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Abstract. The method of GPS-levelling for 
obtaining orthometric heights is not a new concept. In 
fact, many studies have proven its usefulness and the 
question of whether GPS-levelling can provide a 
viable alternative to traditional techniques is no longer 
an issue. An important question, however, that has yet 
to be satisfactorily solved is, 'What accuracy level can 
be achieved using this approach?' Over the past 
decade, numerous advances have been made which 
have placed us in a position where we can begin to 
address the issue with more confidence, namely (i) 
improved mathematical models/techniques for dealing 
with GPS and geoid data, (ii) increased data 
availability for gravimetric geoid models, and (iii) 
improved data processing capabilities. In this paper a 
statistical approach for estimating the variance 
components of heterogeneous groups of observations 
is used in the combined adjustment of GPS, geoid and 
levelling data. Specifically, the iterative minimum 
norm quadratic unbiased estimation algorithm is 
employed to determine the individual variance 
components for each of the three height types. The 
challenges encountered when implementing this well-
known algorithm in practice with real data are 
discussed. The analysis provides some indication into 
the practicality and effectiveness of estimating 
variance components in mixed vertical networks. 
Notably, the estimation of realistic variance 
components provides us with important insight 
regarding the GPS-levelling problem in addition to 
other uses of combined GPS, geoid and levelling data, 
such as assessing the accuracy of a gravimetric geoid 
model.   
 

 

1 Introduction  
 
The reliable combined adjustment of GPS ( h ), 
orthometric ( H ) and geoid ( N ) height data 
depends on two main factors, namely (i) the 
suitability of a parametric model for the systematic 
effects and biases and (ii) the correctness of the 

stochastic model for the observational noise. The 
former has been a topic of interest for researchers 
and practitioners alike in light of its benefits for 
GPS-based determination of orthometric heights in 
a local vertical datum. Although the use of a 
parametric model designed to absorb the systematic 
effects and datum inconsistencies inherent among 
the GPS, geoid and levelling height data is an 
interesting topic on its own, it will not be dwelled 
on extensively herein. Instead, the issue of 
stochastic modelling for observations in the mixed 
adjustment of heterogeneous height data will be the 
main focus of this paper. It should, however, be 
emphasized that both aforementioned factors are 
interrelated and need to be addressed in order to 
rigorously and reliably combine the different types 
of height data. Of course, both the modelling of 
systematic effects and random errors presupposes 
the absence of gross errors/blunders in the 
observational data. Furthermore, improper 
stochastic modelling may lead to certain deviations 
in the results, the very effect we try to model 
through parameterization of the height misclosures 
(h – H – N). 

The motivation for addressing this issue is quite 
clear given the vast applications requiring optimally 
combined height data, including, but not limited to: 

− modernize regional vertical datums 
− unify national regional datums between 

neighbouring countries 
− transform between various height data sets 

(incl. vertical reference systems) 
− refine existing gravimetric geoid models 

The chosen approach presented herein for 
testing/improving the stochastic model is the well 
known statistical tool of variance component 
estimation (VCE). Many different algorithms for 
VCE have been studied with regards to geodetic 
data analysis and a comprehensive literature review 
is given in Grafarend (1985). Recent geodetic 



applications include the statistical analysis of VLBI 
data, GPS observations, deformation monitoring 
schemes and simulated gravity field models from 
upcoming satellite missions such as GOCE. Despite 
these advances, the implementation of VCE for 
combined data types, more specifically GPS, 
orthometric and geoid heights, has not been suitably 
addressed in the geodetic literature. A properly 
applied VCE technique coupled with appropriate 
stochastic modelling will allow for the optimal 
combination of these heterogeneous  data leading to 
the inclusive goal of more realistic accuracy 
measures for height-related applications.  
 
2 Problem Description  
 
Given a network of points with co-located GPS, 
orthometric and geoid height data, a combined 
adjustment can be performed. We start with the 
general linear model (see Kotsakis and Sideris, 
1999 for details), 
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where the vector of observations l is composed of 
the height ‘misclosure’ at each GPS/levelling 
benchmark as follows  
 

         iiii NHhl −−=                           (2) 
 

{}⋅E  is the mathematical expectation operator, A  
is the design matrix which depends on the 
parametric model type (see Sect. 5.4), B  is the 
block-structured matrix [ ]IIIB −−= , where 
each I  is an mm×  unit matrix ( m  is the number of 
observation equations), x  is a vector containing the 
unknown parameters corresponding to the selected 
parametric model and v  is a vector of random 
errors, with zero mean (Eq. 1b), described by the 
following formula 
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 where )(⋅v  is an 1m×  vector of random errors for 

each of the NHh ,,  data types. The corresponding 
CV matrix is described by Eq. (1c), where the 

positive-definite cofactor matrix vQ  is scaled by 

the variance factor 2σ . For the case of 
heterogeneous disjunctive observations, a block-
diagonal CV model is used   
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where )(⋅C  is the CV matrix for each of the height 
types. An additive covariance matrix model for the 
observations is given by: 

                                          

NHhvl QQQBBCC 2
N

2
H

2
h σσσ ++== T     (5) 

 
where hQ , HQ , and NQ  are known positive-
definite cofactor matrices for the GPS, orthometric 
and geoid height data respectively. The unknown 

variance components are 2
N

2
H

2
h σσσ ,, .  

