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Abstract

The rapid developments in the fields of multiresolution appro-
ximation theory and wavelets over the past few years have cre-
ated an enormous amount of important theoretical knowledge
and useful practical tools to be used for various signal proc-
essing applications. One of the most attractive properties of
multiresolution/wavelet theory is the ability to study the details
of a signal locally in various scale levels, according to a zoom-
in/zoom-out approach. In gravity field modelling, on the other
hand, we are used to employing (both theoretically and practi-
cally) the concept of collocation in order to approximate and
study the behavior of unknown signals based on discrete data.
One of the standard formulations of collocation, as a spatio-
statistical linear approximation problem in purely deterministic
fields, requires the use of a covariance function which is de-
fined via a certain spatial averaging operator over the signal’s
domain. The “stationary” form of this CV function is often
thought to provide strong limitations in the approximation
framework, because the actual behavior of the gravity field is
“non-stationary”. The aim of this paper is to show that there
does not really exist any “signal stationarity restriction” prob-
lem in statistical collocation, since it can be proven to be
equivalent to a wavelet-type expansion. The connection be-
tween the two concepts is discussed, and also some recom-
mendations for further work are given.

1 Introduction

The method of least-squares collocation (LSC) represents
one of the major foundations in modern physical geodesy.
Closely related to Bjerhammar’s initial idea on discrete un-
derdetermined boundary value problems, collocation has
evolved into a powerful optimal estimation method for
either global or local gravity field modelling. Despite the
various different interpretations and their associated mathe-
matical concepts upon which collocation has been based
(see, e.g., Tscherning 1986; Sanso 1986), a rigorous unified
approximation approach that merges both the deterministic
(Krarup’s formulation) and the stochastic (Wiener’s linear
prediction theory) viewpoints behind LSC has long been
established by Sanso (1980). Such an approach has elimi-
nated, to some degree, most of the “pitfalls” in each indi-
vidual formulation (e.g., reproducing kernel choice prob-

lem, non-stochasticity of the actual gravity field); see also

Moritz (1980), Moritz and Sanso (1980). In this way, collo-
cation is usually considered as a rigorous linear spatio-
statistical method for gravity field approximation, where
the term “statistical” is used not to describe some under-
lying stochastic behavior for the gravity field, but rather to
specify the statistical nature of the deterministic norm that
is used to quantify the approximation error and to optimize

the approximation algorithm.

One of the main characteristics of Sanso’s spatio-sta-
tistical formulation for the collocation problem is that it
leads to the same solution algorithm as the purely determi-
nistic/stochastic approaches. In this case, however, instead
of using a reproducing kernel or a covariance (CV) func-
tion of a stochastic signal, we only need a spatial CV func-
tion defined through a certain spatial averaging operator
over the unknown deterministic signal. The “stationary”
form of this spatial CV function has created the false belief
among many geodesists that we still need to model the
gravity field of the Earth as a stationary stochastic process,
which is furthermore perceived as a strong limitation of the
statistical collocation framework since the actual behavior
of the gravity field is “non-stationary”. However, such a
claim is meaningless because no stochastic nature is as-
signed to the unknown field, and the property of station-
arity is not defined at all for deterministic signals; see also

the related discussion in Sanso (1980).

In order to eliminate any stationarity concerns about
the spatio-statistical collocation framework, and to addi-
tionally support the transition towards the use of wave-
let/multiresolution approximation techniques in gravity
field modelling, the aim of this paper is to show that the
optimal signal approximation according to the statistical
collocation approach can be expressed in the wavelet-like

linear form (e.g., for 1D signals):

g(x) = 2 g(nh)w(%—n) (1)



where g(x) is the unknown field under consideration, /4 is
the resolution level of the discrete data g(nk), and @(x) is
a kernel related in a specific way to the “stationary” spatial
CV function of g(x). Convolution-based approximation
models of the form (1) are a standard tool nowadays in
most signal processing applications (Unser and Daubechies
1997; Blu and Unser 1999). Their constantly increasing
popularity is due to their close connection with wavelet
signal expansions which provide the best available mathe-
matical tool today for localized signal analysis. This im-
portant link has actually resulted in the development of the
vast field of multiresolution approximation theory, origi-
nally formulated by Mallat (1989).

