordinates (xA, yA, xB).

5.2 Regional GNSS networks

The datum deficiency in this type of networks refers to the
freedom of the TRF origin and its temporal evolution (the
latter applies for non-static GNSS network adjustment prob-
lems). A free-net solution is obtained either by constraining
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Fig. 4 Variations of the non-estimable TRF parameters (origin shifts
dtx , dty and orientation disturbance de) and the nonlinear effect on the
TRF scale (ds) under a perturbation of the a priori coordinate xA. The

latter participates in all tested cases of MCs for the LS adjustment of
the horizontal network. Note the large TRF instability associated with
case 1 compared to the other MCs cases

a single reference station, or preferably by enforcing a no-
net-translation (NNT) condition to the coordinates/velocities
of a subset of network stations. As a result, the TRF stability
matrix for regional GNSS networks has a diagonal form (the
proof is straightforward and it is omitted):

(HET)−1 = 1

m̄
I (41)

where m̄ indicates the number of reference stations partici-
pating in the NNT conditions, and I is the unit matrix. Note
that the case m̄ = 1 corresponds to a free-net solution with a
single fixed station.

Taking into account Eq. (39), a perturbation in the MCs
of a regional GNSS network can be generally expressed as

dc = Hdxext =
[

dx1 + · · · + dxm̄

dẋ1 + · · · + dẋm̄

]
(42)

where dxi and dẋi denote the variation in the a priori coor-
dinates and velocities of each reference station. Based on
Eq. (21), the induced change on the frame origin of the

minimum-constrained network will be

dt = 1

m̄
(dx1 + · · · + dxm̄) (43)

and (in case of dynamic solutions)

dṫ = 1

m̄
(dẋ1 + · · · + dẋm̄) (44)

where the vectors dt and dṫ contain the TRF translation dis-
turbances and their rates. Evidently, the effect of an error
at a reference station will be attenuated by 1/m̄, a fact that
reveals the advantage of the NNT conditions over a single-
point datum realization.

The present example exposes an important limitation of
the TRF stability matrix: if only a translation datum defect
exists in the free-net adjustment problem, then the matrix
(HET)−1 is ‘blind’ to the spatial distribution and the geo-
graphical coverage of the network stations. Hence, the dis-
turbance terms dt and dṫ will not include the instability of the
TRF origin due to the non-global extent of a regional GNSS
network. On the other hand, if an orientation datum defect is
additionally present in the free-net adjustment problem, then
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Fig. 5 Variations of the non-estimable TRF parameters (origin shifts
dtx , dty and orientation disturbance de) and the nonlinear effect on the
TRF scale (ds) under a perturbation of the a priori coordinate yA. The

latter participates in all tested cases of MCs for the LS adjustment of
the horizontal network. Note that no significant TRF instability occurs
in any of the MCs cases

the TRF stability matrix not only will depend on the geomet-
rical configuration of the network stations, but it will also
unveil the error aliasing between the MCs and the realized
frame of the adjusted network (e.g. whether an error in the
z coordinate of a reference station will significantly affect
the TRF origin along the x and y axes); see next example in
Sect. 5.3.

The diagonal structure of the TRF stability matrix in Eq.
(41) allows us to obtain an explicit formula for the nonlinear
distortion of a MC-perturbed regional GNSS network. In the
case of a static solution, for example, the quadratic term from
Eq. (30) is now reduced to the form

ξ(i) = 1

2m̄2

m̄∑
k,l=1

dxT
k M(i)dxl (45)

where the 3 × 3 matrix M(i) is related to the Hessian Q(i)

of each network observable according to the relation M(i) =
EQ(i)E

T (see Sect. 4.2). The above equation may be also
used for computing the distortion in the adjusted baseline
lengths due to small coordinate errors {dxk}k=1,...,m̄ at the
reference stations of the GNSS network datum definition. In
such case the auxiliary matrix M(i) takes the following form:

