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Abstract:
Aconventional transformationmodel betweendifferent realizations of a vertical reference system is an important tool for geodetic studies
related to precise vertical positioning and physical height determination. Its fundamental role is the evaluation of the consistency for co-
located vertical reference frames that are obtained from different observation techniques, data sources or optimal estimation strategies
in terms of an appropriate set of “vertical datumperturbation” parameters. Our scope herein is to discuss a number of key issues related to
the formulationof sucha transformationmodel and topresent somesimple examples from its practical implementation in the comparison
of existing vertical frames over Europe.
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1. Introduction

The comparison of terrestrial reference frames (TRFs) that are ob-
tainedbydifferent observation techniques,modeling assumptions
and optimal estimation strategies is a common geodetic problem
constituting either a research goal in itself or an auxiliary task for
other geodetic applications. Such a comparison relies on the use
of the linearized similarity transformation, also known as Helmert
transformation (e.g. Leick and van Gelder 1975), which supports
the evaluation of TRFs on the basis of datum-perturbation param-
eters that are associated with the theoretical deönition of a ter-
restrial reference system (Altamimi et al. 2007). Based on the
least squares adjustment of this model over a network of com-
mon stations, a set of estimated parameters is obtained that quan-
tify the origin, orientation and metric consistency of two TRFs
in terms of their relative translation, rotation and scale variation.
The aforementioned scheme provides a geodetically meaning-
ful framework for comparing and transforming Euclidean spatial
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reference frames, and also for assisting their quality assessment
through a suitable de-trending of their systematic differences in
order to identify any localized distortions in their respective coor-
dinate sets.

A similar situationas theonedescribedaboveoccurs also ingeode-
tic studies related to the establishment of vertical reference frames
(VRFs) for physical height determination. Different realizations of a
vertical reference system (VRS) may be available over a regional or
even continental network, originating from separate leveling cam-
paigns, alternative data sources andmodeling strategies. As an ex-
ample, consider a set of national leveling benchmarks that is part
of the United European Leveling Network (UELN): three vertical
frames co-exist in such a leveling network whose physical heights
are respectively obtained from the EVRF00 and EVRF07 continen-
tal solutions (Ihde and Augath 2001, Sacher et al. 2008) and also
by the (usually older) national adjustment of the primary height
network in the underlying country. If, in addition, Global Position-
ing System (GPS) data are available at the particular stations, then
more VRFs could emerge through the synergetic use of gravimet-
ric geoidmodels that enable the conversionof observedgeometric
heights to physical heights.
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An objective comparison of different VRFs needs to be based on
a conventional model that is able to map the differences of co-
locatedphysical heights to a set of geodeticallymeaningful param-
eters. The adopted model must resemble the role of the Helmert
transformation while its associated parameters should reøect the
vertical datum disturbance implied by the corresponding height
datasets. Eventually, the utmost role of such a model is to be used
forgeneratinga combinedoptimal VRF solution frommultiple real-
izations that are jointlymerged into a uniöed vertical frameby pos-
tulating appropriate minimum constraints to the datum-related
parameters of the underlying height transformation model.
The aim of this paper is to discuss some general aspects about the
formulation of a conventional height transformationmodel and to
present a few examples from its practical use in the comparison of
existing VRFs over Europe.

2. Height transformation schemes in practice

Several transformation schemes forphysical heights are commonly
used in geodetic practice. Typical examples include the reduc-
tion of physical heights to a conventional permanent tide sys-
tem and/or to a reference time epoch due to temporal variations
caused by various geodynamical effects (Ekman 1989; Mäkinen
and Ihde2009), the conversion fromnormal toorthometric heights
and vice versa (Flury and Rummel 2009; Sjöberg 2010), and the
determination of apparent height variations due to a geopoten-
tial offset in the zero-height level of the underlying vertical datum
(Jekeli 2000). Also a number of empirical transformation schemes
have been employed for the analysis of co-located heterogeneous
heights and the inference of systematic differences between them.
A classic example is the combined adjustment of ellipsoidal, geoid
and leveled height data which can be perceived as a parameter es-
timation problem in a generalized height transformation model:

H ′
i − Hi = aT

i x + si + vi i = 1, 2, . . . , m (1)

