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Abstract. Transforming geoid heights between dif-

ferent geodetic reference frames (GRFs) is an es-

sential task in gravity field modeling and its proper 

implementation is crucial for many applications 

involving the use of the geoid. In this paper an at-

tempt is made to investigate the problem of geoid 

height transformation between different GRFs, 

without considering other variations in the auxiliary 

geophysical or geodynamical hypotheses that may 

be a-priori specified for the desired geoid type (e.g. 

variations in the values of M and/or Wo, variations 

in terms of treatment of permanent tidal effects). 

The aim here is to present the required methodology 

to deal with the problem: “how should we transform 

geoid heights, referring to a fixed equipotential sur-

face (W = Wo), from a given GRF to another GRF 

when we know the seven similarity transformation 

parameters linking the two frames?”. Special em-

phasis is given on the effect of GRF scale variations 

in coordinate transformations involving reference 

ellipsoids, for the particular case of geoid heights. 

Since every Cartesian coordinate system “gauges” 

an attached ellipsoid according to its own particular 

scale, there will exist a small contribution from the 

scale variation between the involved GRFs on the 

relative size of their adopted reference ellipsoids. 

Neglecting such a scale-induced indirect effect cor-

rupts the values for the curvilinear geodetic coordi-

nates obtained from a similarity transformation 

model, and significant errors can be introduced in 

the transformed geoid heights. The paper explains 

the above issues in detail and presents the necessary 

mathematical framework for their solution.  
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ence frame, reference ellipsoid, datum scale. 
 

 
 

1 Introduction 
 

High-precision studies in Earth gravity field model-

ing require a careful treatment of several reference 

frame issues in order to ensure a coherent frame-

work for data analysis and to avoid datum-related 

biases and artifacts in the results. Transforming 

geoid heights, for example, between different geo-

detic reference frames is an essential and necessary 

component in gravity field modeling, and its proper 

implementation is crucial in many scientific appli-

cations involving the direct or indirect use of the 

geoid (e.g. consistent combination of ellipsoidal, 

orthometric and geoid height data for GPS-based 

leveling, external validation of gravimetric geoid 

models with GPS and leveling data, datum-

consistent comparison between old and recent grav-

imetric, satellite-only or combined geoid models, 

update of existing geoid models to comply with 

current definitions and realizations of global geo-

detic reference systems, reduction of sea surface 

heights obtained from satellite altimetry data to a 

preferred geodetic reference frame, and proper utili-

zation of geoid height information in datum trans-

formation studies). 

 

By definition, geoid heights refer to a specific geo-

detic reference system (GRS). Available geoid 

models (e.g. EGM96) or individually computed 

geoid height values (e.g. from GPS and leveling 

data) ought to be consistent with a particular reali-

zation of such a GRS, namely a geodetic reference 

frame (GRF). In this way, a gravimetric geoid de-

termined through the generalized Stokes’ formula 

(Heiskanen and Moritz 1967) 
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will be consistent with the geocentric GRF in which 

the spatial positions and the values of the gravity 

anomaly data Δg refer to, whereas a geoid obtained 

through a spherical harmonic series expansion re-

fers to the GRF that is realized by the positions of 

the satellite tracking stations which were estimated 

at the time of the model development (Pavlis 1998, 

Lemoine et al. 1998). On the other hand, geoid 

heights that are computed directly from GPS and 

leveling data, according to N = h – H, refer to the 

same GRF implied by the GPS coordinates of the 

evaluation point, while the use of the orthometric 

height in this case fixes (in principle) the particular 



Figure 1. Geoid height transformation between different 

geodetic reference frames. 

equipotential surface W = Wo that we should treat as 

“the geoid”. 

 

Apart from the chosen spatial reference frame in 

which the relative position of the geoid with respect 

to a reference ellipsoid shall be expressed (at a par-

ticular epoch), there are additional aspects affecting 

the adopted GRS with respect to which a final geoid 

model can be delivered. Such aspects involve the 

treatment of the permanent tidal effects on the grav-

ity field and the Earth’s crust (zero-frequency ge-

oid, non-tidal geoid, mean geoid), the consideration 

of other loading effects on the solid and liquid parts 

of the Earth, the adoption of specific numerical val-

ues for fundamental GRS parameters (or “con-

stants”) such as the Newton’s gravitational constant 

G, the Earth’s (including its atmosphere) mass M, 

the normal gravity potential value on the reference 

ellipsoid Uo, the gravity potential value on the geoid 

Wo, the semi-major axis and the flattening of the 

reference ellipsoid, the mean angular velocity of the 

Earth, etc.; see Groten (2004). 

