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Abstract. Averaging is a simple, yet very effective, 
technique that can be used for the fusion of repeated data 
sets and/or multiple estimates of a single parameter vector. 
With the increasing number of geodetic data sensors and 
the availability of numerous geodetic signal realizations 
from various satellite missions, averaging offers an 
important tool which can significantly reduce the data load 
while improving the quality of the recovered signal 
information. A preliminary study of weighted averaging 
methods for multivariate data ensembles is given in this 
paper, along with a novel approach for optimal weight 
determination directly from the available data. 
 
 
 
1.  Introduction 
 

The problem of optimal weighted averaging of data 
sets that correspond to multiple noisy recordings of a 
given signal is studied in this paper. Being one of the 
earliest least-squares applications, the method of 
averaging provides the simplest and often most 
efficient technique for noise filtering when several 
measurements of the same quantity are available. It 
can also serve as a trend determination and/or 
removal tool from different random field 
realizations, as well as a combination strategy in 
cases where various estimates of an unknown signal 
(or vector) need to be merged into a single optimal 
solution. Examples from the use of averaging 
techniques in geodesy can be found in the analysis 
and stacking of repeat-track altimetric data 
(Knudsen, 1993; Sailor, 1994), in the combination 
procedures employed by IGS to produce precise 
clock and satellite orbit solutions from the individual 
submissions of its Analysis Centers (Beutler et al., 
1995; Kouba et al., 1995), and in the recovery of 
topographic gradients from stacked repeat-pass SAR 
interferograms without phase unwrapping (Sandwell 
and Sichoix, 2000). We should also mention another 
important geodetic paradigm whose strong 
dependence on the proper application of an 

averaging algorithm has been often overlooked, 
namely the integrated statistical processing of 
orthometric, ellipsoidal and geoidal heights for 
vertical datum and gravimetric geoid refinement 
studies (Kotsakis, 2003).  

Generalizing the traditional estimation problem in 
statistics, where the expectation of a single random 
variable is approximated by the sample mean of a set 
of its observed values, signal or vector averaging 
can be used for the analysis and fusion of multi-
variate data ensembles. The issue of proper 
weighting of the different ensembles becomes 
especially important in this case, since a single 
weight factor may not be able to account for: (i) the 
noise correlation within each data set, or (ii) the 
noise cross-correlation between different data sets. 
This can be very critical in applications where the 
errors affecting the repeated realizations of a 
geodetic signal are significantly correlated at various 
spatial and/or temporal scales (e.g., atmospheric 
effects). Furthermore, in many cases the statistical 
characteristics of the data errors are only poorly 
known, thus introducing additional difficulties for 
choosing the appropriate data weights.  

In this paper, we present a preliminary treatment of 
the weighted averaging problem for multivariate 
data ensembles, with the emphasis put on two 
different approaches for the optimal determination 
of the ensemble weights. The first approach, which 
is useful for theoretical or simulation studies, 
assumes the complete knowledge of the second-
order statistics for the data noise. Some examples for 
the error behaviour of the corresponding optimal 
averaging estimator are presented to demonstrate the 
importance of proper weighting when mixing data 
sets with varying accuracy levels. The second 
approach is oriented towards more practical 
situations and it is based on an ‘empirical’ 
estimation criterion that allows the determination of 
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the optimal ensemble weights directly from the 
available data.                                                      (5) ∑ =
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where a single weight coefficient wi is now assigned 
to each data set. The treatment of the more general 
case of weighted averaging, according to Eq. (3), 
will soon be published elsewhere.  

 
2.  Problem formulation 
 

Let us assume that a set of N multivariate noisy 
observations (ensembles) of a given signal is 
available. For notational simplicity these ensembles 
are represented as column vectors xi in an m-
dimensional data space ℜm, where m is the number 
of data values in each recorded signal realization. 
Note that unless we are dealing with 1D problems, 
this formulation requires the choice of a one-to-one 
mapping between the physical signal description 
(e.g., the raster scan of a digital image) and the 
components of the data vectors xi (ensemble vectori-
zation). 

Remark: The previous formulation is also suited for 
problems where the data sets xi are not obtained by 
direct repeated observations of the same field, but 
they correspond to different a-priori estimates or 
solutions of an unknown vector quantity. The 
various ensembles {xi} then need to be optimally 
fused into a unique combined solution µ  through a 
weighted averaging procedure according to Eq. (3) 
or Eq. (5). In such cases, the covariance (CV) 
matrices given in Eq. (2) represent the accuracy of 
each individual vector estimate and they are usually 
determined from separate data adjustment 
procedures. The cross-CV matrices C  should 
normally vanish if the prior estimates for µ have 
been obtained independently from each other. A 
typical example of this type of problem can be found 
in the combination strategies implemented by IGS 
for the determination of precise orbit and clock 
solutions (Beutler et al., 1995). 