M(i) =

⎡
⎢⎢⎢⎢⎣

∂2 Spq

∂x2
p

+ ∂2 Spq

∂x2
q

+ 2 ∂2 Spq
∂x p∂xq

∂2 Spq
∂x p∂yq

+ ∂2 Spq
∂xq∂yp

+ ∂2 Spq
∂x p∂yp

+ ∂2 Spq
∂xq∂yq

∂2 Spq
∂x p∂zq

+ ∂2 Spq
∂xq∂z p

+ ∂2 Spq
∂x p∂z p

+ ∂2 Spq
∂xq∂zq

∂2 Spq

∂y2
p

+ ∂2 Spq

∂y2
q

+ 2 ∂2 Spq
∂yp∂yq

∂2 Spq
∂yp∂zq

+ ∂2 Spq
∂yq∂z p

+ ∂2 Spq
∂yp∂z p

+ ∂2 Spq
∂yq∂zq

symm.
∂2 Spq

∂z2
p

+ ∂2 Spq

∂z2
q

+ 2 ∂2 Spq
∂z p∂zq

⎤
⎥⎥⎥⎥⎦ (46)

where Spq is the spatial distance between two arbitrary net-
work stations p and q. Using the analytical expressions
for the second-order derivatives that appear in Eq. (46), it
can be verified that the above matrix is always equal to
zero, thus leading to the important conclusion: the nonlinear
geometrical distortion due to a datum perturbation within
the minimum-constrained network adjustment vanishes in
the case of any geodetic network whose datum deficiency
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concerns only the translational part of its coordinate reference
frame.

5.3 VLBI networks

A TRF realization from global VLBI solutions is based on a
set of 12 MCs: 3+3 NNT conditions on station coordinates
and velocities to specify the TRF origin and its temporal
evolution, and 3+3 NNR conditions on station coordinates
and velocities to specify the TRF orientation and its tempo-
ral evolution. These conditions are applied over a number
of reference stations that are selected on the basis of several
‘objective’ criteria, such as their observational history, their
spatial and temporal coverage and the existence of tectonic
events (e.g. earthquakes) or other episodic station motions
(Heinkelmann et al. 2007). Based on the concept of the TRF
stability matrix, we present herein a simple comparison of
different datum definition strategies that have been followed
by various analysis centers (ACs) of the International VLBI
Service for Geodesy and Astrometry (Schlüter and Behrend
2007) in the computation of their global TRF solutions.

The test network consists of 154 VLBI stations included
in the gsfc2007a solution (see IVS 2011) that was computed
by the Goddard Space Flight Center (NASA/GSFC) using
35 reference stations with a priori positions and velocities in
ITRF2000 (t = 1997.0). Three alternative scenarios are also
considered for the TRF realization in this network, which all
rely on a subset of the 35 reference stations and they have
been used by other IVS/ACs for their own TRF/EOPs solu-
tions (see Table 4).

For each case in Table 4 we have computed the respec-
tive TRF stability matrix (HET)−1 using the MC matrix H
that is associated with each selection of reference stations.
The station coordinates that were used for the computations
were taken from the a priori values in the SINEX file of the
gsfc2007a solution (IVS 2011). In all cases, the TRF stability
matrix has a block-diagonal symmetric structure, as follows:

(HET)−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

U
3×3

F
3×3

0
3×3

0
3×3

FT
3×3

V
3×3

0
3×3

0
3×3

0
3×3

0
3×3

Ũ
3×3

F̃
3×3

0
3×3

0
3×3

F̃T
3×3

Ṽ
3×3

⎤
⎥⎥⎥⎥⎥⎥⎦

(47)

where the 3 × 3 sub-matrices indicate the ‘resistance’ of the
TRF parameters to a perturbation in the adopted minimum
constraints. For instance, U and F reflect the sensitivity of
the TRF origin with respect to a perturbation in the coor-
dinate-based NNT and NNR conditions, whereas V and Ṽ
reflect the sensitivity of the TRF orientation and its tem-
poral evolution under a perturbation in the coordinate- and

velocity-based NNR conditions, respectively. Note that due
to the form of the inner-constraint matrix E for time-depen-
dent networks (e.g. Sillard and Boucher 2001), we also have
U = Ũ, V = Ṽ and F = F̃.

The above sub-matrices for each choice of reference sta-
tions are displayed in Fig. 6. The 35-station and 26-station
options yield similar behaviour in terms of their TRF stabil-
ity, with their U and V components having a stronger diago-
nal structure (and also their F component being significantly
closer to the zero matrix) compared with the other reference
station subsets. These aspects are important for the quality of
the realized TRF, as they ensure a small aliasing level among
the datum constraints and the non-estimable frame parame-
ters (e.g. an error in the z coordinate of a reference station
will not seriously affect the TRF origin along the x and y
axes). Note that in Fig. 6 we have also included the hypo-
thetical case of all 154 network stations participating in the
NNT/NNR conditions, which theoretically gives the optimal
TRF stability for the VLBI network.

