
On the adjustment of combined GPS/levelling/geoid networks

C. Kotsakis, M. G. Sideris

Department of Geomatics Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4
e-mail: ckotsaki@ucalgary.ca; Tel.: +1 403 2204113; Fax: +1 403 2841980

Received: 9 September 1998 /Accepted: 8 June 1999

Abstract. A detailed treatment of adjustment problems
in combined global positioning system (GPS)/levelling/
geoid networks is given. The two main types of
`unknowns' in this kind of multi-data 1D networks are
usually the gravimetric geoid accuracy and a 2D spatial
®eld that describes all the datum/systematic distortions
among the available height data sets. An accurate
knowledge of the latter becomes especially important
when we consider employing GPS techniques for level-
ling purposes with respect to a local vertical datum.
Two modelling alternatives for the correction ®eld are
presented, namely a pure deterministic parametric
model, and a hybrid deterministic and stochastic model.
The concept of variance component estimation is also
proposed as an important statistical tool for assessing
the actual gravimetric geoid noise level and/or testing a
priori determined geoid error models. Finally, conclu-
sions are drawn and recommendations for further study
are suggested.
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1 Introduction

The combined use of global positioning system (GPS),
levelling, and geoid height information has been a key
procedure in various geodetic applications. Although
these three types of height information are considerably
di�erent in terms of physical meaning, reference surface
de®nition/realization, observational methods, accuracy,
etc., they should ful®ll the simple geometrical relation-
ship (Heiskanen and Moritz 1967)

hÿ H ÿ N � 0 �1�

where h are ellipsoidal heights obtained from GPS
observations, H are orthometric heights derived from
levelling methods, and N are geoid heights computed
from a geoid model. In practice, Eq. (1) is never satis®ed
due to the following: (1) random noise in the values of h,
H, N; (2) datum inconsistencies and other possible
systematic distortions in the three height data sets (e.g.
long-wavelength systematic errors in N, distortions in
the vertical datum due to an overconstrained adjustment
of the levelling network, deviation between gravimetric
geoid and reference surface of the levelling datum, etc.);
(3) various geodynamic e�ects (post-glacial rebound,
land subsidence, plate deformation near subduction
zones, mean sea level rise, monument instabilities); and
(4) theoretical approximations in the computation
of either H or N (e.g. improper or non-existent terrain/
density modelling in the geoid solution, improper
evaluation of Helmert's formula for orthometric heights
using normal gravity values instead of actual surface
gravity observations, negligence of the sea surface
topography (SST) at the tide gauges, error-free assump-
tion for the tide gauge observations, etc.).

The statistical behaviour and modelling of the mis-
closures of Eq. (1), computed in a network of levelled
GPS benchmarks, have been the subject of many studies
which are often considerably di�erent in terms of their
research objectives. The following is a non-exhaustive list
of some of these objectives. The references provided are
just representative and are not the only important ones.

1. Testing the performance of global spherical harmonic
models for the Earth's gravity ®eld (International
Geoid Service, IGeS 1997).

2. Testing the performance of local/regional gravimetric
geoid models and their associated computational
techniques (Mainville et al. 1992; Sideris et al. 1992).

3. Development of intermediate corrector surfaces for
optimal height transformation between geoid surface
and levelling datum surface (Mainville et al. 1997;
Smith and Milbert 1996).

4. Development of corrector surfaces for long-wave-
length gravimetric geoid errors (De Bruijne et al.Correspondence to: C. Kotsakis
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1997), and general gravimetric geoid re®nement
strategies (Jiang and Duquenne 1996).

5. Evaluation of the achievable accuracy for `levelling
by GPS' surveys (Forsberg and Madsen 1990).

6. Monitoring, testing, and/or improving (strengthen-
ing) of already-existing vertical datums (Hein 1986;
Kearsley et al. 1993).

The above list can be further extended if we substitute in
Eq. (1) the GPS height h with altimetric observations,
and the orthometric height H with the SST. A study for
such marine applications is included in De Bruijne et al.
(1997). In view of the many di�erent uses for such multi-
data 1D networks, the purpose of this paper is to present
some general adjustment and modelling schemes that can
be employed for an optimal analysis of the misclosures
of Eq. (1). In particular, we are mainly interested in
applications of the types (1), (2), or (3) from the previous
list. In Sect. 2, a general overview is given for various
adjustment schemes that have already been applied in
practice. Some general modelling considerations and the
initial formulation of our models are presented in Sect. 3,
and the general adjustment model is fully developed in
Sect. 4. Two di�erent cases of this model are examined in
detail in Sects. 5 and 6, and ®nally some conclusions and
recommendations are given.

