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Abstract. After the launch of the CHAMP and 

GRACE satellite missions, an increasing number of 

spherical harmonic models have become available 

for the long-, medium- and short-wavelength map-

ping of the Earth’s gravitational field. In view of the 

need for a coherent comparison between such Earth 

Gravity Models (EGMs) and a detailed evaluation 

of their accuracy for various gravity field function-

als, it is important to investigate the consistency of 

their inherent reference frames, especially when 

their use is intended for high precision studies. Fol-

lowing the methodology described in an earlier pa-

per by Kleusberg (1980), the Helmert transforma-

tion parameters among the inherent reference 

frames for several CHAMP and GRACE models are 

estimated in this paper. In particular, the differences 

between the corresponding spherical harmonic coef-

ficients for a given pair of EGMs are parameterized 

through a 3D similarity transformation model, 

whose weighted least-squares adjustment yields 

valuable information for the origin stability, the 

orientation consistency and the spatial scale varia-

tion between their underlying reference frames. 
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1. Introduction 
 

All gravity field functionals obtained from a global 

Earth Gravity Model (EGM) depend on the terres-

trial reference frame that ensues from implementing 

an optimal inversion procedure to various data sets 

which are used for the model’s development. In the 

case of processing satellite tracking data, for exam-

ple, such EGM-related global reference frames can 

be realized through an appropriate set of constraints 

that is applied to a number of satellite tracking sta-

tions in order to remove the rank deficiency of the 

input data that lead to the estimation of the low-

degree EGM coefficients; see Pavlis (1998). This 

occurs if in the processing of the satellite tracking 

data one solves simultaneously for the tracking sta-

tion positions (and possibly velocities) along with 

the geopotential harmonic coefficients. Alterna-

tively, one may decide to adopt some existing 

ITRF-type frame to fix a-priori the EGM’s refer-

ence system, and then process the tracking data (and 

other types of geodetic observables coming from 

dedicated satellite gravity missions such as 

CHAMP or GRACE) exclusively for geopotential 

recovery. In any case, if we want to maintain a co-

herent framework for the comparison of current and 

future EGMs, and to evaluate their prediction accu-

racy for gravity field functionals, it is important to 

investigate the consistency of their inherent refer-

ence frames. 

Compared to the standard direct approach fol-

lowed by the IERS for the realization of the Interna-

tional Terrestrial Reference Frame (ITRF) in terms 

of recurring estimates for the 3D geocentric Carte-

sian coordinates at a number of control stations (Al-

tamimi et al. 2002), an EGM solution carries 

through its harmonic coefficients (including the 

conventionally fixed or estimated zero- and first-

degree coefficients, and its associated scaling fac-

tors GM and a) all the required information to con-

strain the origin, orientation and scale of a spatial 

reference system. Different EGMs provide alterna-

tive ‘indirect realizations’ of a 3D Cartesian coordi-

nate system, whose transformation parameters are 

estimable from the differences of their correspond-

ing spherical harmonic coefficients (Kleusberg 

1980). 

The consistency of the global reference frames 

inherent in different EGMs is a critical issue that 

affects several tasks, including the determination of 

combined estimates for gravity field signals by 

merging information from different geopotential 

models, the comparison and accuracy evaluation of 

different EGMs, and the calibration of their error 

models using terrestrial and/or satellite data. More-

over, the origin, orientation and scale stability 

among the EGMs’ reference frames is crucial for 

estimating and properly monitoring Earth change 

parameters (e.g. mean sea level changes, Earth rota-



tion variations, mass re-distribution, etc.) through 

global gravity field mapping, as well as for integrat-

ing geometric and ‘gravimetric’ reference systems 

and data sets that are linked to them. 

There are several investigations in the geodetic 

literature which have focused on reference frame 

consistency aspects in global geopotential models 

(e.g. Anderle 1974, Rapp and Rummel 1976, 

Grappo 1980, Lachapelle and Kouba 1981, Kirby 

and Featherstone 1997). Despite the wide-ranging 

interpretations of their results, most of these studies 

have relied on a common methodology, notably the 

comparison of geometrically derived (i.e. through 

satellite positioning techniques) and EGM-based 

geoid undulations over a global, continental or re-

gional network of leveling benchmarks. 