 

In this paper an attempt is made to highlight the 

essential points related to the problem of geoid 

height transformation between different GRFs, 

without considering other variations in the auxiliary 

geophysical or geodynamical hypotheses that may 

be a-priori specified for the desired geoid type (e.g. 

variations in the values of M and/or Wo, variations 

in terms of treatment of permanent tidal effects, 

etc.). Our objective is to present the methodology 

and the required formulae to deal with the following 

problem: “how should we transform geoid heights, 

referring to a fixed equipotential surface (W = Wo), 

from a given GRF to another GRF when we know 

the seven similarity transformation parameters link-

ing the two frames?”; see Fig. 1. 

 

 

 

 

 

 

 

 

 

   

 

 

 

  

 

 

 

 

Special emphasis is given on the effect of GRF 

scale variations in coordinate transformations in-

volving reference ellipsoids, which is an important 

issue that has not been sufficiently stressed in the 

geodetic literature; see Soler and van Gelder (1987). 

Since every Cartesian coordinate system “gauges” 

an attached reference ellipsoid according to its own 

particular scale, there will be a small contribution 

from the scale variation between the involved GRFs 

on the relative size of their adopted reference ellip-

soids. For example, if the same ellipsoid (in terms 

of physical dimensions) is attached to two different 

GRFs, we should generally assign different values 

to its semi-major axis in each case if the GRFs are 

connected through a non-zero scale change factor. 

Neglecting such a scale-induced indirect effect cor-

rupts the resulting values for the curvilinear geodet-

ic coordinates obtained from a similarity transfor-

mation model, and significant errors can be intro-

duced in the transformed geoid heights (Soler and 

van Gelder 1987).  

 

To clarify these points, an extended similarity trans-

formation model is presented which provides a 

proper “de-coupling” of the geoid height variation 

arising from (i) the GRF scale difference and (ii) the 

actual change of the physical size of the reference 

ellipsoid. 

 

 

2 Similarity transformation model for 
geoid heights 

 

Let us consider the well known Euclidean similarity 

transformation model which is used to convert Car-

tesian coordinates between two geodetic reference 

frames that generally differ in terms of three trans-

lation parameters (tx, ty, tz), three orientation param-

eters (εx, εy, εz) and a factor of uniform spatial scale 

change (δs) 
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Note that the above model corresponds to a first-

order linear approximation of the rigorous vector 

transformation formula  
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with R being the total rotation matrix that performs 

three successive rotations around the axes of GRF1 

so that they become parallel to the corresponding 

axes of GRF2, t is the Cartesian coordinate vector 

of the origin of GRF1 with respect to GRF2, and δs 

is the scale difference factor between the two refer-

ence frames (see Fig. 1). The use of the approxi-
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mate model (2) instead of the rigorous expression in 

(3) has a negligible effect on the transformed coor-

dinates and it is justified for most geodetic applica-

tions where the rotation angles do not exceed a few 

arc seconds and the differential scale factor is of the 

order of 10
5

 or less; for more details, see Hofmann-

Wellenhof and Moritz (2005, ch. 5). 

 

In order to derive the expression for the similarity 

transformation of geoid heights between the refer-

ence frames GRF1 and GRF2, we need also to con-

sider the relationship between Cartesian and curvi-

linear geodetic coordinates 
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where N (to be distinguished from the symbol N that 

denotes the geoid height) is the prime vertical radi-

us of curvature, given by the formula 
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The quantities a and e
2
 correspond to the length of 

the semi-major axis and the squared eccentricity of 

the adopted reference ellipsoid which is used for the 

definition of the curvilinear geodetic coordinates φ, 

λ and h in (4). 

 

By differentiation of (4), we get 
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where the Jacobian matrix J has the following form 

(Soler 1976) 
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and 
32

/)1( a  WeM  is the meridian radius of 

curvature.  

 

Substituting the left hand-side in (6) according to 

the similarity transformation model given by (2), 

and then solving for dh, we obtain the following 

formula that corresponds to the similarity transfor-

mation model for ellipsoidal heights (Soler and van 

Gelder 1987)  
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where 
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Note that the rotation angle εz does not affect the 

change of the ellipsoidal height from GRF1 to 

GRF2 due to the rotational symmetry of the refer-

ence ellipsoid. 

 

The above formulae perform the linearized (i.e. 

neglecting terms of the order e
4
 and higher) similar-

ity transformation of ellipsoidal heights between 

two arbitrary GRFs at any point in space whose 

initial curvilinear coordinates (with respect to 

GRF1) are φ, λ and h. If we assume, in particular, 

that the point whose ellipsoidal height being trans-

formed is located on the geoid (see Fig. 1), then (8) 

is reduced to the similarity transformation model 

for geoid heights  
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where δN(tx) = δh(tx), δN(ty) = δh(ty), δN(tz) = δh(tz), 

δN(εx) = δh(εx) and δN(εy) = δh(εy).  