ˆ
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Assuming additive noise in each data set, the 
following observation equations can now be formed: 

                  Niii  ..., ,2 ,1      ,          =+= vx µ          (1) 

where the vector µ contains the true values of the 
underlying signal. The random error vectors vi have 
zero mean and they are statistically described in 
terms of their auto- and cross-covariance matrices 
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3.  Rigorous weight determination 
 

The computation of the weight factors in Eq. (5) 
should be based on a well-defined criterion that 
optimizes the output signal estimate. In this section, 
a rigorous mean square error (MSE) criterion is 
adopted for the optimal determination of the 
unknown weights. Denoting by e the actual error of 
the linear estimator in Eq. (5), i.e. 

where E{•} is the mathematical expectation operator. 
Note that all vector(-ized) ensembles are assumed to 
have the same dimensions and they correspond to 
the same spatial (or temporal) sampling 
configuration. 

A linear estimator of the unknown signal from its 
repeated realizations has the general form                                µµ     ˆ    −=e                   (6) 

                             µ                        (3) ∑ =
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N
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    ˆ xW the corresponding MSE is a certain functional that 
quantifies in an average sense the magnitude of the 
above estimation error. If we use the standard 
Euclidean vector norm, then it can be shown that the 
MSE can be expressed by the following form: 

The last formula can easily be identified as a 
weighted sum of the ensembles {xi}, with {Wi} 
being appropriate weight matrices that need to be 
determined in some optimal sense. Due to the 
limited extent of this paper, we will restrict our 
study to the case where the weight matrices have the 
simple diagonal form 
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                                                        (4) IW      ii w= where the vector w contains the values of the scalar 
weights (wi), and the matrix C~  is defined by the 
formula where I denotes the m × m unit matrix. In this way, 

the linear estimator of Eq. (3) is simplified to 
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If we further impose the condition that the result of 
Eq. (5) should lead to an unbiased signal estimate, 
then we are faced with the following constrained 
optimization problem: 

Remark: The MSE of the weighted average µ̂ , 
defined by Eq. (7), is insensitive to the noise 
correlation that may exist within each data set xi. 
That is because the off-diagonal elements of the CV 
matrices , which contain the statistical 
information for the noise correlation within every 
ensemble, do not enter into the definition of the 
matrix 

iiC

C~  according to Eq. (8). As a result, an 
averaging scheme that employs only scalar 
weighting coefficients may not be suitable for data 
sets that have highly correlated errors, since the 
individual weights obtained by the MSE 
minimization in Eq. (9) cannot reflect this type of 
information. 

       (9) 1    subject to  ,     ~
1

T
  == ∑ =

N
i iwminimumwCw

Using the method of Lagrange multipliers, a unique 
weight solution can be obtained as follows: 
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where s is an auxiliary vector whose elements are all 
ones. The minimum MSE value that corresponds to 
the above optimal weight vector is  

The cross-ensemble noise correlation, on the other 
hand, is not totally ignored in the optimal weights 
given in Eq. (10). The MSE definition encompasses 
the traces of all cross-CV matrices , and thus the 
weight optimization according to Eq. (9) takes into 
account the noise correlation at every data point 
between different ensembles. Obviously, any 
statistical information on the noise cross-correlation 
between different ensembles 

ijC

and different data 
points is excluded from the optimal weights of Eq. 
(10).  

                     1)(  T 1
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~     
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For comparison, it is interesting to give also the 
value that the MSE takes when a uniform weighting 
scheme is followed (i.e. wi = 1/N). In such a case we 
have   

           2 weights)equalfor ( /)(  T ~      NMSE ss C=       (12) 

Note that the last expression is generally sub-optimal 
and it decays much slower, for increasing sample 
size N, than the optimal error value given in Eq. 
(11); see also Sect. 4. 

 
 
4.  Error analysis for the weighted 

average: an example In the special case where the matrix C~  is diagonal 
(i.e. the noise cross-correlation between different 
data sets is zero, ), the optimal weights 
associated with the ensembles x

0C =ij
i are given by the 

formula 

  

A simple example is presented in this section to 
demonstrate the importance of proper weighting in 
data averaging procedures. A series of 40 different 
ensembles, all corresponding to the same gravity 
signal profile, is considered. The ensembles are 
assumed to be affected by additive stationary noise 
whose standard deviation varies among them 
according to the simulated values shown in Figure 1.  
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Assuming also that the data noise is uncorrelated 
between the different ensembles, we can use Eq. 
(14) to plot the cumulative MSE of the optimal 
weighted average µ̂ , as the number of the processed 
ensembles (N) increases from 2 up to 40. In this 
case, we will have that 

whereas the resultant minimum MSE value is  
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Again, for comparison purposes, the MSE value 
obtained by using equal weight coefficients (in 
uncorrelated data ensembles) is given below 