Our results reveal that the least preferable option for the
reference frame realization is the 11-stations subset. This
is also supported by the numerical comparison of traceU,
traceV and sumF (the latter denotes the sum of all matrix
elements), as these terms quantify, in some sense, the TRF
stability that is achieved in each case. It is interesting that the
8-stations subset performs clearly better than the 11-stations
subset, largely due to the participation of the reference sta-
tions HARTRAO and HOBART26 which are both located in
the southern hemisphere (see Table 4).

The previous comparisons expose only the TRF stability
of the global VLBI network with respect to different config-
urations of the selected reference stations, and they do not
consider the influence of other factors that may addition-
ally affect the quality of the reference frame realization (e.g.
existence of stations with constrained velocities and/or dis-
continuous positions, choice of the defining sources for the
celestial reference frame, etc.).

6 Reference frame stability of MCs from a stochastic
perspective

Thus far the role of the matrix (HET)−1 has been considered
from a deterministic perspective in view of ‘ill-conditioned’
datum definition schemes in free networks. Such schemes
arise from MCs with a problematic TRF stability matrix and
they can lead to a mathematically correct but geodetically
improper (frame unstable) free-net solution. Note that the
frame-related instability does not interfere with the inver-
sion of the constrained normal matrix N + HTWH per se,
but it affects only the behaviour of the matrix operator

(N + HTWH)−1HTW = ET(HET)−1 (48)
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Table 4 Different sets of
reference stations that have been
used by various IVS/ACs for the
TRF realization in global VLBI
solutions

Reference stations Case 1 (MAO, 8
stations)
mao2003a

Case 2 (IAA, 11
stations)
iaaa2007a

Case 3 (BKG, 26
stations)
bkg2007a

Case 4 (GSFC,
35 stations)
gsfc2007a

ALGOPARK × × × ×
BR-VLBA × ×
DSS45 × ×
FD-VLBA × ×
FORTLEZA × × × ×
HARTRAO × × ×
HATCREEK ×
HAYSTACK ×
HN-VLBA ×
HOBART26 × × ×
KASHIM34 × ×
KASHIMA × ×
KAUAI × ×
KOKEE × × × ×
KP-VLBA ×
LA-VLBA × × ×
MATERA × × ×
MK-VLBA × × ×
NL-VLBA × ×
NOTO × × ×
NRAO20 × ×
NRAO85_3 × ×
NYALES20 × × ×
ONSALA60 × × × ×
OV-VLBA ×
OVRO_130 ×
PIETOWN ×
RICHMOND × ×
SANTIA12 × ×
SC-VLBA × ×
SESHAN25 × ×
TSUKUB32 ×
VNDNBERG ×
WESTFORD × × × ×
WETTZELL × × × ×

which acts on the constrained datum functionals c within the
LS adjustment algorithm (the proof of (48) can be found in
the Appendix).

We shall now adopt a statistical view of Eqs. (20) and (21)
so that we may evaluate the reference frame stability in a free-
net solution through an appropriate covariance (CV) matrix
�θ . For this purpose, the perturbation vector dc in Eq. (21) is
identified as a zero-mean random error which causes a cor-
responding zero-mean random error dθ in the non-estimable
TRF parameters of the adjusted network. By applying the

error covariance propagation to Eq. (21), we get the formula

�θ = (HET)−1�c(EHT)−1 (49)

where �θ and �c denote the error CV matrices of the (non-
estimable) TRF parameters and the constrained datum func-
tionals, respectively. The latter is determined from the general
equation

�c = H�
prior
x HT (50)
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Case 1
(8 stations)

F

Trace = 0.147 Trace = 0.126Trace = 0.585
Trace = 0.032

Trace = 0.432

Trace = 1.69·10-14 Trace = 2.23·10-14 Trace = 5.50·10-15 Trace = 4.71·10-15

Trace = 1.16·10-15

Sum = -4.20·10-9 Sum = -3.77·10-8 Sum = -8.43·10-10Sum = -1.18·10-9

Sum = 1.31·10-10

U

V

Full inner 
constraints

Case 2
(11 stations)

Case 3
(26 stations)

Case 4
(35 stations)