The main drawback of such evaluation tech-

niques is that the reference frame transformation 

parameters (usually three translation components 

and one scale change factor are only considered), 

which are obtained from the comparison of geomet-

ric and EGM-based geoid heights, are inevitably 

distorted due to the high correlation caused by the 

non-uniform distribution and limited spatial cover-

age of the control points. Even in cases with a truly 

global and uniform distribution of data points 

(Schaab and Groten 1979), the conclusions drawn 

from such an evaluation scheme are likely to be 

obscured by the coupling of long-wavelength biases 

from the EGM-geoid heights into the estimates of 

the reference frame transformation parameters; see 

Weigel (1993). 

Furthermore, the geoid height is a totally insen-

sitive variable to the rotation of the underlying ref-

erence system about the symmetry axis of the 

adopted reference ellipsoid. Hence, it is impossible 

to estimate this particular datum parameter solely 

from the differences N
GPS− NEGM

. The latter are able 

to recover only variations in the direction of the 

mean Earth rotation axis that is implied in each ge-

oid type, and not orientation differences in the zero-

meridian planes of their associated reference 

frames. 

The objective of the present paper is to imple-

ment an alternative approach for testing the consis-

tency of the reference frames inherent in different 

EGMs. The formulation given in Kleusberg (1980) 

for the Helmert spatial transformation of a spherical 

harmonic series is employed to estimate the origin, 

orientation and scale variations among the global 

reference frames implied in recent CHAMP and 

GRACE geopotential models. The benefit of such 

an approach is that it does not involve the interme-

diate computation and comparison of other gravity 

field functionals (e.g. geoid heights), but it relies 

entirely on the original harmonic coefficients of the 

Earth’s gravitational potential that are provided by 

the specific EGMs under comparison.  

2. Methodology 
 

Our study is based on the mathematical model 

given by Kleusberg (1980) for the linear approxi-

mation of the Helmert (or 3D Euclidean similarity) 

transformation for the Earth’s gravitational potential 

harmonic coefficients, under translations, rotations 

and scale variation in the underlying Cartesian co-

ordinate system. Although the linearized transfor-

mation formulae derived in that study are theoreti-

cally less rigorous than other versions that appeared 

in previous references (e.g. Goldstein 1984), they 

are fairly precise for practical use in global geodetic 

studies where small (differential) reference frame 

perturbations are typically involved (Pavlis 1998).   

Due to the limited extent of the paper, only a 

brief overview of the Helmert transformation for-

mulae for spherical harmonic coefficients will be 

given, without presenting any additional mathe-

matical details or derivations; for a complete de-

scription, see the original paper by Kleusberg 

(1980). 

Let us consider the usual expansion of the 

Earth’s gravitational potential in terms of a spheri-

cal harmonic series (Heiskanen and Moritz 1967) 
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The set } ,{ nmnm SC  contains unitless, fully- 

normalized spherical harmonic coefficients that are 

obtained from a global EGM up to a maximum de-

gree of expansion nmax. The quantities GM and a 

correspond to the geocentric gravitational constant 

and mean equatorial radius, which are the basic 

scaling factors that are conventionally associated 

with an EGM solution, while )(⋅nmP  represent the 

fully-normalized associated Legendre functions of 

degree n and order m. 

In most EGMs the zero-degree normalized coef-

ficient 0,0C  is usually treated as an errorless quan-

tity, with its value fixed a-priori to 1. Based on (1), 

such a constraint gives an initial noise-free ap-

proximation for the Earth’s gravitational potential 
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which corresponds to a point-mass (or homogene-

ous sphere) Earth model, with the origin of the 

EGM’s reference frame located at the Earth’s center 

of mass (geocenter). Note that in several geopoten-

tial models (e.g. GRIM5, GFZ96, TUM1S, TUM2S) 

the zero-degree coefficient is not conventionally 



fixed to 1, and its actual value is associated with a 

formal statistical error that corresponds to the un-

certainty of the geocentric gravitational ‘constant’ 

GM which is estimated anew within the EGM de-

velopment process. In such cases, the following 

formula relates the accuracy of the zero-degree co-

efficient with the uncertainty of the associated value 

for the geocentric gravitational constant 
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The first-degree normalized coefficients 0,1C , 

1,1C , 1,1S  are physically related to the Cartesian 

shifts of the origin of the EGM’s reference frame 

(in which the geodetic coordinates r, λ, φ should 

refer to) with respect to the geocenter. In fact, we 

have the well-known relationships (e.g. Kirby and 

Featherstone 1997) 
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where xcm, ycm, zcm are the Cartesian coordinates of 

the geocenter with respect to the reference frame 

associated with the series expansion in (1). 