The terms Hi and H ′
i correspond to the orthometric heights ob-

tained from leveling measurements and GPS/geoid data, respec-
tively. Their systematic differences are usually modeled by a low-
order parametric componentaT

i x and (optionally) a spatially corre-
lated zero-mean signal si , whereas vi contains the remaining ran-
dom errors in the height data. The estimated values of the model
parameters and the predicted values of the stochastic signals can
be jointly obtained from the least squares (LS) inversion of Eq. (1)
using somea-priori information for thedata noise level and the sig-
nal covariance function; for more details see Kotsakis and Sideris
(1999).
Numerous modelling options have been followed in practice for
the parametric term aT

i x in Eq. (1), none of which has ever served
as a “geodetically meaningful” transformationmodel between the
underlying VRFs - that is, between the leveling-based frame {Hi}
and theGPS/geoid-based frameH ′

i . Inmost cases, the suitability of
the adopted model is judged by the reduction of the sample vari-
ance of the height residuals and not by the physical or geometrical

meaning (if any) of its associated parameters. In fact, the estimated
values of x have never been of any actual importance in geodetic
studies, other than offering a more or less arbitrary parametric de-
scription for the overall trend of the height differences H ′

i − Hi in
support of GPS-based leveling techniques within an existing verti-
cal datum.
It is worth noting that the use of the well-known 4-parameter
model (Heiskanen and Moritz 1967, ch. 5)

aT
i x = x0+∆x cos ϕi cos λi+∆y cos ϕi sin λi+∆z sin ϕi (2)

may be viewed, to some extent, as an attempt to infer hidden “da-
tum disturbances” between the height frames {Hi} and {H ′

i}.
Such a viewpoint relies on the equivalent form of Eq. (1)

N ′
i − Ni = aT

i x + si + vi i = 1, 2, ..., m (3)

where Ni and N ′
i denote the geoid undulations obtained from a

gravimetric model and GPS/leveling data, respectively. In view of
Eq. (3), the use of the 4-parameter model with Eq. (1) implies that
the systematic part of the differences H ′

i − Hi is essentially de-
scribed through a 3D spatial shift (∆x , ∆y, ∆z) and an apparent
scale change (x0) between the corresponding reference surfaces
of the physical heights (see Kotsakis 2008).
The aforementioned 4-parameter model was regularly used in
older studies for estimating geodetic datum differences from het-
erogeneous height data; especially for assessing the geocentric-
ity of TRFs based on Doppler-derived and gravimetrically-derived
geoid undulations and also for determining the Earth’s optimal
equatorial radius fromgeometric andphysical heights (e.g. Schaab
and Groten 1979, Grappo 1980, Soler and van Gelder 1987). These
tasks require a global height data distribution otherwise the trans-
lation parameters ∆x , ∆y, ∆z and the scaling term x0 become
highly correlated, and their adjusted values may be totally unreal-
istic from a physical point of view. This is the reason that the LS in-
version of Eq. (1) will not always produce a geodetically meaning-
ful solution for the individual parameters of the 4-parametermodel
(not even for the estimated “height bias” x0) when applied over a
regional test network; for some numerical examples see Kotsakis
and Katsambalos (2010). Moreover, a theoretical drawback of this
model for VRF comparison studies is that it neglects one of the key
parameters for the deönition and realization of vertical datums: a
geopotential reference value W0 and, more importantly, its actual
and/or apparent variation between different VRFs.
As a closing remark, we should note that the comparison of co-
located vertical frames needs to consider their scale variation due
to systematic differences originating from the measurement tech-
niques and data modeling options that were used for the determi-
nation of the physical heights in each frame. In fact, one should not
forget that the fundamental theoretical constrainth−H−N = 0
requires not only the “origin consistency” among the heteroge-
neous height types, but also their reciprocal vertical scale unifor-
mity.
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3. Formulation of a conventional VRF transformation model

3.1. General considerations

The assessment of the consistency between different VRFs over a
network of common stations requires a conventional transforma-
tion model of the general form

H ′
i − Hi = f (x) + vi i = 1, 2, ..., m (4)

The parameters x of this model should quantify the vertical da-
tumperturbations induced by the height datasets {Hi} and {H ′