2 Statistical Collocation and Data Resolution

In this section, the linear approximation problem for an
unknown field g(x)e 12 (R) will be solved in such a way
that the immediate connection between the estimated signal
£(x) and the discrete data resolution will explicitly appear
in the solution algorithm. An interesting discussion on the
important interplay between data resolution and optimal
approximation in gravity field modelling can be found in
Sanso (1987). We will assume that the available data repre-
sent noiseless point values g(nh) taken on a uniform grid
with known resolution level /. The unknown field is con-
sidered as 1D for simplicity. The treatment for higher di-
mensions, i.e. in L2 (9?2) or L2(9{3), is just a straight-
forward extension of the following derivations.

Since we are seeking a linear approximation, the re-

covered signal will have the general form

200 = Y g(nh) g, () @)

where (pn’h(x) is a family of unknown base functions
whose dependence (if any) on the data resolution is intro-
duced through the subscript 4. If we further impose the
condition of translation-invariance for the linear approxi-
mation with respect to the spatial reference system (in the
multi-dimensional case this becomes invariance under
more general affine transformations), then the family
(Pn,h(x) should be generated by a single kernel ¢ (x)
such that (pn’h(x) =@y, (x—nh). In this way, eq.(2) is re-
duced to the simplified form

2(x) = Y g(nh) @, (x—nh) (3)

The above approximation formula can now be illus-
trated in terms of the linear filtering system shown in Fig-
ure 1. Applying the Fourier transform to the “mixed” con-

volution equation (3), we get
G(w) = @) Gy(@) “4)

where G(w) and @), (w) are the Fourier transforms of the
approximated signal and the approximation kernel ¢y (x),
respectively. The term Gy, (@) corresponds to the aliased

periodic Fourier transform:

Gi(@) =+ ¥, G+ 25) = 3 gy (3)
k n

where G(w) is the Fourier transform of the original un-

known signal (see, Oppenheim and Schafer 1989).
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Fig. 1 Linear, translation-invariant signal approximation using
discrete samples

Note that the above frequency domain formalism im-
plies that we have sampled our unknown signal over its
entire (finite or infinite) support. If the available data grid
g(nh) covers only some part of this (finite or infinite)
support, then eq.(4) is certainly not valid and a window
function should be additionally used. In order to avoid such
complications, we will assume that the unknown field we
try to approximate covers only the region inside the given
grid boundaries. Although such an assumption is unaccept-
able in applications involving temporal signals (where pre-
dictions into the future may be required), it nevertheless
provides a very reasonable framework for local approxi-
mation studies in spatial fields. It should also be noted that,
although g(x) is assumed zero outside the given data grid
boundaries, its approximation by eq.(3) may exhibit a non-

zero pattern in this region.



2.1 A Spatio-Statistical Optimal Principle

The sequence g(nh) is not the only possible information
that we could have extracted from the unknown signal at
the given resolution level 4. If we shift the sampler by an
amount x,, an infinite number of different data sequences
can be obtained, which all represent different sampling
schemes for the same signal at the same resolution. The
situation is illustrated in Figure 2, from which we can see
that at a specific resolution value 4 all the possible sampled
sequences of g(x) can be described by the general form
g(nh—x,), where the sampling phase parameter x, var-
ies between the limits —h/2 <x, < h/2.
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Fig. 2 Different signal sampling configurations at a given
resolution level &

In accordance with the translation-invariance condition,
we will now have the following general linear equation for
the approximated signal from an arbitrary sampled se-

quence at resolution level A:

8(xx,) = O g(nh=x,) @) (x+x, - nh) (6)

n

Thus, the approximation error produced by eq.(6) becomes
also a function of the sampling phase value x, associated

with the given data set, i.e.
e(x,x,) = g(x)—g(x,x,) (N

Taking into account eq.(6) and applying the Fourier trans-
form to the last equation (considered as a function of x

only), we get

E(w,x,) =
2km
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The optimal criterion for choosing the best approxima-

tion kernel ¢y, (x) will be

hi2 )
j|E(w,xo)| dx, = min ©)
—h12

1
P,(w) = 3

Eq. (9) corresponds to a minimum mean square error
(MMSE) principle, expressed in the frequency domain.
The quantity P,(w) is nothing else than the mean error
power spectrum. Note that the term “mean” now has a
purely spatio-statistical deterministic meaning, in contrast
to Wiener’s prediction theory where the mean error is de-
fined in the sense of “experiment repetitions” via an ex-
pectation operator. The criterion (9) will minimize the
mean error power spectrum over all possible sampling
schemes for the given data resolution level 4. It is similar to
the use of the classic spatial averaging operator M in
Moritz’s (1980) book and in Sanso’s (1980) paper, for the
special case of 1D gridded data. It can be easily shown
(see, Kotsakis 1999) that

Dy (@)C(@)  P(@)C(@)
h h

+ Ph(@)Ph(@)Cy ()

h

Fo(w) = C(0) -
(10)

where the asterisk * denotes complex conjugation, and
C(®) is just the Fourier transform of the usual spatial CV
function ¢(§) of the unknown deterministic signal g(x),

ie.
e©)=[ 200 g0+ de=37{C@) = 6(@)G"(@) | (1)

The symbol 3! denotes the inverse Fourier transform
operator, and the term @,(a)) has the usual periodized

form

2km

Ch(@) = 13 Clo+ =) (12)
k



2.2 Resolution-Dependent Optimal
Approximation

Using egs.(9) and (10), we can easily solve the corre-
sponding variational problem and obtain the optimal ap-
proximation kernel (for the analytical procedure, see, e.g.,
Sideris 1995). The frequency domain form of the optimal
kernel will be finally given by the equation

Clo) _ C(o)
Ch@) 1 2km
P %C(aH p )

Dp(w) = (13)

The linear approximation procedure of spatio-statistical
collocation, therefore, will be based on the following data
filtering formula:

A C(w) 2km
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which is verified by taking into account eqs.(4) and (5). It
is seen from the last equation that, as the data resolution
increases (4 — 0), the approximate will converge to the
true unknown signal in the L? topology. In order for eq.(14)
to correspond to a well defined filtering formula, the power
spectrum C(w) of the unknown signal has to satisfy some

mild conditions that are explained in Kotsakis (1999).
Interestingly enough, the space domain form ¢, (x) of

the optimal approximation filter @j (w) in eq.(13) can be

expressed through the scaling relation
X

Pp(x) = ﬁv(z) (15)

where the generating function ¢(x) is given by the fol-

lowing inverse Fourier transform

(0]
x) =3 H o= W (16)
o= _EC(Q_,_zkl)
h h

The justification of the above fact is trivial and it is
based on the fundamental scaling property of the Fourier
transform. If we finally substitute eq.(15) into the initial ap-
proximation model of eq.(3), we get the wavelet-like ex-

pression of eq.(1). It is worth mentioning that the basic

optimal kernel ¢@(x) will always be a symmetric function,
since its Fourier transform @(w) given in eq.(16) is al-

ways a real-valued function.
2.3 Remarks

Convolution-based linear models of the form of eq.(1) are
used in many signal processing applications in the context
of classical interpolation, quasi-interpolation, and multi-
scale approximation via projections into multiresolution
subspaces (see, e.g., Blu and Unser 1999). In such cases,
the selection of the approximation model ¢(x) is usually
made a priori and its performance is evaluated according to
an assumed behavior for the unknown signal (e.g., ban-
dlimitedness, smoothness, etc.), and/or other theoretical
error bounds that depend on the form of the adopted model
(i.e. Strang-Fix conditions); for more details, see Unser and
Daubechies (1997). In the present paper, on the other hand,
the selection of ¢(x) is adapted to the unknown signal
itself through the use of an optimal MMSE principle, and
its computation requires some knowledge of the signal’s
average behavior (i.e. spatial CV function). Note that the
basic form of the optimal kernel ¢(x) depends directly on
the data resolution level 4, according to eq.(16). As a result,
the linear model of eq.(1) in the collocation case will not
employ scaled versions ¢@(x/h) of the same kernel for
each different value of 4. This is in contrast to the classic
wavelet approximation framework, where a fixed scaling
kernel ¢(x) is used for any (dyadic) data resolution level.