The first-degree coefficients in most EGMs are 

conventionally fixed to zero, thus enforcing a geo-

centricity constraint for the global reference system 

that should be used for the computation of the 

Earth’s gravitational potential (and its functionals) 

from a spherical harmonic expansion. In several 

recent CHAMP and GRACE models non-zero esti-

mates and formal error variances are provided for 

their first-degree coefficients, which are handled as 

additional unknown parameters within the EGM 

development process. The resulting Cartesian coor-

dinates for the Earth’s geocenter and their accuracy 

level, with respect to the inherent reference frames 

for these geopotential models, are given in Table 1. 

 
Table 1. Geocenter’s Cartesian coordinates (and their 

formal accuracy level) with respect to the inherent refer-

ence frames in recent CHAMP/GRACE models (in mm). 
 

Model xcm ycm zcm 

EIGEN-CG03C -5.5 ± 4.8 -3.4 ± 4.8 -1.5 ± 4.4 

EIGEN-CG01C -3.8 ± 6.1 1.2 ± 6.1 -1.2 ± 5.5 

EIGEN-CHAMP03S -2.7 ± 3.3 6.1 ± 3.3 -9.2 ± 3.4 

TUM2S 0.2 ± 0.2 0.7 ± 0.2 0.2 ± 0.2 

TUM1S -1.1 ± 0.2 -2.1 ± 0.2 -15.1 ± 0.2 

 

In general, the expansion of the Earth’s gravita-

tional potential )(⋅V  in a different reference frame 

than the one implied in (1) takes the form 
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where r', λ', φ' are the coordinates of the evaluation 

point with respect to a new Cartesian terrestrial co-

ordinate system. Note that the scaling factors GM 

and a are assumed to retain their conventional val-

ues in both reference systems. 

Let us assume that the two reference frames dif-

fer according to the standard linearized Helmert 

transformation model (e.g. Soler 1998) 
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where tx, ty, tz are the translation parameters be-

tween the two frames, εx, εy, εz are the rotation an-

gles about the axes of the first frame (anti-

clockwise rotations assumed positive), and δs corre-

sponds to the unitless factor of their differential 

spatial scale change. 

Based on the Cartesian coordinate transforma-

tion in (6) and the fact that the gravitational poten-

tial )(⋅V  is independent of the reference coordinate 

system in which we choose to perform its evalua-

tion through a spherical harmonic series, a set of 

linearized transformation formulae can be derived 

between the coefficients } ,{ nmnm SC  and 

} ,{ nmnm SC ′′ . These formulae were originally pub-

lished by Kleusberg (1980), and they can be ex-

pressed in terms of the general equations 
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and 
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The analytical expressions of the above equa-

tions are rather cumbersome, requiring more than 

one page for their detailed writing, and they will not 

be given here. In general, for each harmonic coeffi-

cient nmC  or nmS  being transformed, the right-

hand side of the above equations depends on the 



values of the ‘nearby’ coefficients 1,1 +− mnC , 

1, −mnC , 1,1 −− mnC , 1, +mnC , mnC ,1− , 1,1 +− mnS , 

1, −mnS , 1,1 −− mnS , 1, +mnS  and mnS ,1− ; for more 

details, see Kleusberg (1980). 

Different EGMs are not always compatible with 

the same numerical values for their associated scal-

ing factors GM and a (see Table 2). In order to 

evaluate the consistency of the reference frames 

inherent in different EGMs through a least-squares 

(LS) inversion of Kleusberg’s transformation 

model, a re-scaling of their original spherical har-

monic coefficients may be needed so that they refer 

to the same conventional values for the geocentric 

gravitational constant and mean equatorial radius.  

Using as reference the GM and a values associ-

ated with the first model } ,{ nmnm SC , the required 

re-scaling for the coefficients of the second model 

has the form 
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where GM' and a' are the scaling factors associated 

with the original harmonic coefficients of the sec-

ond model.  

The coefficients } ,{ nmnm SC ′′  computed from 

(9) are compatible with the values GM and a asso-

ciated with } ,{ nmnm SC  and they should be used, 

instead of })()(  ,{ orignmorignm SC ′′ , in the formula-

tion of Kleusberg’s transformation model (which 

actually requires that both models refer to the same 

conventional scaling factors). 