The problem, therefore, is to solve for the 
unknown parameters of the parametric model, x, 
and the individual variance components for each of 
the height data types, 2

N
2
H

2
h σσσ ,, .  

 
3 Variance Component Estimation  
There are a number of methods available to perform 
VCE within the context of least-squares adjustment 
[Crocetto et al., 2000]. In this paper the minimum 
norm quadratic unbiased estimation (MINQUE) 
procedure is followed [Rao, 1971]. It has been 
shown that many VCE approaches (i.e., best 
quadratic unbiased estimation, MINQUE), under 
the assumption of normally distributed 
observations, give seemingly numerically 
equivalent results. However, distinguishable 
characteristics in the formulation of the problem for 
each algorithm exist. Ultimately, the selection of the 
appropriate technique should rely on the desired 
estimator properties, such as translation invariance, 
unbiasedness, computational efficiency, etc. The 
rationale detailing our preference for this particular 
approach is not included due to space restrictions, 
however it can be stated that this approach works 
well for the posed problem and is relatively easy to 
implement in practice. 

The selected VCE algorithm is briefly described 
below. Due to space restrictions, only the basic 



formulas are given without a detailed account as to 
their derivation. The problem is to solve the 
following system  

 
qθS =ˆ                               (6) 

                             
where θ̂  is a vector containing the unknown 
variance components (also indicated by 2σ̂ ). The 
composition of the matrix S  is denoted by 
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Each element ijs   in the matrix is computed from 
 
              ( ) NHhtrsij ,,ji,,ji == RQRQ            (8) 
 
where ( )⋅tr  is the trace operator, )(⋅Q  is a positive-
definite cofactor matrix for each group of 
observations, R  is the matrix defined by 
 

         ])([ 1T11T1 −−−− −= lll CAACAAICR        (9) 
 
where A  is the same design matrix as in Eq. (1a) 
and lC  is the CV matrix of the observations. The 
vector q  contains the quadratic forms  
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where lRQv iiˆ =  are the separated residuals for 
each group of observations and is easily derived 
from the mixed model equation formulation; see 
Kotsakis and Sideris (1999) for more details. 

It is evident from the expression for the R  
matrix (Eq. 9) that an iterative procedure must be 
employed since the unknown variance components 
are embedded in lC  (Eq. 5) that is used to compute 
R . Therefore, initial values for the unknowns must 
be provided along with an appropriate convergence 
criterion. The iterative application of this algorithm 
is known as iterative minimum norm quadratic 
unbiased estimation (I-MINQUE). The general 
iterative scheme is shown in Figure 1 where each 

α
iθ̂  value represents a ratio computed at each  

iteration α  and the final estimated variance 
components are obtained from the product of all 
ratios after n iterations. More information regarding 
the estimator properties can be found in Rao (1971); 
Rao and Kleffe (1988).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Iterative variance component estimation scheme 
 
 
Notes. The problem, as described in the previous 
section, outlines a rare characteristic for geodetic 
data, that of balanced data. Normally, when 
heterogeneous types of geodetic data are used in a 
mixed adjustment, the number of observations per 
each group of data is not the same. In this case, the 
problem is pre-designed such that all three height 
groups are available for each network benchmark. 
Thus, we can estimate the variance components 
from balanced data - a less demanding task, in 
general, than dealing with unbalanced data. An 
additional advantage offered by the design of this 
particular problem is a relatively low computational 
load. Only three variance components are sought. 
The largest matrix inversion will be on the order of 
the number of observations, m , which in the 
absolute case is equivalent to the number of 
network benchmarks. Thus, unlike many other 
VCE-related applications, where the main obstacle 
encountered is the high computational load, the 
problem here, lies in the absence of independently 
derived and reliable variance estimates for each 
height type.  
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4  Description of Data 
 