For more details and discussion, see Kotsakis (1999).

In our derivations we never assumed that the optimally
approximated signal should reproduce the available data,
i.e. g(nh)=g(nh). However, this will always be satisfied
since the optimal kernel, defined by eq.(16), is a cardi-

nal/sampling function. This simply means that

1, n=0
o(n) ={ a7

0, n=+1,+2,+3, ...

The above property can be easily verified in the fre-

quency domain using the following relationship:

Z(D(w+2n7r) =1 (18)

which is of course satisfied by our optimal filter @(w)

given in eq.(16), for any data resolution value 4. The valid-



ity of the cardinal property (17) can then be ensured

through the well known Poisson summation formula.
The mean error power spectrum, corresponding to the
use of the optimal filter @, (w) given in eq.(13), will be

C(o)

B = C@) (1- (19)

2C(a)+2l;lﬂ))

k
where P,(®w) is the same quantity defined in the MMSE
criterion of eq.(9). There is a remarkable similarity between
the above error formula and the formula giving the power
spectral density (PSD) of the prediction error in noisy sta-
tionary random signals according to Wiener’s optimal pre-
diction theory (see, e.g., Sideris 1995). The same type of
similarity also exists between the optimal approximation

filter @, (@) in eq.(13) and the actual Wiener filter.

However, the two formulations correspond to entirely
diverse physical situations and they are based on com-
pletely different mathematical concepts and assumptions.
In the statistical collocation approach, instead of having
continuous, noisy and stationary random input signals, we
deal with purely discrete and deterministic input data. Also,
in this case the noise takes the form of lost information due
to the discretization of the original unknown signal g(x)
(see Figure 1). Furthermore, there is no signal stationarity
assumption involved in the current formulation. It is ac-
tually the translation-invariance condition, imposed for the
statistical collocation case, that makes the two approaches
algorithmically comparable in terms of signal-to-noise ratio
(SNR) linear filters which are applied to the input data of

each case.

3 Statistical Collocation, Multiresolution
Approximation and Wavelets

The previous developments can be considered quite gen-
eral, and they did not involve any special concepts from
Mallat’s multiresolution approximation theory. It is quite
remarkable the fact that the spatio-statistical collocation
framework actually leads to a scale-invariant approxima-
tion scheme (i.e. independent of the scale of the reference
system used to describe the position of the gridded data
points), similar to the one encountered in wavelet approxi-
mation theory. However, there is a significant difference

between the optimal collocation model of eq.(1) and the

classic wavelet-based approximation methodology, due to
the fact that the associated kernel ¢(x) in the collocation
case changes for every different data resolution level #,

according to the frequency domain form given in eq.(16).

The most appropriate way to describe the behavior of
the signal approximation model of eq.(1), with the associ-
ated kernel ¢(x) given by the optimal frequency domain
form in eq.(16), is to characterize it as: (i) translation-in-
variant, (ii) scale-invariant, and (iil) data resolution-de-
pendent. Regardless of the origin and the scale of the refer-
ence system that is used to describe the physical/spatial
position of a given set of gridded data points, the approxi-
mated field according to the statistical collocation algo-
rithm will always have the same shape. On the other hand,
as the data point density (h) changes, the linear approxima-
tion algorithm of eq.(1) will employ a constantly changing
model-kernel ¢(x), which will be adapted to the average
spatial characteristics of the unknown signal and the reso-
lution level / of the currently used data points in a certain
optimal fashion, as suggested by eq.(16). For a more de-
tailed treatment, see Kotsakis (1999).