 

 
 
3. Least-squares estimation using 

Kleusberg’s } ,{ nmnm SC  → } ,{ nmnm SC ′′  

transformation model 
 

For an arbitrary pair of EGMs, a linear system of 

equations can be formed based on Kleusberg’s 

(1980) transformation model 

 

vxAy        +=                                                        (10) 

 

where y is a vector that contains the differences 

nmnm CC −′  and nmnm SS −′  of their corresponding 

harmonic coefficients, x is an unknown vector with 

the Helmert transformation parameters of their un-

derlying reference frames, A is a full-rank design 

matrix whose elements depend on the harmonic 

coefficients } ,{ nmnm SC  of the first ‘reference’ 

EGM, and v is a residual vector due to non-datum-

related errors in the coefficients of both EGMs. 

In our study, the vector x of the Helmert trans-

formation parameters is estimated through a 

weighted LS adjustment of (10), using the follow-

ing guidelines: 

- the differences according to (7) and (8) are 

formed for the entire harmonic spectral band-

width n, m = 0 – 70. If the zero- and first-

degree coefficients of both EGMs under com-

parison are a-priori fixed to 1 and 0, respec-

tively, then the first four elements of the ob-

servation vector y will be zero; 

- a diagonal weight matrix P is used for the LS 

adjustment. The weight for each ‘observation’ 

nmnm CC −′  and nmnm SS −′  is taken as 
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respectively. In order to assign realistic error 

variances to the zero- and first-degree harmonic 

coefficients (in cases of EGMs where these coeffi-

cients are a-priori fixed to the error-free values 1 

and 0, respectively), the following conventions have 

been adopted. 
 

Conventional (a-priori) EGM ‘geocentricity’           

accuracy level: 
 

 mσσσ
cmzcmycmx  01.0===                          (12) 

 

from which we can infer the uncertainty in the 

EGM’s first-degree coefficients as 
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Conventional (a-priori) ‘GM’ uncertainty level                          

(IERS Conventions, McCarthy and Petit 2004): 
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from which we can infer the uncertainty in the 

EGM’s zero-degree coefficient as 

 

GMσσ GMC /
0,0
=                                             (15) 

 

Note that the above conventional scheme for as-

signing error variances to the zero- and first-degree 

harmonic coefficients is employed only for EGMs 

that use the a-priori assumptions 10,0 =C  and/or 

01,11,10,1 === SCC . For EGMs which are ac-

companied by non-zero error variances for their 

zero- and/or first-degree harmonics, the weight de-

termination according to (11) employs the formal 

error variances of these coefficients, as given in 

their official release. 

 

 

 

4. Numerical results 
 

Ten different CHAMP/GRACE EGMs have been 

used for our numerical tests, which are listed in 

Table 2 along with their associated scaling factors 

GM and a. Their spherical harmonic coefficients 

and the corresponding error variances have been 

obtained from the website of the International Cen-

tre of Global Earth Models (ICGEM) at the Geo-

ForschungsZentrum (GFZ), Potsdam (http:// 

icgem.gfz-otsdam.de/ICGEM/ICGEM.html). In the 

case where both formal and calibrated error vari-

ances are provided for a particular EGM (e.g. EI-

GEN-GRACE02S), the latter have been adopted for 

the statistical weight determination according to 

(11). It should be pointed out that all tested EGMs 

are expressed in the tide-free system. 

EIGEN-CG03C is adopted as the ‘reference’ 

model linked to the } ,{ nmnm SC  coefficients that 

appear in Kleusberg’s transformation model; see (7) 

and (8). The estimated Helmert parameters will thus 

be consistent with the transformation scheme GRF1 

→ GRF2, where GRF1 is the inherent reference 

frame of EIGEN-CG03C, and GRF2 is the inherent 

reference frame of every other EGM that is tested.  

Hence, the ingoing values } ,{ nmnm SC  for 

computing the observation vector y in (10) will al-

ways correspond to the original harmonic coeffi-

cients of EIGEN-CG03C, whereas the ingoing val-

ues } ,{ nmnm SC ′′  are obtained by applying the re-

scaling formula (9) to the original harmonic coeffi-

cients of every other EGM to be tested. Based on 

our particular selection of EGMs (see Table 2) such 

a re-scaling is necessary only for TUM2S and 

TUM1S. 