The Swiss national network, consisting of 111 
GPS/levelling benchmarks distributed throughout 
an ~343 km × 212 km region, was used for the 
numerical tests. At each point the observations, as 
given by Eq. (2), were computed (statistics: mean ~ 
1.1 cm, min. –4.9 cm, max. 19 cm, RMS  ~ 4 cm). 
Fully populated initial CV matrices were obtained 
for h, H and N. The original CV matrix for the 
ellipsoidal heights hQ  was extracted from the 
results of a commercial post-processing software 
package of GPS data. Typical for GPS, the output 
CV matrix was overly optimistic, a direct result of 
neglecting (even partially) correlations (temporal, 
spatial and physical) between GPS phases. In 
practice, this situation is sometimes rectified by 
arbitrarily scaling the CV matrix by some factor. 
The validity of this all too common practice is 
addressed in sect. 5.1. HQ  comes directly from the 
rigorous national adjustment of all first and second 
order levelling measurements. As expected, the 
correlation between nearby neighbouring stations is 
very high. Finally, NQ  at the GPS benchmarks was 
obtained by straightforward application of error 
propagation to the least-squares collocation geoid 
solution [see Marti, 2002 for more details]. Table 1 
summarizes some characteristics of the ‘a-priori’ 
covariance matrices for comparison purposes.  

 
Table 1. Initial covariance matrix characteristics 

 GPS Levelling Geoid 
condition 
number 146.2 2.23×107 4.50×105 

average σ (cm) 0.79 0.75 1.93 
 
The comparatively high condition number 
corresponding to the levelling data matrix is of 
particular interest. This high value may lead to 
numerical instability problems when the matrix 
needs to be inverted. Therefore, a simple ridge 
regression was applied to alleviate any numerical 
problems. Other values listed in the table include 
the average standard deviation (σ) computed from 

mtr i /)(Q , which gives an indication of the 
overly optimistic a-priori levels, especially evident 
for the ellipsoidal heights. 

Note that, where possible, the GPS/levelling 
observations were excluded from the computation 

of the gravimetric geoid to ensure independence 
among the cofactor matrices satisfying the 
assumption of disjunctive observation groups, i.e. 
the cross-covariance matrices for NHhji ,,, =  are 
given by: 
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5 Numerical Examples – Case Studies 
 
In this section, the results of four different empirical 
tests are described, whereby some of the key issues 
related to the implementation of the I-MINQUE 
method are analyzed in detail, demonstrating the 
use of VCE for practical height-related applications. 
 
5.1 Case Study I: A-priori CV matrices 
 
The purpose of this case study is to test the effect of 
different a-priori CV matrices on the final estimated 
variance components. The I-MINQUE scheme does 
not provide any guarantee of the correctness of the 
final estimated values. Therefore, mere convergence 
cannot be taken as a positive re-enforcer. To 
overcome this uncertainty, one can compute the CV 
matrix for θ̂  using the following formula [Crocetto 
et al., 2000]: 
 

                1
ˆ
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From this equation, the standard deviations 
corresponding to each of the estimated variance 
components can be extracted and, depending on the 
relative magnitudes, inferences can be made 
regarding the ‘goodness’ of the estimated values. 
Another method, though beyond the scope of this 
paper, is the computation of the associated 
confidence intervals for each of the variance 
components.  

In this study, a more empirical approach is 
followed whereby a number of different a-priori 
variance values for each height type are tested to 
see if they all yield the same solution. Interestingly, 
the results showed that the initial a-priori values for 
a single group of observations (e.g., N) do not have 
a noticeable effect on the remaining groups, even 
though theoretically co-dependence is present. It 
was also discovered that through proper VCE, the 
arbitrariness of certain pre-selected factors (such as 



scaling hQ ) can be alleviated. For instance, in the 
Swiss network, a factor of 102 was empirically 
determined as a scale for hQ . By re-scaling the 
original CV matrix with different a-priori factors, 
this independently-derived value was verified as an 
appropriate scale for hQ . This is an important 
realization as it ascribes some statistical reasoning 
towards an otherwise ‘arbitrary’ scaling practice 
and leads to a better understanding of the true 
measures of error.    
 
5.2 Case Study II: Non-negative variances 
 
One of the major pitfalls of the described VCE 
technique is that no provision has been made to 
ensure non-negative variance values (i.e. 3

+ℜ∈θ̂ ). 
In general, negative outcomes of variance 
components can be attributed to an insufficient 
number of observations compared to unknown 
parameters and/or an incorrect stochastic model. 
Thus, a negative variance outcome yields important 
information regarding the problem set up, 
information that is lost if the estimator is 
constrained to give only positive outcomes. 
Nonetheless, alternate algorithms exist which are 
constrained to provide positive variance factors. 
One such algorithm, known as iterative almost 
unbiased estimation (IAUE), can be implemented 
through the following formula [Rao and Kleffe, 
1988] 
 

                    
)(

ˆ
ˆ

i

T
i

Ti
i

QR

lRRQlθ
θ

tr
old

new =                 (13) 

 

where NHhi ,,= , iˆ
newθ  and iˆ

oldθ  represent the 
current and previous iteratively-derived variance 
estimates respectively, and all other terms have 
been previously described. This algorithm was 
tested with the real data and proved to give almost 
identical results to those obtained using the I-
MINQUE method. An added benefit of this method 
is that it is computationally simpler and converges 
approx-imately 50% faster than the other approach. 
Thus, in cases where computational efficiency is an 
issue, IAUE offers a viable alternative to I-
MINQUE.  