Fig. 6 Image representations of the 3×3 sub-matrices U, V and F of
the TRF stability matrix in the VLBI test network. Each column of the
above plots corresponds to a certain selection of reference stations for

the TRF realization in the VLBI test network. For comparison purposes,
we include also the case where all network stations participate in the
NNT/NNR datum conditions

which is obtained from Eq. (39) on the basis of a CV matrix
�

prior
x that specifies the accuracy of the external reference

frame with respect to which the free-net solution is aligned.
This matrix does not need to contain prior statistical infor-
mation for all network stations but only for those involved in
the underlying MCs, and it can be generally expressed as

�
prior
x =

[
�x1 0
0 0

]

in accordance with an equivalent partition of the parameter

vector x = [
xT

1 xT
2

]T
, where x1 refers to the network sta-

tions with a priori given positions in the external reference
frame and x2 refers to the remaining (new) network stations.
In practice, this matrix originates either from the result of
a previous adjustment, or by an empirical selection for the
accuracy level of the available reference stations.

Taking into account Eqs. (49) and (50), we finally have
the result

�θ = (HET)−1H�
prior
x HT(EHT)−1 (51)

which specifies, in a statistical sense, the TRF stability as a
function of the adopted minimum constraints and the joint
uncertainty (including the possible correlations) of the ref-
erence stations. It should be emphasized that �θ is different
from the covariance matrix representing the so-called ref-
erence system effect (RSE) in LS network adjustment (see

Eqs. (18) and (19) in Sillard and Boucher 2001) and it will
not reflect the total TRF accuracy of a free-net solution. The
above matrix does not include the error contribution of the
available measurements (as the RSE covariance matrix does),
but it evaluates the frame stability that can be achieved by
different choices of MCs in a given network.

The uncertainty of the estimated station positions due to
the ‘TRF-stability effect’ is obtained by applying the error
CV propagation to Eq. (20), thus yielding

�̄ x̂ = ET�θ E

= ET(HET)−1�c(EHT)−1E

= ET(HET)−1H�
prior
x HT(EHT)−1E (52)

= (I − N−N)�
prior
x (I − N−N)T

where the last equality stems from (11) and (12). The matrix
�̄ x̂ represents the contribution of the external frame’s noise
to the total accuracy of a free-net solution, and it is related to
the following CV decomposition:

� x̂ = N−NN− + �̄ x̂ (53)

which is obtained when a full error propagation is applied to
the generalized inversion formula in Eq. (7) under a stochastic
interpretation for the auxiliary vector z (i.e. �z → �

prior
x ).

The previous CV components, that is N−NN− and �̄ x̂ ,
correspond to m × m singular matrices with rank defect
equal to m-rankN and rankN, respectively, and they are both
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affected by the MC matrix H. A well-known result in free-
net adjustment theory dictates that the inner constraints yield
the best accuracy for the estimated positions in the sense that
they minimize the trace of the first CV matrix in (53); see, e.g.
Blaha (1982a). Indeed, in this case (i.e. H = E) the reflexive
generalized inverse N−NN− becomes equal to the pseudo-
inverse N+ which is known to have the smallest trace among
all the symmetric reflexive generalized inverses of the NEQ
matrix (Koch 1999, p. 62).

On the other hand, the trace minimization of the matrix
�̄ x̂ represents a zero-order network optimization task which
has not been unveiled in the geodetic literature (at least to the
author’s knowledge). The corresponding optimal N− and its
associated MC matrix H will provide the most stable align-
ment of the free-net solution with an external frame that is
characterized by an a priori CV matrix �

prior
x . The solution

of such a problem does not always lead to the classic inner
constraints (H = E) and its detailed treatment lies beyond
the scope of the present paper.

7 Conclusions

The influence of the MCs on the reference frame stability in
a free-net solution has been investigated in this paper. Our
study considered the distortion effect due to a perturbation
dc of the constrained datum functionals c = H

(
xext − xo

)
by analysing its propagation on the non-estimable and the
estimable components of the adjusted network. The main
findings along with some brief final remarks can be summa-
rized as follows:

• The matrix (HET)−1 plays a crucial role for the reference
frame stability in a free-net solution, and it controls the
impact of each MC to the (non-estimable) frame parame-
ters of the adjusted network. This is a fundamental matrix
which can be associated with alternative datum imple-
mentation strategies within the same physical network,
but it could be also used for comparing the TRF stabil-
ity from different network configurations with varying
physical locations of their terrestrial stations.