An example of the correlation matrix for the es-

timated transformation parameters from the least-

squares adjustment of Kleusberg’s model is given in 

Table 3, for the comparison between EIGEN-

CG03C and EIGEN-CG01C. It is seen that the cor-

relations between all possible combinations of the 

Helmert transformation parameters is essentially 

negligible, thus suggesting a well-conditioned ad-

justment model. Note that similar patterns of statis-

tical correlation have been obtained in all the ad-

justment tests that were performed for our study. 

 
Table 2. The conventional values for the geocentric 

gravitational constant (GM) and the mean equatorial ra-

dius (a) associated with the EGMs that are used for the 

numerical tests in this paper. 

 

Model GM (in m3s-2) a (in m) nmax 

EIGEN-CG03C 398600.4415 × 109 6378136.46 360 

EIGEN-CG01C 398600.4415 × 109 6378136.46 360 

EIGEN-GL04C 398600.4415 × 109 6378136.46 360 

EIGEN-CHAMP03S 398600.4415 × 109 6378136.46 140 

EIGEN-GRACE02S 398600.4415 × 109 6378136.46 150 

EIGEN-GRACE01S 398600.4415 × 109 6378136.46 140 

TUM2S 398600.4418 × 109 6378137.00 60 

TUM1S 398600.4360 × 109 6378137.00 60 

EIGEN2 398600.4415 × 109 6378136.46 140 

EIGEN1S 398600.4415 × 109 6378136.46 119 

 
The results for the estimated transformation pa-

rameters, along with their formal statistical accu-

racy (1σ uncertainty level), are given in Table 4. 
Based on the values given in this table, the follow-

ing comments can be made: 
 

- the inherent reference frames of the tested 

EGMs are consistent, in terms of their origin 

position, at the level of 1-2 cm; 

- an interesting result is the evident bias in the tz 

values, compared to the equatorial translation 

components tx and ty. A similar ‘z-shift’ effect 

has been also reported in other studies on di-

rect comparisons between global terrestrial 

reference frames (Soler and van Gelder 1987, 

Boucher and Altamimi 2001, Heflin et al. 

2002); see also Schaab and Groten (1979). 

- in terms of orientation stability for the mean 

Earth rotation axis (i.e. rotation angles εx and 

εy), the associated reference frames of the 

tested EGMs exhibit variations in the order of 

10
-2
-10

-3
 arcsec. On the other hand, the rota-

tion angle about the mean Earth rotation axis 

(εz) appears to have much larger values (by 1-3 

orders of magnitude, up to a few arcsec!), a 

fact that suggests the existence of possible sys-

tematic differences in the definition and reali-

zation of the zero-meridian plane within the 

EGMs’ reference frames; 

 



Table 3. Correlation matrix for the estimated transformation parameters between the inherent reference frames in the EI-

GEN-CG03C and EIGEN-CG01C models, as obtained from the least-squares adjustment using Kleusberg’s (1980) model. 

 
 tx ty tz εx εy εz δs 

tx 1.0000000 0.0000082 0.0000013 0.0000312 -0.0000625 -0.0000929 0.0013781 

ty  1.0000000 -0.0000037 0.0004224 -0.0000699 -0.0044572 -0.0002247 

ty   1.0000000 0.0001308 0.0011952 0.0007413 0.0008539 

εx    1.0000000 -0.0012470 -0.0020342 -0.0001379 

εy     1.0000000 0.0028387 -0.0000411 

εz      1.0000000 -0.0000483 

δs       1.0000000 

 
- the reference frames associated with most of 

the tested EGMs show a scale stability at the 

ppb level, or better. Notable exceptions are the 

models TUM1S and EIGEN2, where the esti-

mated scale factor reaches the values of -16.21 

ppb and 8.34 ppb, respectively. Note that the 

harmonic coefficients of each tested model 

have been properly re-scaled before the ad-

justment so that they refer to the GM and a 

values of the reference model EIGEN-CG03C. 

Thus, the estimated parameter δs given in Ta-

ble 4 is not influenced by any artificial scaling 

differences that may exist among the harmonic 

coefficients of the tested EGMs. 