Furthermore, the optimal kernel ¢(x) in the statistical
collocation framework creates a “generalised” type of mul-
tiresolution analysis (MRA) within the Hilbert space
Lz(EK). Let us denote by {Vj}jE 7 an infinite sequence
of subspaces in 1? (R), each element of which is associ-
ated with a specific data resolution level (/; >0) and it is
defined as the closed linear span of the family
{(p(h.]_-lx—n)| ne Z}, where the basic scaling kernel
¢(x) is given by eq.(16) for # =4 ;. In this case, it can be
shown (Kotsakis 1999) that the multiresolution subspace
sequence {Vj} will satisfy all the basic properties that
define an MRA structure in L2 (R) (see, e.g., Mallat

1989), except from the following one:

fWeV;, o f2xer;, (20)

Nevertheless, the optimal kernel ¢@(x) in statistical
collocation can be viewed as a scaling function whose inte-
ger translates (p(h;'x—n), at each resolution level # iz
create a linearly independent and stable system of base
functions (i.e. Riesz basis) that can span a nested sequence
of subspaces {Vj}, which will asymptotically converge to
the 12 (R) Hilbert space (as hj —0), or to the “zero
space” (as h. j ). The way that the value of the scaling



parameter A 5 changes from one subspace (Vj ) to the next
(Vj +1) cannot of course be arbitrary, but it should gener-

ally satisfy the following condition:

hy
—a, V jez @1)
h. J
Jj+l
where a . is some positive integer, different from unity.

J
The actual value of a i

is not needed to remain constant
for each subspace pair, and this provides great flexibility in
contrast to the classic Mallat’s MRA framework where
only dyadic schemes (i.e. a; =2) are considered. In a
way, the “self-similar” scaling property of eq.(20) between
the various subspaces V; of a classic MRA is now re-
placed by the freedom to use a much more flexible rule
according to which the scaling parameter (data resolution
level) h j changes from one MRA subspace to the next. A
couple of mild conditions that the signal power spectrum
C(w) has to satisfy, in order for the optimal kernel ¢(x)
in eq.(16) to generate such a multiresolution subspace

structure in LZ(EK), are discussed in Kotsakis (1999).

The previous extension of the classic MRA concept
suggests that we may be able to achieve a similar extension
of the classic wavelet bases associated with Mallat’s dyadic
MRAs. If such a step becomes successful, we would have
essentially generated a “non-stationary” system of base
functions in 2 (R) that will be explicitly associated with
the actual statistical collocation approximation formula (1);
i.e. each unknown signal will give rise to a certain type of
wavelet-like basis. The potential of such a connection is
quite remarkable, in both theoretical and practical terms,

and it will presented in future publications.

4 Conclusions and Future Work

The concept of spatio-statistical collocation, as expressed
by the optimal criterion (9) and a translation-invariance
condition, leads to signal approximation models commonly
encountered in MRA/wavelet theory. It is the opinion of
the author that Sanso’s formulation for the collocation
problem (Sanso 1980) should not be viewed only as a “sup-
plement” to Wiener’s stochastic prediction theory for geo-
detic approximation problems. It actually constitutes a very
powerful and autonomous modelling tool, with remarkable

connections to multiresolution approximation theory. As

far as the “stationarity” issue is concerned, I personally per-
ceive this problem (in the context of optimal estimation in
noiseless deterministic fields) as the ability to study locally
the approximated signal in a rigorous and consistent man-
ner with the optimal principles. With such an understand-
ing of the problem, MRA/wavelet theory can provide valu-
able tools without deviating from the widely acceptable

collocation spirit (i.e. MMSE principle).

Many theoretical/practical extensions of the issues dis-
cussed herein are needed to cover all possible gravity field
applications. Some of these topics are: multi-dimensional
generalizations (including compact spherical domains),
study of the approximation error as a function of the data
resolution level 4 and the used kernel ¢(x), development
of optimal noise filtering methods in multiresolution ap-
proximation models, and empirical/numerical determina-

tion of the optimal kernel ¢(x) in eq.(16).
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