2 Overview of various adjustment/modelling schemes

A brief review of various adjustment and modelling
schemes that have already been applied for the applica-
tions mentioned in the previous section will be given
here. Some general aspects of adjustment problems with
combined height data sets can be found in Pelzer (1986).

2.1 Geoid evaluation

Most of the geoid evaluation studies, based on compar-
isons with GPS/levelling data, make use of the following
basic model:

hi ÿ Hi ÿ Ni � aTi x� vi �2�
where x is an n ´ 1 vector of unknown parameters, ai is
an n ´ 1 vector of known coe�cients, and vi denotes a
residual random noise term. The parametric part aTi x is
supposed to describe all possible datum inconsistencies
and other systematic e�ects in the data sets. In practice,
for these studies, the usual four-parameter model is
often used, i.e.

aTi x � xo � x1 cosui cos ki � x2 cosui sin ki � x3 sinui

�3�
and rarely its ®ve-parameter extension (see e.g.
Duquenne et al. 1995).

aTi x � xo � x1 cosui cos ki � x2 cosui sin ki

� x3 sinui � x4 sin
2 ui �4�

has also been employed. Both Eqs. (3) and (4) corres-
pond to the following datum transformation model for
the geoid undulation N, which is described extensively in
Heiskanen and Moritz (1967, Sect. 5±9):

DNi � Da� DXo cosui cos ki � DYo cosui sin ki

� DZo sinui � aDf sin2 ui �5�
where DXo, DYo, and DZo are the shift parameters
between two `parallel' datums and Df , Da are the
changes in ¯attening and semi-major axis of the corre-
sponding ellipsoids. In our case, the two di�erent datums
will correspond to (1) the GPS datum and (2) the datum
used for the development of the global spherical
harmonic model that supports the gravimetric geoid,
and for the computation of the gravity anomaly data Dg.

The model of Eq. (2) is applied to all network points
and a least-squares (LS) adjustment is performed to es-
timate the residuals vi, which are traditionally taken as
the ®nal external indication of the geoid accuracy. The
main problem under this approach is that the vi terms
will contain a combined amount of GPS, levelling, and
geoid random error that needs to be separated into its
individual components for a more reliable geoid assess-
ment. Furthermore, an optimal adjustment in a statisti-
cal sense would require the proper weighting of the
residuals, which is hardly applied in practice. Finally, the
use of such oversimpli®ed parametric models as Eqs. (3)
or (4), combined with improper weighting of the residuals
vi, creates important problems in terms of the `separa-
bility' of the various random and systematic e�ects
between the two unknown components aTi x and vi.

2.2 Corrector surface for GPS/levelling

The development of corrector surfaces aims basically at
providing GPS users with an optimal transformation
model between ellipsoidal heights h and orthometric
heights H with respect to a given levelling datum. For a
general discussion regarding theoretical and practical
aspects of this problem, see Featherstone (1998). Two
such developments have been reported in North Amer-
ica, in the US by the National Geodetic Survey (NGS;
Smith and Milbert 1996) and in Canada by the Geodetic
Survey Division (GSD; Mainville et al. 1997). Both
studies followed a similar methodology, using initially
the basic model of Eq. (2) with its parametric part given
by Eq. (3). The obtained adjusted values for the
residuals vi were then spatially modelled in a grid form
using an interpolation procedure. In the GSD study a
minimum-curvature interpolation algorithm was used,
whereas the NGS ®tted an isotropic Gaussian covari-
ance function to the statistics of the irregularly distrib-
uted values vi and then used simple collocation formulas
for the gridding. From the combination of the gridded
values for the residuals and the adjusted values for the
parameters x, a corrector surface to the gravimetric
geoid was ®nally computed. Some comments regarding
the `drawbacks' of these modelling approaches will be
given later on in the present paper.
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2.3 Gravimetric geoid re®nement