The square roots of the a-posteriori variance fac-

tors obtained from the previous adjustment tests are 

shown in Table 5. In most cases their values are 

close to 1, indicating that the choice of the diagonal 

weight matrix P which was formed according to (7) 

and (8) is fairly realistic. The most notable excep-

tions occur for the adjustment tests performed with 

the TUM1S and TUM2S models, the results of 

which suggest that the original error variances for 

their harmonic coefficients are rather optimistic. On 

the other hand, the test results obtained with EI-

GEN-GL04C, EIGEN-CG01C and EIGEN-

GRACE01S show that their harmonic coefficients 

were probably assigned a lower statistical weight 

than they deserve, within the least-squares adjust-

ment of Kleusberg’s transformation model. 
 

 

Table 5. Square root of the a-posteriori variance factor 

for the least-squares adjustments corresponding to the 

cases shown in Table 4. 

 

 Model oσ̂  

EIGEN-GL04C 0.77 

EIGEN-CG01C 0.78 

EIGEN-CHAMP03S 1.60 

TUM2S 2.99 

TUM1S 2.64 

EIGEN-GRACE02S 1.01 

EIGEN-GRACE01S 0.73 

EIGEN2 1.27 

EIGEN1S 1.87 

 

 

 

Table 4. Helmert transformation parameters of the inherent reference frames in CHAMP/GRACE EGMs (with respect to 

EIGEN-CG03). The differences of spherical harmonic coefficients with their error variances up to nmax = 70 have been 

used, including the zero- and first-degree harmonics from all models.    

 

  Model tx (mm) ty (mm) tz (mm) εx (mas) εy (mas) εz (mas) δs (ppb) 

EIGEN-GL04C 6.3 ± 8.5 -0.3 ± 8.5 14.1 ± 8.3   5.19 ± 3.75  -0.93 ± 3.73  -71.07 ± 53.34     0.59 ± 2.18 
EIGEN-CG01C 2.1 ± 6.0  2.2 ± 6.0   4.2 ± 5.5  -0.67 ± 4.11  -2.82 ± 4.09   95.21 ± 61.40     0.42 ± 2.21 
EIGEN-CHAMP03S 2.7 ± 9.4  1.0 ± 9.3   5.6 ± 8.8   15.98 ± 22.18   20.52 ± 22.02  -582.88 ± 356.97     0.53 ± 4.53 
TUM2S (*)   5.7 ± 14.5    0.7 ± 14.5   15.3 ± 13.1     7.91 ± 15.45    -4.07 ± 15.29  -5380.54 ± 1239.92     1.55 ± 5.97 
TUM1S (*)   4.3 ± 12.8   -1.1 ± 12.8    -0.9 ± 11.5 109.53 ± 15.84   49.15 ± 15.74  -4099.31 ± 1306.46 -16.21 ± 5.28 
EIGEN-GRACE02S   6.6 ± 11.0    2.6 ± 11.0     7.6 ± 10.6  -4.04 ± 6.66  -7.18 ± 6.59  -15.60 ± 98.64     0.22 ± 2.85 
EIGEN-GRACE01S 5.6 ± 8.1  0.6 ± 8.1 15.7 ± 8.0     5.02 ± 27.52    -5.63 ± 27.56    -69.55 ± 217.89     0.01 ± 2.08 
EIGEN2   0.3 ± 14.1    2.7 ± 14.1  -11.4 ± 13.9 10.76 ± 5.16  27.92 ± 5.14 1681.47 ± 253.13     8.34 ± 3.59 
EIGEN1S   5.4 ± 20.8    0.3 ± 20.8   15.1 ± 20.4   15.94 ± 77.52   22.30 ± 85.41   1766.71 ± 2444.75     0.04 ± 5.31 
(*) The spherical harmonic coefficients with their error variances up to nmax = 60 have been used for testing these models. 

 
 
 

 
 
 



5. Conclusions 
 

Using Kleusberg’s (1980) linearized model for the 

Helmert transformation of the spherical harmonic 

coefficients of the Earth’s gravitational potential, a 

number of CHAMP/GRACE global geopotential 

models have been tested in terms of their reference 

frame consistency. Compared to other techniques 

that have been used for similar purposes, our meth-

odology relies on the direct adjustment of the dif-

ferences }{ nmnm CC −′  and } { nmnm SS −′  according 

to a similarity-type transformation model that re-

lates the underlying EGMs’ reference frames, with-

out computing other intermediate gravity field func-

tionals (e.g. geoid heights). It is hoped that the re-

sults obtained from this study will be of interest for 

many gravity field specialists and EGM develop-

ment teams for the purpose of identifying possible 

discrepancies in the physical/mathematical models 

and/or data sets used in the compilation of modern 

global geopotential models. 
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