 

It is important to mention that the ellipsoidal height 

of the evaluation point in this case is identical to the 

geoid height, and thus the scale-dependent term 

δN(δs) should take the form   
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Remark 1. In the special case where tx = ty = tz = 0 

and εx = εy = εz = 0, the previous geoid transformation 

model yields 
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or equivalently 



sWδNδsN a  )(1                                      (18) 

 

The interesting point in this particular case is the 

presence of the additional term ‘aWδs’ in (18), 

which can be understood as the effect of an “appar-

ent” change in the physical dimensions of the refer-

ence ellipsoid due to the scale difference between 

the involved GRFs. The magnitude of this term can 

be quite significant, reaching more than 6  m when 

δs = 10
6

 (1 ppm) and dropping to about 1  cm for δs = 

10
9

 (1 ppb). 

 

If the reference ellipsoid remains the same in terms 

of its physical dimensions in both GRFs, then the 

geoid height change (when tx = ty = tz = 0 and εx = εy = 

εz = 0) should be given only by a simple re-scaling 
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since the same physical length (i.e. the distance 

between a point on the geoid and its orthogonal 

projection on the single reference ellipsoid) is 

“measured” with respect to two coinciding GRFs 

which differ only by a uniform scale factor δs.  

 

In order to counter balance the effect of the term 

‘aWδs’ in (18), and also to properly account for an 

actual change in the physical size of the reference 

ellipsoid, the similarity transformation model for 

geoid heights in (15) needs to be extended as de-

scribed in the following section. 

 

 

 

3 Considering the effect of the           
reference ellipsoid change 

 

Let us adopt the length of the semi-major axis (a) 

and the flattening (f) as the two fundamental pa-

rameters that uniquely define the geometrical size 

of a reference ellipsoid.  

 

In order to account for a possible change in the 

physical dimensions of the reference ellipsoid in 

geoid height transformation problems, we need first 

to differentiate the vector formula in (4) as follows 
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where the first Jacobian matrix J1 is identical to the 

matrix J given in (7), while the analytical form of 

the second Jacobian matrix J2 can be found in Soler 

(1976); see also Soler and van Gelder (1987). Set-

ting the left-hand side in (20) equal to zero, and 

then solving for dh, we obtain the ellipsoidal height 

variation only from the change of the reference el-

lipsoid which, in conjunction with (8), leads to the 

following extended similarity transformation model 

for ellipsoidal heights 
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where the additional terms δh(δa) and δh(δf) are 

given by the equations (Soler and van Gelder 1987)   
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The quantities δa = a' – a and δf = f''– f correspond to 

the variation of the numerical values for the semi-

major axis and the flattening of the reference ellip-

soid, as these are used in the respective geodetic 

reference frames, GRF1 and GRF2. 

 

With the exclusion of the terms δh(εx), δh(εy) and 

δh(δs), the model in (21) is identical to the standard 

Molodensky transformation formula (Molodensky 

et al. 1962) which has often been used for trans-

forming ellipsoidal heights between different geo-

detic datums (see, e.g., National Imagery and Map-

ping Agency 1996, pp. 7.3-7.4) and for determining 

the Earth’s mean equatorial radius and center of 

mass through the joint analysis of geometrically 

derived and gravimetric geoid heights (see, e.g., 

Grappo 1980). 

 

Taking into account (21), the corresponding extend-

ed similarity transformation model for geoid 

heights is obtained 
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where δN(δa) = δh(δa) and δN(δf) = δh(δf). The 

translation, rotational and scale-dependent terms in 

(24) have already been defined and explained in the 

previous section. 

 

 

 

4 What should we use for δa ? 
 

An important issue that remains to be clarified, in 

the context of geoid transformation, is the proper 



Figure 2. Each geodetic reference frame “gauges” the at-

tached reference ellipsoid according to its own particular 

scale. 

a' 

GRF2 

a 

GRF1 

usage of the term δN(δa) = W δa which gives the 

geoid height variation due to the difference δa = a' – 

a in the numerical values of the semi-major axis for 

the reference ellipsoids adopted by the frames 

GRF1 and GRF2. 

 

In general, the length of the semi-major axis of the 

reference ellipsoid attached to GRF2 can be ex-

pressed as 
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where a is the length of the semi-major axis of the 

reference ellipsoid attached to GRF1, δs is the scale 

change factor between the two frames, and aδ  cor-

responds to the actual change of the physical length 

of the semi-major axis of the GRF2 ellipsoid with 

respect to the physical length of the semi-major axis 

of the GRF1 ellipsoid (see Fig. 2). 