i}
while the remaining residuals reøect the internal accuracy of the
corresponding frames. The spatial analysis of the estimated height
residuals is also useful for identifying local distortions and other
spatially correlated errors within the tested VRFs which cannot be
absorbed by the model parameters x.
In general, a VRF is a realization of a 1D terrestrial coordinate
system with respect to an equipotential surface of Earth’s grav-
ity öeld. The latter provides a conventional zero-height level rela-
tive to which vertical positions can be obtained by various geode-
tic techniques and terrain modeling hypotheses. The key role of
Eq. (4) is thus to appraise the variation of the reference equipo-
tential surface and the vertical metric scale, which both signify the
fundamental constituents of any physical height frame (Schwarz
and Sideris 1993).
Evidently two basic parametersmust be incorporated into the pre-
viousmodel, that is a vertical translation parameter in the formof a
geopotential disturbanceδW 0 , andavertical scale changeparam-
eter in the form of a unitless factor δs reøecting the metric differ-
ence between the height frames. In contrast to the Helmert trans-
formation model there are no rotational terms within the transfor-
mation model of Eq. (4) since the frame orientation aspect is not
an inherent characteristic of physical height systems.
Note that the notion of scale in a vertical reference system is often
linked to the geopotential value W0 which is adopted for deön-
ing absolute vertical coordinates (geopotential numbers and their
equivalent physical heights) on the Earth’s surface. In the geode-
tic literature the VRS scale is actually related to an equipotential
surface realized by the combination of a mean sea surface topog-
raphy model and a global gravity öeld model, in accordance with
the classic Gauss-Listing deönition of the geoid (Ihde 2007). This
is a common approach to quantify the average size of the refer-
ence surface used for vertical positioning, since the ratio of Earth’s
gravitational constant to the adopted reference geopotential level
yields the mean radius of the geoid, i.e.

R = GM
W0

(5)

which itself corresponds to a “metric” for the geocentric positions
of terrestrial points with zero heights! Obviously, any change of
W0 induces an apparent offset to the terrestrial physical heights

which is perceived as an indirect scaling effect due to the changed
dimension of the zero-height reference surface.
The aforementioned perspective aims at the standardization of
Earth’s global scale through the physical parametersGM andW0 ,
and it has nothing to do with the notion of a scale variation be-
tween different VRFs. In fact, a change ofW0 implies a transforma-
tion from a zero-height origin to another one, whereas the scope
of a VRF scale change is to account for the systematic discrepancy
of the vertical scale that is realized by different techniques and/or
datasets when determining physical height differences. Both of
these types of datum variation (origin and scale) are feasible and
they may co-exist in the joint analysis of different vertical frames.

3.2. The effect of δW0

Changing the origin of a VRF means that a different equipotential
surfacewill be used as a zero-height reference for physical heights.
Such a transformation can be described through a single parame-
ter (δW0) reøecting the change of the equipotential reference sur-
facewith respect to a conventional representation of the terrestrial
gravity öeld. The effect on theVRF’s geopotential numbers is a con-
stant offset equal toδW 0 while for theorthometric heights it takes
the form of a nonlinear variation (due to the non-parallelism of the
equipotential surfaces) according to the power series expansion:

H ′
i − Hi = δW0

gi
− ∂g

∂H
δW0

2

2gi3
+ ... (6)

wheregi and∂g/∂H denote the actual gravity and its vertical gra-
dient on the geoid, or more precisely on the equipotential surface
associated with the initial orthometric height Hi . For the proof of
Eq. (6) one needs to consider the Taylor series expansion of the
gravity potential at an arbitrary point P ′ on the equipotential sur-
face W = W0 + δW0 , i.e.

W (P)′ = W (P) + ∂W
∂H


P

δH + 1
2!

∂2W
∂H2


P

δH2 + ... (7)

where the pointP is taken along the vertical direction and located
on the equipotential surfaceW = W0 (see Fig. 1). The last formula
can be equivalently expressed in the following form (we omit for
simplicity the symbol of the evaluation point in the partial deriva-
tive terms)

δW0 = ∂W
∂H

(
H ′ − H

)
+ 1

2!
∂2W
∂H2

(
H ′ − H

)2 + ... (8)

since the vertical offset δH between the two equipotential sur-
faces corresponds exactly to the orthometric height change on the
Earth’s surface. Using the well-known formulae for the inversion of
a convergent power series (Harris and Stoker 1998, p. 540) and tak-
ing into account that ∂W /∂H = −g and ∂2W /∂H2 = ∂g/∂H ,
we önally obtain the series expression given in Eq. (6). For prac-
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Figure 1. Change of the zero-height equipotential reference surface
for orthometric heights. The rigorous relationship between
δW 0 and δH is given by the nonlinear expression in Eq. (6).

tical purposes Eq. (6) can be replaced by the simpliöed linearized
formula:

H ′
i − Hi = δW0

γi
(9)

since the higher order terms have a negligible contribution (<
1mm) for reasonable values of δW 0 (up to 1-2 gpu or equivalently
up to 10-20m2s−2). Note that the geoidal gravitygi may be safely
replaced by the normal gravitγi on the reference ellipsoid, causing
an approximation error to the transformed orthometric height be-
low the mm level even for gravity anomaly values ∆gi = gi − γi

up to 500 mGal.