                             trace                     (16) 2      kkk mσ=C

where kσ  is the noise standard deviation of the k-th 
ensemble (see Figure 1), and m denotes the constant 

 
 



 
 
 
 

number of data points within each ensemble. In a 
similar way, Eq. (15) can be used to determine the 
cumulative MSE of the unweighted (or, more 
precisely, uniformly weighted) signal average  as 
a function of the number of the averaged ensembles.  

µ̂

 
 
 
 
 
 
 
 
 

 
Figure 1.  Simulated values (in µgal) for the noise standard 
deviation in the various gravity signal ensembles. 
 
 

The results for both cases are shown in Figure 2, 
which clearly reveals the problems of uniform 
weighting for data sets with uneven accuracy levels. 
It is interesting to point out the two regions that are 
circled in the plots of Figure 2. The first (upper left) 
region shows that the accuracy of the unweighted 
average can actually worsen whilst more data sets 
are used for its computation! As seen in Figure 1, the 
noise level in the first two data sets is much smaller 
than in the next few ensembles. This affects the 
MSE of the unweighted average µ  accordingly 
when the more noisy ensembles enter into the 
averaging procedure. On the other hand, if the 
varying noise level in the different ensembles is 
properly taken into account through an optimal 
weighting scheme (see Sect. 3), then the accuracy of 
the averaged estimate will be consistently improving 
as more data sets are processed. Nonetheless, the 
MSE of the unweighted average seems to ‘stabilize’ 
and starting to decrease constantly when more 
precise data sets enter into the averaging procedure, 
although its decay rate is still slower than in the 
optimal weighting case. 

ˆ

In the second circled region shown in Figure 2, we 
notice the drastic MSE reduction in the optimal 
weighted average when a very accurate data set is 
used to update  (see also the corresponding circled 
area in Figure 1 where the decrease in the noise level 
between the 25

µ̂

th and the 26th ensemble is indicated). 
In the case of the uniformly weighted average 
(dotted line) no such considerable improvement 
occurs, since the equal weighting of all data sets 

cannot offer any benefit from the use of a 
significantly more accurate signal ensemble. 
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Figure 2.  Cumulative MSE (in µgal2) for the weighted signal 
average using: (i) optimal weights, and (ii) equal weights. 
 
 

The effect of the noise correlation (between different 
signal ensembles) on the weighted average µ  ˆ
 

The different gravity signal ensembles are again 
presumed to be affected by additive stationary noise 
whose standard deviation varies according to the 
values of Figure 1. In addition, it is assumed that a 
pointwise cross-ensemble correlation of the data 
noise exists, for all pairs of the available ensembles, 
with a constant correlation coefficient value of ρ = 

0.7. This is a purely theoretical scenario, which 
nevertheless allows us to easily simulate a fully 
populated matrix C~  that is needed for a rigorous 
error analysis of the weighted average  according 
to Eqs. (11) nd (12). In this case, the off-diagonal 
elements of 

µ̂
a

C~  will be given by the simple formula 

                 jiijij mC trace σσρ            ]~[            (17)  == C

where iσ  and  are the noise standard deviations 
of the i-th and j-th ensemble, respectively. Three 
different schemes for computing the weighted 
average 

jσ

µ̂  are now considered, namely using: (i) the 
optimal weights according to Eq. (10), (ii) equal 
weights, and (iii) the weights obtained from Eq. (13) 
which take into account only the different noise 
levels in the various data sets (i.e. they neglect the 
cross-ensemble noise correlation).  

As before, the cumulative MSEs of the 
corresponding signal averages are computed and 
plotted against the number of the averaged 
ensembles (N). The results are shown in Figure 3, 
where we can see the ‘explosive’ behavior of the 
resulting MSE for the uniformly weighted average. 

 
 



 
 
 
 

Even in the case where the weights account for the 
uneven noise levels among the various data sets 
(dashed line), the corresponding weighted average 
still seems to be unstable as the number of processed 
ensembles increases. This is due to the neglected 
noise cross-correlation between the different 
ensembles, which in practice can cause serious 
problems in the fusion of repeated geodetic sets 
(e.g., sea surface topography from single/multiple 
altimetry missions, gravity and gradiometry maps 
from single/multiple satellite missions, etc.). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  Cumulative MSE (in µgal2) for the weighted signal 
average in the case of correlated ensembles ( C~  is a fully 
populated matrix).  
 