To determine the effect of data redundancy on the 
estimated variance components, using the iterated 
MINQUE approach, a test was performed whereby 
observations were eliminated (one-by-one) and the 
final values of the estimated components were 
noted. For the case of the Swiss test network, it was 
found that at least 49 observations are required for 
convergence and positive-valued final components, 
which corresponds to 44% of the available GPS-on-
benchmarks in this region.  
 
5.3 Case Study III: Effect of correlations 
 
In practice, the availability of fully populated 
variance-covariance matrices for all groups of 
height data at the same GPS benchmarks is a 
luxury. To test the effect of correlations between 
observations of the same type on the estimated 
variance components, numerical experiments were 
conducted with fully populated and diagonal 
covariance matrices. The results are given in Table 
2 (note that the estimated variance components are 
unitless scale factors). It is evident that due to the 
correlated nature of the observations, a diagonal 
covariance matrix is further from the ‘true’ CV 
matrix and therefore requires more iterations to 
obtain the final estimated values. Also, by 
neglecting the off-diagonal elements, we obtain 
overly optimistic CV matrices compared to the fully 
populated case. Results will vary depending on the 
degree of correlation, however it is clear that 
unrealistically ‘good’ results are obtained when 
correlations are ignored, as expected.  
 
Table 2. Effect of correlations on estimated variances  

Covariance 
Matrices 

2
hσ̂  2

Hσ̂  2
Nσ̂  iterations 

Full 2.83 5.06 1.02 99 

Diagonal 0.71 3.63 1.07 152 

 
 
5.3 Case Study IV:  Parametric model type 
 
As mentioned in the introduction, the optimal 
combination of h , H  and N  requires the 
incorporation of a parametric model to deal with the 
systematic errors inherent in the data and the fact 
that each height type refers to a different reference 
surface. The parametric model, or corrector surface 



as it is commonly termed, can be incorporated as 
follows (Kotsakis and Sideris, 1999):  
 
                       vAxNHh +=−−                     (14) 
 
where the parametric term Ax describes the 
corrector surface. VCE procedures pre-suppose that 
no biases or systematic effects are present in the 
vector v. Any unmodelled effects may propagate 
into the estimated variances and give unreliable 
results. This case study was designed to determine 
the role of the parametric model type, if any, on the 
final estimated variance components. Five models 
were selected, namely the classic 4-parameter 
transformation model, as shown in the following 
formula 
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           (15) 
 
and four simple nested polynomial regression 
models from first to fourth order as given by 
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where λϕ ,  are the horizontal coordinates and 

"" λϕ ,  represent the midpoint of the network. The 
estimated variance components (unitless) 
corresponding to each parametric model type are 
shown in Table 3.  
 
Table 3. Estimated variance components 

Parametric 
Model Type 

2
hσ̂  2

Hσ̂  2
Nσ̂  

Eq. 15 2.82 5.06 1.01 
Eq. 16, 1st order 2.83 4.80 1.01 
2nd order 2.94 4.50 1.05 
3rd order 3.08 3.96 0.97 
4th order divergence, negative estimates 

 
 
Predictably, a solution was not achievable in all 
cases leading to divergence and/or negative 
estimates. This may indicate that an inadequate 
model was used for the systematic effects resulting 
in 'residual' biases that corrupt the performance of 
the VCE method. Another possibility is the 
presence of numerical instabilities caused by over-

parameterization, which occurred when a full 4th 
order model was used (Eq. 16, 4th order). In any 
case, these first results are revealing as they hint 
towards a means for identifying the effectiveness of 
the selected corrector surface. The latter comment is 
stated with prudence as further studies are currently 
underway to verify this deduction. 
 
6 Conclusions and Future Work 
 
The implementation of VCE in the optimal 
combined adjustment of heterogeneous height data, 
namely GPS, orthometric and geoid heights was 
presented. The I-MINQUE procedure was described 
and used to test the supplied CV matrices for each 
height type. Through various numerical case studies 
with real data, a number of key issues involved in 
most height-related applications were studied in 
detail. In the future, studies will be conducted in 
order to apply this approach for assessing the 
accuracy of global gravity field models (i.e. EGM96 
and those obtained from GRACE/GOCE).  
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