3.3. The effect of δs

In contrast to geometric Cartesian TRFs, the assessment of a uni-
form scale difference between VRFs is not a straightforward issue.
The effect of a scale change factor on physical heights depends
on the way we (choose to) handle the Earth’s gravity öeld and its
equipotential surfaces under the inøuence of a spatial re-scaling.
The underlying problem is similar to the similarity transformation
of GPS heights with respect to a reference ellipsoid, where the lat-
ter may or may not follow the scale variation that is imposed by
the TRF transformationmodel (Soler and vanGelder 1987, Kotsakis
2008).
Starting from the fundamental differential formula (Heiskanen and
Moritz 1967, p. 50)

dW = −gdH (10)

wheregdenotes themagnitudeof thegravity vector, the following
relationship can be obtained:

dH = − 1
g

[
∂W
∂x dx + ∂W

∂y dy + ∂W
∂z dz

]
= −▽W · dr

g
(11)

which gives the (physical) height metric as a weighted combina-
tion of the Euclidean metric components with respect to a terres-
trial coordinate system. The associated weights correspond to the
normalized geopotential gradients and they represent the inøu-
ence of the Earth’s gravity öeld on the physical height scale.
Now, we may postulate that a spatial scale change as dictated
by the metric transformation dr’= (1+δs) dr does not affect the

magnitude of the Earth’s gravity öeld, and it thus causes a similar
change to the physical height metric in accordance to Eq. (11). Es-
sentially this implies that theequipotential surfacesW =const will
undergo a uniformgeometric re-scaling so that the resulting effect
on the physical (orthometric) heights over the Earth’s surface is ex-
pressed through the simple formula:

H ′
i = (1 + δs)Hi (12)

or equivalently

H ′
i − Hi = δsHi (13)

The above expression can be used for the assessment of the sys-
tematic scale discrepancy between VRFs relative to a common ref-
erence surface – note that zero-height points are preserved by the
transformation of Eq. (12) or (13). The unitless factor δs absorbs
the (linear part of ) topographically correlated differences of the
height datasets {Hi} and {H ′

i}which inøict an apparent scale dif-
ference in their corresponding VRFs.

4. LS adjustment of the VRF transformation model

Based on the discussion of the previous sections, a conventional
and geodetically meaningful comparison between VRFs may be
applied in terms of the linearized transformation model:

H ′
i − Hi = δW0

γi
+ δsHi + vi i = 1, 2, ..., m (14)

where themeaningof each termhas alreadybeenexplained inpre-
vious paragraphs. Loosely speaking, the above model represents
the 1D-equivalent of the similarity transformation for orthometric
heights from a vertical frame to another vertical frame; an analo-
gous expression may also be used for the case of normal heights.
The LS adjustment of Eq. (14) over a network of m stations leads
to the following system of normal equations (NEQs):

[
qTPq qTPd
dTPq dTPd

] [
δŴ0

δŝ

]
=

[
qTP(d′ − d)
dTP(d′ − d)

]
(15)

where the vectors d and d’ contain the known heights from

two different vertical frames d =
[
H1 · · · Hm

]T
and d′ =

[
H ′

1 · · · H ′
m

]T
while P is a weight matrix for their differences

and the auxiliary vector q is deöned as q(i) = 1/γi . The above NEQ
system is always invertible provided that q and d are not co-linear
vectors with each other. Given that the elements of q retain an al-
most constant value (i.e. their relative deviation does not exceed
10−4 even in large continental networks), the inversion of Eq. (15)
is practically guaranteed as long as the m stations do not have the
same height level!
The correlation coefficient between the estimated VRF transforma-
tion parameters is always negative and it can be expressed as (the
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proof is straightforward considering the analytic form of the in-
verse of the 2×2 NEQmatrix)

ρδŴ0 ,δŝ = − qTPd√
dTPd

√
qTPq

(16)

and, if the weight matrix has the simple form P=1/σ 2I, it can be
further simpliöed as follows:

ρδŴ0 ,δŝ = −
∑m

i=1
Hi
γi

[∑m
i=1 Hi

2]1/2[∑m
i=1

1
γi2

]1/2

w − 1
γ̃

∑m
i=1 Hi

[∑m
i=1 Hi

2]1/2 1
γ̃
√

m

= −
[∑m

i=1 Hi
]
/m

[∑m
i=1 Hi

2/m
]1/2 = −mean [d]

rms [d] (17)

A useful algebraic relationship for the optimal estimates obtained
from the inversion of Eq. (15) in terms of their correlation coeffi-
cient is:

δŴ0 = qTP(d′ − d)
qTPq + ρδŴ0,δŝ

√
dTPd
qTPqδŝ (18)

The “separability” of the VRF transformation parameters depends
strongly on the vertical network conöguration. As a matter of fact,
in the context of the joint estimation of δW 0 and δs, an optimal
network geometry is not related to a homogeneous coverage over
the Earth’s surface but to a high height variability among its control
stations. Obviously the dispersion of the data vector d must be
sufficiently large in order for the correlation coefficient in Eq. (16)
to retain a reasonably low value.