 
 

Note that Figures 2 and 3 show normalized MSE 
values, since the results of Eqs. (11), (12), (14) and 
(15) have been divided by the number of data points 
(m) within every ensemble. 
 
 
5.  Empirical weight determination 
 

The weight optimization procedure that was 
described in Sect. 3 requires the knowledge of the 
noise CV matrices for all available data sets. A more 
realistic approach for the determination of the 
ensemble weights should consider that the noise 
statistics are often unknown in practice (or, at least, 
partially known). This applies also for the case 
where the CV matrices in Eq. (2) represent not the 
statistical variability of actual measurement noise, 
but the accuracy of some a-priori vector estimates xi 
which need to be merged into a single solution µ̂ .  

In this section, an alternative optimization method 
is presented which results in ensemble weights that 

can be directly computed from the available data. It 
can thus be characterized as a non-parametric 
method (as opposed to the parametric approach of 
Sect. 3), since any a-priori assumptions for the 
statistical properties of the various data sets are 
completely avoided. 
 
 

Data weighting based on a maximum-SNR criterion 
 

The criterion that will be now used for the optimal 
determination of the ensemble weights is based on 
the maximization of an ‘empirical’ signal-to-noise 
ratio (SNR) expression. In general, the SNR that 
corresponds to the averaging estimator of Eq. (5) has 
the form 
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where  and  denote the Euclidean norms of 
the estimated signal and the data noise, respectively.  

sE nE

Two different methods can be followed to quantify 
the data noise norm. In particular, we have 
 
 

Case I 
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or an alternative approach, 
 
 

Case II 
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The previous approaches are considered ‘empirical’ 
in the sense that they both quantify the data noise 
not with respect to the true unknown signal µ , but 
with reference to its optimal estimate . Note that 
Case I provides a straightforward generalization of 
the weighted least-squares error norm for the case of 
multivariate measurements {x

µ̂

i}.  
Based on Eqs. (19) and (20), the SNR of the 

weighted signal average for Case I is 
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where R  is a symmetric Grammian-type matrix that 
consists of the Euclidean inner products (  
between all possible pairs of data sets 
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and  is a diagonal matrix obtained from D R  by 
setting to zero its off-diagonal elements 
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The maximization of the SNR expression in Eq. (23) 
yields a unique solution that is given by the closed 
formula 
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As it can be seen from the last equation, the optimal 
weight vector can now be computed directly from 
the available data, without any other knowledge of 
their statistical properties. 

If the second formulation for the data noise norm 
 is used (Case II), then the corresponding SNR 

of the weighted signal average takes the form 
nE
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which is slightly different from the previous SNR 
expression in Eq. (23). Its maximization leads to a 
generalized eigenvalue problem, as follows: 
              
     Case II :             wDwR        λ=                        (28) 
 
In this case, the optimal weight vector  is just the 
eigenvector corresponding to the maximum 
eigenvalue 

ŵ

maxλ  in Eq. (28); more mathematical 
details and proofs will be given in an upcoming 
journal publication. Note that generalized eigenvalue 
problems can be easily converted to standard 
eigenvalue problems (i.e. xxA   λ= ) through simple 
linear transformations; see Hairville (1997, pp. 562-
564). Most high-end scientific computing packages, 
such as Matlab™, contain also built-in routines for 
solving directly this type of algebraic problems. 

Remark: Both of the ‘empirically optimal’ weight 
solutions described above will produce unbiased 
signal estimates when used in the averaging 
estimator of Eq. (5). That is because the sum of their 
values {wi} is, or it can be easily made after a simple 
global rescaling, equal to one. Note that this does not 
exclude cases where the optimal weight solution 
contains a mixture of both positive and negative 
values, as long as their total sum is still equal to one! 
Actually, such cases will arise often when the data 

noise shows significant cross-correlation among the 
different signal ensembles. 
 
 
6.  Conclusions 
 

The practice of averaging multiple realizations of a 
given signal, either in the form of repeatedly 
observed ensembles or as a-priori estimates obtained 
from different individual procedures, is a valuable 
tool in geodetic data analysis. In this paper we have 
briefly presented a general treatment of the weighted 
averaging problem for multivariate data sets. Our 
main focus has been on: (i) the optimal 
determination of the ensemble weights (with and 
without the knowledge of the data noise statistics), 
and (ii) the error behaviour of the signal average for 
different weighting schemes. In terms of future work 
we plan to present a more detailed version of the 
study outlined herein that will include all of the 
omitted mathematical details, as well as more 
sophisticated weighting schemes for data averaging 
such as the use of fully populated weight matrices 
Wi and the simultaneous bias estimation/removal 
from the data sets {xi}. 
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