 

In this way, we have that 

 

a   a    a  a    a δδsδ                        (26) 

 

and thus the geoid height variation term δN(δa) be-

comes 
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Remark 2. Let us consider again the special case 

where tx = ty = tz = 0 and εx = εy = εz = 0, and additional-

ly δf = 0. Based on these assumptions, the extended 

similarity transformation model for geoid heights in 

(24) yields 

 

)a(  )(    δδNδsδNNN                        (28) 

 

Using (16) and (27), the last equation can be written 

in the equivalent form 

 

a  )(1    WδNδsN                                   (29) 

 

In contrast to the transformation formula obtained 

by the simple (non-extended) similarity transfor-

mation model in (18), the above result complies 

with geometrical intuition which dictates that the 

transformed geoid height should be determined by a 

simple re-scaling of the initial geoid height value if 

the underlying GRFs have the same origin and ori-

entation and also use the same reference ellipsoid in 

terms of physical dimensions (δf = 0, 0  a δ ). Note 

that the elimination of the “apparent” geoid varia-

tion term ‘aWδs’ that emerged in (18) has been in-

herently achieved by the inclusion of the term 

δN(δa) as given in (27). 

 

 

 

5 Summary – Open problems 
 

When a GRS is used in practice via an established 

and accessible GRF, the adopted reference ellipsoid 

that is required to define and quantify several im-

portant geodetic quantities does not refer to an “ide-

al” scale unit (e.g. the light-based meter standard) 

but rather to the best scale which geodesists are able 

to reproduce by means of their current data, meas-

urement techniques and optimal combination pro-

cedures (Soler and van Gelder 1987). Therefore, 

any GRF “detects” an attached reference ellipsoid, 

as well as every length-type quantity that depends 

on it (e.g. ellipsoidal height derived from known 

Cartesian coordinates with respect to a given ITRF), 

according to its own particular scale. 

 

Taking into account the above considerations, we 

have investigated the problem of geoid height con-

version between different GRFs by providing a 

general transformation model that incorporates the 

contribution of GRF scale variation on the relative 

size of the reference ellipsoids adopted by each da-

tum. Specifically, if we know the seven similarity 

transformation parameters between two given 

GRFs, then the conversion of the geoid height from 

one GRF to another can be implemented through 

the formula 

 

)a,(  )f( 

)(  )( 

)(  )(  )(    

δδ sδ Nδδ N

δ Nδ N

tδ Ntδ Ntδ NNN

yx

zyx







                (30) 

 

The critical point in the above model is the treat-

ment of the last variation term, which contains the 

combined effect due to the GRF scale variation and 

the change of the semi-major axis of the reference 

ellipsoid. As explained in the previous sections, the 

combined term δN(δs,δa) = δN(δs) + δN(δa) can be 

expressed in the form 

 

a   )  a(    )a,( WδδsNWδδsδN                        (31) 



or, taking into account (26), 

 

)a(a   )a(    )a,( δδsWδsNWδδsδN            (32) 

 

where aδ  is the change of the physical length of 

the semi-major axis of the reference ellipsoid. 

 

In practice, there are two basic options for the im-

plementation of the geoid height transformation 

model in (30). Both of these options relate to the 

evaluation of the term δN(δs,δa) and they essential-

ly correspond to choosing how to treat the physical 

size of the reference ellipsoid with respect to the 

underlying GRFs. 

 

One alternative is to select 0  a δ , which implies 

that the physical length of the semi-major axis of 

the reference ellipsoid is invariant within the under-

lying GRFs. In this case, we have 

 

sNδδδsδN     )a,(                                                (33) 

 

which is a negligible geoid correction for all pur-

poses (i.e. less than 1 mm even for δs = 10 ppm). 

Note, however, that all numerical calculations in-

volving the semi-major axis of the reference ellip-

soid with respect to the GRF2 frame (e.g. conver-

sion of Cartesian coordinates to curvilinear coordi-

nates and vice versa) should be made using the new 

value 
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and not the initial value ‘a’ which is used for similar 

calculations with respect to the GRF1 frame; see 

also Soler and van Gelder (1987). 

 

The other alternative for the evaluation of the term 

δN(δs,δa) is to set δa = 0, which implies that the 

same numerical value for the semi-major axis of the 

reference ellipsoid is used in both frames GRF1 and 

GRF2. In this case, the geoid height variation term 

δN(δs,δa) takes the form 

 

sWsNδδsδN  a      )a,(                                    (35) 

 

As already mentioned, the magnitude of the above 

correction is quite significant and it must always be 

considered since the term ‘aWδs’ can reach more 

than 6 m for δs = 1 ppm. Note that this alternative 

carries an inherent change in the physical dimen-

sions of the reference ellipsoid, since from (26) we 

have that 

 

δsδδ  a  a      0  a                                          (36) 

In closing, let us add a final remark. In contrast to 

δN(δa) given in (27), the term δN(δf) which repre-

sents the geoid height variation due to the flattening 

change of the reference ellipsoid, is insensitive to a 

uniform GRF scale difference (δs) since the ellip-

soid’s flattening f = (a – b)/a does not depend on the 

scale unit of the underlying GRF.  
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