5. Examples

Let us now give a few examples from the LS inversion of the trans-
formation model in Eq. (14) for a number of VRFs in Europe.

The örst example employs the EVRF00 and EVRF07 normal heights
at the 13 UELN öducial stations which were used for the primary
deönition of the zero-height level in the official EVRF07 solution
(Sacher et al. 2008). Although the zero-height levels of these two
frames were a-priori aligned at the particular stations through a
single constraint that was implemented in the EVRF07 adjustment
(ibid.), our results in Table 1 reveal a small (mm-level) offset be-
tween their reference surfaces. This is due to the inherent corre-
lation between the estimated parameters δŴ0 and δŝ (ρ = -0.7
in this case) which causes an unavoidable leakage effect in their
corresponding values; see Eq. (18). Nevertheless, the estimated
transformation parameters between EVRF00 and EVRF07 seem to
be statistically insigniöcant, within the limits of their statistical pre-
cision, over the 13 UELN öducial stations.

Table 1. Estimated transformation parameters between EVRF00 and
EVRF07 from the normal heights at 13 UELN fiducial sta-
tions over Europe. The initial weight matrix P was set equal
to a unit matrix and the a-posteriori variance factor of unit
weight was estimated at σ0 = 9 mm.

d d’ δŴ0 (gpu) δŝ (ppm)
EVRF00 EVRF07 0.002 ± 0.004 -25.5 ± 27.7

Table 2. Estimated transformation parameters between VRFs in
Switzerland based on 20 EUVN-DA Swiss stations.

d d’ δŴ0 (gpu) δŝ (ppm)
EVRF00 EVRF07 0.025 ± 0.001 2.9 ± 0.8

GPS/EGG08 EVRF07 0.044 ± 0.012 -76.6 ± 10.7
LN02 EVRF07 -0.251 ± 0.030 35.7 ± 26.8

LHN95 EVRF07 -0.060 ± 0.026 -220.7 ± 22.9

The second example uses several different VRFs realized over a net-
work of 20 Swiss leveling benchmarks which belong to the EUVN-
DA network (Marti 2010, EVRS 2012). The vertical frames were
compared on the basis of Eq. (14) using physical heights from: (i)
the EVRF00 and EVRF07 continental adjustment solutions, (ii) the
combination of GPS heights with the European gravimetric geoid
model EGG08, (iii) the Swiss official height system LN02, and (iv)
the LHN95 rigorous adjustment of the Swiss national height net-
work. The estimated transformation parameters are given in Ta-
ble 2, whereas the standard deviation of the height residuals (be-
fore and after the VRF transformation) are listed in Table 3.

Some notable highlights of the computed results in the Swiss test
network are: the considerable scaledifferencebetweenLHN95and
EVRF07 and the signiöcant origin discrepancy between LN02 and
EVRF07, the superiority of the GPS/EGG08 height frame compared
to theSwissnational VRFs regarding its agreementwith theEVRF07
frame, and önally the sub-cm consistency between EVRF00 and
EVRF07 at the particular 20 EUVN-DA Swiss stations, even before
the implementation of the height transformationmodel. The neg-
ligible reduction in the standarddeviationof theheight differences
between LN02 and EVRF07 (see Table 3) indicates the presence of
strong local distortions in the original LN02 heights which cannot
be absorbed by the estimated VRF transformation parameters. On
the other hand, the comparison of LHN95 and EVRF07 reveals that

Table 3. Standard deviation (in cm) of the normal height residuals
before and after the adjustment of Eq. (14) at 20 EUVN-DA
Swiss stations.

d d’ σ (before) σ (after)
EVRF00 EVRF07 0.3 0.2

GPS/EGG08 EVRF07 5.2 2.6
LN02 EVRF07 6.9 6.6

LHN95 EVRF07 14.0 5.6
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a largepart of their original heightdifferences is due to anapparent
vertical scale variation that exists between the underlying frames.

6. Epilogue

A preparatory discussion on the use of a conventional transforma-
tionmodel for evaluating and comparing VRFs has been presented
in this paper. Our approach has been restricted only to a static
(time-independent) setting, yet its generalization for dynamic ver-
tical frames is also necessary in view of important problems such
as (i) the consistency assessment of vertical velocity models ob-
tained by different geodetic techniques and/or modeling assump-
tions, and (ii) the optimal combinationofmultiple time-dependent
VRF realizations over a global or continental control network.
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