In De Bruijne et al. (1997) a 28-parameter surface model
was estimated to correct the gravimetrically derived
geoid in the North Sea area for its long-wavelength
errors. TOPEX altimetric data (h) and gravimetric geoid
heights (N) were only used in the general observation
equation, Eq. (2), since the SST was neglected in this
study. The parametric model aTi x was comprised of
a simple bilinear part with four parameters (one bias,
two tilts, one torsion), and a more complicated part of
trigonometric polynomials with 24 coe�cients. For the
optimal estimation of this correction model, only the
external altimetric data were properly weighted, accord-
ing to their precomputed standard deviations. Extensive
statistical testing was also applied to validate the ®nal
adjustment results. For the re®nement of land gravi-
metric geoid models using GPS/levelling data, Jiang and
Duquenne (1996) proposed the division of the entire test
area into smaller adjacent networks, in order to better
model the higher frequency geoid distortions due to the
insu�cient local gravity data coverage and the errors in
the used Digital Terrain Model (DTM).

2.4 Vertical datum testing/re®nement

For such applications the analyzed network usually
contains a combination of some, or all, of the following
data: (1) relative DH from conventional levelling; (2)
relative Dh from local GPS surveys; (3) N or DN from
a geoid model; (4) absolute H and SST values at tide
gauge stations; and (5) absolute h from Satellite Laser
Ranging (SLR) or global GPS campaigns. The above
data con®guration was proposed by Kearsley et al.
(1993). In their extensive study, investigating the quality
of sample subsets of the Australian Height Datum
(AHD), they used the following general mathematical
model for known observations and unknown parameters:

Dhij � hj ÿ hi � vDhij �6a�

DHij � Hj ÿ Hi � vDHij �6b�

DNij � Nj ÿ Ni � vDNij �6c�

hj ÿ Hj ÿ Nj � 0 �6d�
All available observations �Dhij;DHij;DNij�, along with
their a priori accuracy estimates, were simultaneously
adjusted, using Eq. (6d) as a geometrical constraint for
the unknown parameters at each station point j. For the
unknown parameters, additional a priori information
can also be incorporated in the adjustment algorithm
(Bayesian estimation), in the form of independent point
measurements with their associated variances and pos-
sible co-variances (e.g. measurement of H at tide gauge
sites). The above methodology suggests a powerful
adjustment tool that can be used for vertical datum
re®nement/rede®nition, where both geometrical (GPS,

SLR) and physical (levelling, geoid, mean sea level)
quantities are optimally combined in a uni®ed fashion
(see also Vani�cek 1991). Among the critical issues
existing in this approach (as well as in the previously
overviewed applications) is the estimation of the a priori
covariance matrices for the di�erent data sets. Since
these types of weighting measures are only used to
describe the behaviour of the random errors in the
measurements, some augmentation of the observation
equations, Eqs. (6), by additional auxiliary parametric
models, describing possible systematic/datum o�sets in
the available data sets, should also be considered.

3 General modelling considerations

In general, Eq. (1) does not hold exactly, due not only to
the presence of zero-mean random errors in the height
data, but also due to a number of other direct or indirect
systematic e�ects. Since there are not usually available a
priori corrections for many of these e�ects, they should
be individually modelled and estimated during an
adjustment process. In this way, the following three
general equations can be written for each point Pi in a
combined GPS/levelling/geoid (GLG) network:

hi � ha
i � f h

i � vh
i ; Hi � H a

i � f H
i � vH

i ;

Ni � N a
i � f N

i � vN
i

�7�

where hi, Hi, and Ni denote the available `observed'
values for the GPS, orthometric and geoid heights,
respectively. The superscript a denotes true values with
respect to a uni®ed geodetic datum, such that the
following equation holds:

ha
i ÿ H a

i ÿ Na
i � 0 �8�

The fi terms correspond to all the necessary reductions
that need to be applied to the original data in order to
eliminate the datum inconsistencies and other systematic
errors. Finally, the vi terms describe zero-mean random
errors, for which a second-order stochastic model is
available:

E vhv
T
h

� 	 � Ch; E vHv
T
H

� 	 � CH ; E vNv
T
N

� 	 � CN �9�
For the orthometric heights, the covariance (CV) matrix
CH is known from the adjustment of the levelling
network. In the same way, Ch can be computed from the
adjustment of the GPS surveys performed at the levelled
benchmarks. In the gravimetric geoid case, the covari-
ance matrix CN is computed by simple error propagation
from the original noisy data used in the geoid solution;
for detailed formulas, see Li and Sideris (1994). For a
more realistic stochastic error model, full knowledge of
the CV matrices should not be assumed. This is
especially true for the geoid heights where the often
vaguely known noise level of the input data (geopoten-
tial model coe�cients, gravity, DTM), and the always
necessary stationary noise assumption when fast spectral
techniques are employed for the computations, may
cause CN to deviate considerably from reality. Hence,
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we will adopt the following stochastic model for the
random noise e�ects in the three height data sets:

E vhv
T
h

� 	 � r2
hQh; E vHv

T
H

� 	 � r2
HQH ;

E vNv
T
N

� 	 � r2
NQN

�10�

where the cofactor matrices Qh, QH, and QN are
assumed known from the sources previously indicated,
and the three variance components are treated as
unknown parameters controlling the validity of the a
priori random error models. One could also extend the
above stochastic model a little bit more, by decomposing
the covariance matrix CN into two di�erent CV matrices
with associated unknown variance components, which
would correspond to the two main geoid random error
sources (noisy geopotential coe�cients, noisy gravity
anomaly data). In this paper, the set of observation Eqs.
(7) and their associated stochastic model in Eq. (10)
represent the basic framework upon which all the
derivations in the following sections will be based.

4 A general adjustment model

Let us assume that, at each point Pi of a test network
with m points, we have a triplet of height observations
(hi, Hi, Ni), or equivalently one `synthetic' observation
li � hi ÿ Hi ÿ Ni. By combining Eqs. (7) and (8), we
obtain the following observation equation for each
network point:

li � hi ÿ Hi ÿ Ni � �f h
i ÿ f H

i ÿ f N
i � � �vh

i ÿ vH
i ÿ vN

i �
�11�

or, in a more compact form

li � fi � vh
i ÿ vH

i ÿ vN
i �12�

If the main objective for using such a test network is to
evaluate the gravimetric geoid accuracy, then we are
naturally interested in the estimation of the vN

i terms.
Since there is a stochastic model [Eq. (10)] that has been
associated with these terms, the values of vN

i are supposed
to re¯ect all the geoid random error sources that were
taken into account for the computation of the CV matrix
QN. Furthermore, the ability to estimate the unknown
parameter r2

N according to some variance component
estimation algorithm (see e.g. Rao 1971, 1997), provides
probably the most powerful statistical tool for a reliable
estimate of the actual geoid noise, and a useful means of
testing all the assumptions that were incorporated in the
construction of the preliminary geoid error model QN.
There is still, however, an amount of geoid error which is
not included in the vN

i terms, and for which no a priori
information is available in general: aliasing e�ects,
improper (or omitted) terrain and density modelling,
various biases in the coe�cients of the geopotential
model, etc. Such geoid errors, which do not follow a
zero-mean random behaviour, will be absorbed in the fi
correction term along with many other systematic e�ects
in the GPS and levelling data. In the absence of any prior
statistical and/or deterministic information for these

error sources, ®ltering them out and estimating their
magnitude individually is impossible.

If, on the other hand, this test network is to be used
for the determination of an optimal corrector surface for
future GPS/levelling applications, then the values fi
have to be estimated and spatially modelled in the best
possible way. The random noise terms vh

i , vH
i , vN

i should
be left out of the modelling for such a correction surface.
This can be easily realized by looking at the form of
the basic observation equation in a future orthometric
height network which will utilize GPS/geoid informa-
tion, as well as the computed corrector surface from our
original test network, i.e.

hÿ N ÿ c � H � v �13�
where the term c represents the reduction e�ect of the
computed correction surface model. A system of equa-
tions, created by taking the di�erences of Eq. (13)
between the GPS survey points, has now to be adjusted
for the optimal estimation of the orthometric height
di�erences DH with respect to the local levelling datum.
Correcting, prior to this adjustment, the GPS/levelling
observations for their random noise e�ects [which is the
case if the terms vh

i and vN
i from Eq. (12) are included in

the modelling of the corrector surface term c] makes no
sense statistically. Furthermore, if the residual values vH

i
from Eq. (12) are included in the modelling of the
corrector surface, then the available original observa-
tions in Eq. (13) will be `corrected' for an error source
which does not even exist in them!