• A ‘problematic’ TRF stability matrix tends to amplify
any external perturbation of the MC vector and causes
the aliasing of the positioning errors of the reference sta-
tions into different frame parameters. Theoretically, such
an aliasing effect does not occur if a translation datum
defect is only present in the network, in which case the
matrix (HET)−1 admits a simple diagonal form (as dis-
cussed in Sect. 5.2).

• Any errors that are present in the a priori positions of the
reference stations cause a nonlinear distortion on the esti-
mable characteristics of a free-net solution and thus they

affect the internal geometry of the minimum-constrained
network (except, again, for the case of a translation-only
datum deficient network). The linearized LS framework
is ‘blind’ to this type of distortion whose practical sig-
nificance in geodetic applications remains though to be
investigated. A second-order modelling scheme of this
effect has been presented in the paper, and it depends
on the TRF stability matrix of the adopted MCs for the
free-net solution (see Sect. 4.2).

Based on the last of the previous findings, it is concluded
that the datum choice problem may interfere with the deter-
mination of the geometrical form of a minimum-constrained
network under a nonlinear observation model—the notion
of a truly distortionless free-net solution requires therefore
additional theoretical steps to be rigorously defined.
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Appendix

Proofs of some relations in the theory of minimum
constraints

Let N = ATPA be a m × m singular matrix with rank defect
k = m-rankN and H any k × m full-row rank matrix that
satisfies the algebraic condition in Eq. (4). The matrices N +
HTWH and HET are then invertible, where W denotes a
symmetric positive definite matrix and E corresponds to a
type-E matrix that satisfies AET = 0 and NET = 0.

Starting with the following equation

(N + HTWH)ET = NET + HTWHET = HTWHET (A1)

which is equivalent to

(N + HTWH)−1HTWHET = ET (A2)

we finally get

(N + HTWH)−1HTW = ET(HET)−1 (A3)

By multiplying (from the right) both sides of the last equation
with H, we obtain

(N + HTWH)−1HTWH = ET(HET)−1H (A4)

The above equation can be also expressed as

(N + HTWH)−1(N + HTWH − N) = ET(HET)−1H (A5)
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which easily leads to

(N + HTWH)−1N = I − ET(HET)−1H (A6)

Note that (A4) and (A6) are identical to Eqs. (11) and (12)
given in Sect. 3.1. If we multiply (from the left) both sides
of the last equation with N, we obtain

N(N + HTWH)−1N = N − NET(HET)−1H = N (A7)

which verifies that the matrix (N + HTWH)−1 is indeed a
generalized inverse of N.

Also, if we multiply (from the left) both sides of (A3) with
A, we get the relationship

A(N + HTWH)−1HTW = AET(HET)−1 = 0 (A8)

and since the matrix W is invertible, we have

A(N + HTWH)−1HT = 0 (A9)

or equivalently

H(N + HTWH)−1AT = 0 (A10)

Since (N + HTWH)−1 is a generalized inverse of N =
ATPA the following relationship holds (Koch 1999, p. 51):

N(N + HTWH)−1AT = AT (A11)

If we multiply (from the left) both sides of (A10) with HT,
we also have

HTH(N + HTWH)−1AT = 0 (A12)

and by adding together the last two equations, we get

(N + HTH)(N + HTWH)−1AT = AT (A13)

or equivalently

(N + HTWH)−1AT = (N + HTH)−1AT (A14)

The last equation in conjunction with (A3) verify that the
free-net solution x̂ obtained from the constrained NEQ sys-
tem in Eq. (5) will be independent of the MCs weight matrix
W.

Furthermore, if we multiply (from the left) both sides of
(A3) with the matrix H, we have that

H(N + HTWH)−1HTW = HET(HET)−1 = I (A15)

and therefore

H(N + HTWH)−1HT = W−1 (A16)

Taking into account (A10) and (A16), it is easily verified that
the free-net solution x̂ from the augmented NEQ system in
Eq. (5) satisfies the MC system, i.e.

H(x̂ − xo) = H(N + HTWH)−1(u + HTWc)

= H(N + HTWH)−1u + H(N + HTWH)−1HTWc

= 0 + W−1Wc = c (A17)

and, using (A9) and (A11), it is deduced that the same solu-
tion satisfies also the original singular NEQ system, i.e.

N(x̂ − xo) = N(N + HTWH)−1(u + HTWc)

= N(N + HTWH)−1u + N(N + HTWH)−1HTWc

= u + 0 = u (A18)
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