Let us now return to our initial observation model of
Eq. (12). The correction term fi � f �Pi� represents a 2D
spatial ®eld of values, and it can be further decomposed
in the general form

fi � aTi x� si �14�

where ai is an (n ´ 1) vector of known coe�cients, and x
is an (n ´ 1) vector of unknown deterministic parame-
ters. The term si denotes some `residual correction', the
nature of which (deterministic or stochastic) is left
unspeci®ed for now. The ®nal observation equation for
each point in the test network will therefore have the
following form:

li � aTi x� si � vh
i ÿ vH

i ÿ vN
i �15�

and by using matrix notation in order to combine all the
network points, we obtain

l � Ax� s� Bv �16�
where

l � l1 � � � li � � � lm� �T;
s � s1 � � � si � � � sm� �T;
v � vTh vTH vTN

� �T �17a�

v# � v#
1 � � � v#

i � � � v#
m

� �T
; # : h; H ; N �17b�

415



A � a1 � � � ai � � � am� �T;
B � Im ÿIm ÿIm� �; Im : m� m unit matrix

�17c�

This ®nal adjustment model is summarized in Fig. 1.
The associated stochastic model follows from the one
introduced in Eq. (10).

Such adjustment problems where, apart from the
unknown deterministic parameters x and the zero-mean
random errors v, there appear also some quantities s that
depend on an underlying unknown function (the cor-
rector surface in our case), are very common in geodetic
applications. When the emphasis is placed on the esti-
mation of the functionals s, it is traditionally called a LS
collocation problem with unknown parameters (Moritz
1980). In the case where the main interest is on the
parameters x, it is viewed as a simple LS adjustment
problem `in the presence of signals' (Dermanis 1978,
1984). Both approaches are of course equivalent, with an
immediate relation to the classic mixed linear models of
statistical theory (see e.g. Koch 1987).

The crucial point for the solution of the adjustment
model in Fig. 1 is how to treat the signals s. In a ®rst
simple deterministic approach these signals can be
treated just as additional discrete unknown parameters,
and their implicit relation with the underlying unknown
function is completely ignored (see e.g. Dermanis 1984).
This approach, however, is not applicable to our speci®c
case of Eq. (16), because the resulting matrix of the
normal equations, under the minimization principle

vTPv � vThQ
ÿ1
h vh � vTHQ

ÿ1
H vH � vTNQ

ÿ1
N vN � min �18�

with the weight matrix being

P �
Qÿ1h 0 0
0 Qÿ1H 0
0 0 Qÿ1N

24 35 �19�

will always be singular. In order to obtain a unique
solution, therefore, some additional constraints need to
be imposed on the residual systematic corrections si.
Two di�erent cases will now be identi®ed for applying
these necessary constraints.

5 A purely deterministic approach

One easy way to solve the general adjustment model in
Fig. 1 is to neglect the presence of the residual
correction signals s. Essentially, this means that the
corrector surface will be exclusively modelled by a

preselected deterministic parametric form. In order to
avoid any rank de®ciency problems, the total number of
selected parameters should be always smaller than the
number of network points. In this case, the adjustment
model of Fig. 1 will be reduced to the form

l � Ax� Bv �20�
where A is some appropriate design matrix with full
column rank. The ®nal solution of Eq. (20), under the
minimization principle of Eq. (18), will be given by the
equations

W � Im ÿ A
ÿ
AT�Qh �QH �QN �ÿ1A

�ÿ1
� AT �Qh �QH �QN �ÿ1 �21a�

x̂ � �AT�Qh �QH �QN �ÿ1A
�ÿ1

� AT�Qh �QH �QN �ÿ1l
�21b�

v̂h � Qh�Qh �QH �QN �ÿ1Wl �21c�

v̂H � ÿQH �Qh �QH �QN �ÿ1Wl �21d�

v̂N � ÿQN �Qh �QH �QN �ÿ1Wl �21e�

v̂total � Bv̂ � v̂h ÿ v̂H ÿ v̂N �Wl �21f�
In the case where a full CV matrix for the height data
noise is not available, but only some gross estimates for
the mean height accuracy are known, a much simpler
version of the above equations occurs. If we denote by
q2

h, q2H , and q2N the a priori uniform accuracy estimates
for the ellipsoidal, orthometric, and geoid heights,
respectively, then we obtain the following solution:

W � Im ÿ A ATA
ÿ �ÿ1

AT �22a�

x̂ � ATA
ÿ �ÿ1

ATl �22b�

v̂h � q2h
q2

h � q2H � q2
N
Wl �22c�

v̂H � ÿ q2H
q2

h � q2H � q2
N
Wl �22d�

v̂N � ÿ q2
N

q2h � q2
H � q2N

Wl �22e�

From the last three equations [also from Eqs. (21c)±
(21e)] the crucial role of the stochastic model for the
random noise in the height data is obvious. It o�ers the
means of applying an optimal ®ltering to the total
residuals Bv̂ �Wl of the adjustment by separating the
noise coming from each individual height component.
It is rather interesting, though a highly unrealistic case,

Fig. 1. A general model for GPS/levelling/geoid network adjustment
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that when stationary white noise has been assumed for
all height data types, the estimates for the unknown
parameters x̂ and the total residuals Bv̂ will not depend
at all on the three di�erent noise levels q2h, q2

H , and q2
N . By

applying covariance propagation to the above results,
the CV matrix Cx̂ of the adjusted model parameters can
be also determined, which should always be used to
evaluate the quality of the parametric corrector surface
for future GPS/levelling applications. Another useful
matrix is the cross-CV matrix between the adjusted
model parameters and the adjusted residuals for the
various height data sets, from which important infor-
mation can be extracted regarding the correlation of the
corrector surface with the available data.

The reliability of the previous results depends on (1)
the suitability of the parametric model Ax to describe
e�ectively all the systematic e�ects in the height data
sets, and (2) the correctness of the stochastic model for
the observational noise (Qh, QH, QN). It is therefore
necessary to estimate also the three unknown variance
components (see Fig. 1). The method of variance com-
ponent estimation traditionally used in geodesy is Rao's
Minimum Norm Quadratic Unbiased Estimation ±
MINQUE (Rao 1971). In the geodetic literature this
problem has been solved independently, for a variety of
adjustment models, by many researchers; an extensive
review with further references to the relevant literature is
given in Grafarend (1985). The following algorithm
follows the MINQUE criterion and computes optimal
estimates for the unknown variance components of the
ellipsoidal heights (r̂2

h), orthometric heights (r̂2
H ), and

geoid heights (r̂2
N ):

r̂ � Jÿ1k �23a�

r̂ � r̂2
h r̂2

H r̂2
N

� �T �23b�

ki � v̂Ti Q
ÿ1
i v̂i i; j : h;H ;N �23c�

Jij � tr
��Qh �QH �QN �ÿ1WQi

� �Qh �QH �QN �ÿ1WQj

� �23d�

There are occasions, however, where the use of algo-
rithm (23) may lead to negative estimates for the
unknown variance components. In such cases, a mod-
i®cation of the MINQUE method is required (see e.g.
Sjoberg 1984; Rao 1997). A number of statistical tests
and subsequent iterations are ®nally needed in order to
validate the adjustment results. An overview of the
whole adjustment procedure described in this section is
given in the ¯owchart of Fig. 2.

6 A `collocation' approach

The main disadvantage of the previous adjustment
approach is the di�culty of ®nding a good parametric
model Ax to describe all the possible systematic
inconsistencies in the height data sets (too many e�ects
to model). This, in turn, causes problems with respect to
how reliable the results would be for the GPS/levelling/
geoid noise residuals and for the corresponding variance
components. The use of classical statistical testing may
help to identify, to some degree, the weakness of a
speci®c parametric model, but it cannot provide the
means for model improvement. It should be noted that a
good parametric model does not necessarily imply small
values for the estimated residuals Bv̂, since the noise
level in the original height data (Qh, QH, QN) may allow
relatively large values. It is the accuracy Cx̂ of the
adjusted model parameters that should determine how
good a model is, and how e�ectively it can be further
used in future GPS/levelling applications.

Fig. 2. Flowchart for the adjust-
ment procedure in the determin-
istic approach
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Although the parameterization of the distortion ef-
fects in combined GLG networks is a very interesting
topic on its own, it may be more appropriate not to try
putting all the systematic errors in a preselected para-
metric form. For small networks, in particular, this
should be the guiding rule, since in such cases only a
small number of unknown deterministic parameters can
be introduced in order to keep the degrees of freedom
relatively large and the reliability of the adjustment re-
sults relatively high. Such a `compact' model is of course
unable to fully describe the complexity of the various
systematic e�ects and it should be accompanied by
additional residual corrections, which were previously
introduced in the form of signals s [see Eq. (16)].
The solution of the general adjustment model in Fig. 1
requires the incorporation of the signals s in the mini-
mization principle, which now takes the form

sTQÿ1s s� vThQ
ÿ1
h vh � vTHQ

ÿ1
H vH � vTNQ

ÿ1
N vN � min �24�

with Qÿ1s being an appropriate weight matrix for the
unknown correction signals.

Although the solution obtained by using Eq. (24)
does not necessarily have to admit a stochastic interpr-
etation for the signal part, it is useful to consider the
signals as additional stochastic parameters, just like the
zero-mean random errors v; an excellent discussion on
this aspect can be found in Dermanis (1984). The sto-
chasticity of s is actually necessary in the case where
statistical tests related to the validity of their weight
(covariance) model Qs are to be applied.

One of the main di�culties in this approach is that
the mean value ms � Efsg of the stochastic signals will
not necessarily be zero, due to the systematic behaviour
that is supposed to exist in their values. As a result, ms

should appear in the ®nal estimation formulas if we are
seeking unbiased estimators (i.e. equivalence between
the LS principle of Eq. (24) and the best linear un-
biased estimation (BLUE) for E{s} 6� 0; for detailed
formulas see e.g. Dermanis 1987). In order to avoid
such computationally useless estimates, we can initially
solve the system l � Ax� s� Bv using Eq. (24) with a
unit signal weight matrix. The initial solution for the
signal part,

W � Im ÿ A
ÿ
AT�Qh �QH �QN � Im�ÿ1A

�ÿ1
� AT�Qh �QH �QN � Im�ÿ1 �25a�

ŝinit � �Qh �QH �QN � Im�ÿ1Wl �25b�
can be viewed as the `smoothest' residual correction ®eld
that best ®ts the available observations l, the selected
parametric model Ax, and the associated stochastic
model for the random noise e�ects (Qh, QH, QN).

Now, we can easily compute the overall trend in the
signals s by ®tting some smooth surface to the ŝinit val-
ues. If we evaluate this ®tted surface at the test network
points, we obtain in general some values m̂s 6� ŝinit. We
can then create the following `reduced' observations and
signals:

lr � lÿ m̂s �26a�

sr � sÿ m̂s �26b�
It is now safe to assume that the reduced signals sr have
zero mean, i.e. E{sr}=0. Furthermore, the numerical
values �ŝinit ÿ m̂s� can be used for an empirical determi-
nation of a covariance function model describing the
average spatial behaviour of the reduced signals sr. In
this way, we can repeat the adjustment of the model in
Fig. 1, using a new `improved' version for the stochastic
model of the correction signals:

lr � Ax� sr � Bv �27a�

E srf g � 0; E srs
T
r

� 	 � Csr � r2
sr
Qsr

�27b�

The elements of the cofactor matrix Qsr
are computed

from the empirical CV model estimated at the previous
step. An unknown variance component has been also
introduced in order to diagnose any problems related to
the validity of the empirical signal covariance function.
The solution of the adjustment model in Eq. (27) will be
given by the following unbiased estimators:

W � Im ÿ A
ÿ
AT�Qh �QH �QN �Qsr

�ÿ1A�ÿ1
� AT�Qh �QH �QN �Qsr

�ÿ1 �28a�

x̂ � �AT�Qh �QH �QN �Qsr
�ÿ1A�ÿ1

� AT�Qh �QH �QN �Qsr
�ÿ1lr �28b�

v̂h � Qh�Qh �QH �QN �Qsr
�ÿ1Wlr �28c�

v̂H � ÿQH �Qh �QH �QN �Qsr
�ÿ1Wlr �28d�

v̂N � ÿQN �Qh �QH �QN �Qsr
�ÿ1Wlr �28e�

ŝr � Qs�Qh �QH �QN �Qsr
�ÿ1Wlr �28f�

The ®nal solution equations are similar to the ones
obtained under the deterministic approach, with the
only di�erences being (1) the use of reduced observa-
tions lr instead of the original l, and (2) the incorp-
oration of the signal covariance matrix Qsr

. In the
special case of stationary white noise in all three height
data sets, no signi®cant simpli®cation of the above
formulas occurs due to the appearance of the matrixQsr

.
The estimation of the four unknown variance compo-
nents r̂2

h, r̂2
H , r̂2

N , r̂2
sr
follows a straightforward extension

of the MINQUE algorithm of Eq. (23) and it is omitted.
As it was mentioned in Sect. 5, various statistical tests

and iterative solutions can be performed in order to ®-
nally validate the adjustment results. For statistical
testing procedures in extended adjustment models with
signals, see Dermanis and Rossikopoulos (1991) and the
references given therein. In any case, a complete answer
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for the estimated corrector surface should include: (1)
the estimated parametric model Ax̂, (2) the parameters
describing the non-zero mean signal trend ( m̂s are just
the values of this trend at the test network points); (3)
the estimated values for the reduced zero-mean signals ŝr
at the network points; and (4) a covariance model for
the zero-mean signals sr. A combined use of (3) and (4),
in a collocation-type prediction formula, is required for
the interpolation of the zero-mean part of the correction
signal at other non-levelled points. A general ¯owchart
for the whole computational procedure described in this
section is given in Fig. 3a, b.

7 Summary and conclusions

The use of combined GPS/levelling/geoid networks
de®nitely provides a very attractive evaluation scheme
for the accuracy of gravimetric geoid models. At the
same time, GLG networks constitute the skeleton of
`common points' in the attempt to ®nd optimal trans-
formation models between GPS and orthometric
heights. These are two di�erent problems which, never-

theless, can be attacked simultaneously through a
uni®ed adjustment setting. As far as the geoid evaluation
problem is concerned, a GLG network adjustment can
essentially be used for testing the reliability of prelim-
inary geoid error models, which have been derived via
internal error propagation from the source data and
their noise used in the gravimetric solution. Variance
component estimation has been proposed as a useful
statistical tool for computing and testing the actual
geoid noise level. The important role played by the
stochastic noise model of the other two height compo-
nents was also demonstrated through the derived
®ltering equations for the total noise residuals of the
adjustment. This general approach also allows us to
check individually various additive geoid error models
(see comment at the end of Sect. 3). In the absence of
any prior geoid error model, we can still use a unit
weight matrix and obtain an estimate for the a posteriori
unit weight variance for the geoid noise.

For the problem of modelling a corrector surface to
the gravimetric geoid for GPS-to-orthometric height
transformation, it is important to ®lter out all the zero-
mean random noise e�ects coming from the triplet of the

Fig. 3. a Flowchart for the adjustment procedure in the `collocation' approach. b Flowchart for the adjustment procedure in the `collocation'
approach (continued)
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height data. This is the main weakness of some of the
presently available attempts for such a modelling. This
correction surface will also absorb a part of the geoid
long-wavelength error which does not necessarily follow
a zero-mean random behaviour, and which is not gen-
erally possible to be explicitly isolated. Two modelling
alternatives have been presented for the description of
the systematic correction ®eld. These are (1) purely
discrete deterministic modelling and (2) hybrid deter-
ministic and `stochastic' modelling. Again, the tool of
variance component estimation provides the statistical
means to test the admissibility of the correction ®eld's
CV model when (2) is employed.

The problem of statistical testing for various hypoth-
eses, regarding the a priori accuracy information and the
modelling choices in GLG networks needs to be ad-
dressed in more detail, especially in view of the many
di�erent levels of accuracy desired byGPS/levelling users.
In this direction, the problem of optimization and design
of GLG networks is another important and interesting
topic that certainly needs to be explored. Although the
present paper was restricted to a theoretical framework

only, numerical work using the proposed methodologies
is well underway and it will be presented in a future paper.
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