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Abstract 
Numerical investigations into the effects of data accuracy 
and datum inconsistencies on relative GPS levelling are 
presented. Specifically, the variance/covariance 
information of (i) relative GPS ellipsoidal heights, (ii) 
geoid heights computed from a gravimetric geoid model, 
and (iii) orthometric heights obtained from spirit levelling 
methods, is used for an accuracy analysis in a combined 
1D multi-data test network of GPS levelling benchmarks. 
Different parametric models are employed to describe the 
datum inconsistencies and systematic distortions inherent 
among the various height data sets. The a-posteriori 
accuracy of the adjusted parameters in the corrector 
surface model, along with the internal accuracy of the 
GPS and geoid heights, are finally used to infer the 
achievable accuracy of GPS levelling on baselines within 
the test network area.  
 
 
1 Introduction  
The optimal combination of geometric heights 
obtained from global positioning system (GPS) 
measurements and geoidal undulations computed 
from a gravimetric geoid model, in order to 
determine orthometric heights with respect to a 
vertical geodetic datum, is well suited for many 
practical applications. This process, referred to as 
GPS levelling, is based on a simple geometrical 
relationship that binds the three height types and is 
given by (Heiskanen and Moritz, 1967): 

NhH −=                         (1) 

where, h  is the geodetic/ellipsoidal height, H  
refers to the Helmert orthometric height, and N  is 
the geoidal undulation obtained from a gravimetric 
geoid model. In practice, the relationship given by 
Eq. (1) is never fulfilled due to numerous errors, 
systematic distortions and datum inconsistencies 
inherent among the triplet of height data (Kotsakis 
and Sideris, 1999). Thus, a more rigorous treatment 
for the integration of these different height types 

requires the incorporation of a parametric corrector 
surface model in Eq. (1). The role of such a model 
is to absorb the datum inconsistencies and any 
systematic distortions that exist in the height data 
sets. 

The purpose of this paper is to analyze the impact 
of the GPS and geoid data accuracy, and the 
accuracy of the corrector surface model parameters, 
on the determination of relative orthometric heights 
(relative GPS levelling). A test network of spirit 
levelled GPS control points situated in the western 
part of Canada is used as a basis for all numerical 
investigations. Using this network, various 
simulative adjustments are performed in order to 
determine the covariance (CV) matrix for the 
estimated parameters in the corrector surface model. 
By using this accuracy information, evaluations on 
the achievable accuracy of GPS-derived orthometric 
heights for new baselines (not included in the 
original network adjustment) is performed. A 
number of different scenarios are studied by varying 
the configuration of the test network and the 
location/length of the new baseline.  
 

2 General Methodology 
Given a network of points with known GPS and 
orthometric height values and the availability of a 
gravimetric geoid model, a combined adjustment of 
GPS/levelling/geoid data can be performed. In this 
paper, the height differences for each data type are 
formed with respect to some selected initial 
point/station. Therefore, the "observed" input values 
are ijh∆ , ijH∆ , and ijN∆  for a pair of points 

),( ji forming a baseline in the test network. The 
corresponding observation equation model is given 
by: 
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where the superscript α  denotes the true values of 

the various heights at each point, and )(⋅
ijf  

describes the systematic errors and datum 
inconsistencies in the height data sets. The true 

values α
ih , α

iH , α
iN , α

jh , α
jH , and α

jN  refer to 
a common datum such that the following conditions 
are satisfied: 
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and )(⋅
ijv  denotes the zero mean random errors for 

each height difference. The final synthetic 
observation equation for each baseline in the test 
network will have the following form: 
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where ijijijij NHh ∆−∆−∆=�  is the 'observed' 

misclosure value for each baseline, and ijf  refers to 
the total (combined) correction term for systematic 
errors and datum inconsistencies in the multi-data 
test network.  

The ijf  term in Eq. (4) can be modelled 
according to the following deterministic parametric 
form: 
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where ij aa ,  are 1×n  vectors of known 
coefficients that depend on the horizontal location 
of the network points ji,  and x  is an 1×n  vector 
of unknown parameters. An example of such a 
parametric model for the relative case is given by: 
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where ϕ  and λ  are the horizontal geodetic 
coordinates, and 1x , 2x  and 3x  are the unknown 
parameters. This formulation follows the classical 
pointwise (absolute) four-parameter transformation 
model given in Heiskanen and Moritz (1967, sec. 5-
9), with the omission of the fourth constant 
parameter which cancels out in the relative case.  

The choice of the parametric form of the 
corrector surface model is not a trivial task. 
Candidate models vary from a simple plane to more 
complicated higher-order polynomial and/or 
trigonometric corrector surfaces (De Bruijne et al., 
1997; Featherstone, 2000). For the tests conducted 
in this paper, three different parametric models 
were examined for the relative case, namely Eq. (6) 
and two additional models as given below: 
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and 
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[ ]Txxxxxxx 7654321=x                   (8) 

The model in Eq. (7) is a simple extension of the 
model in Eq. (6), see Heiskanen and Moritz (1967, 
p.207). The model given in Eq. (8) is a seven-
parameter third-order polynomial composed of non-
trigonometric basis functions. Similar choices have 
been made in other studies (see, e.g., Jiang and 
Duquenne, 1995)   

The )(⋅
ijv  terms in Eq. (4) describe the zero mean 

random errors in the GPS, levelling and geoid 
height differences. Their second-order stochastic 
properties, for all baselines in the multi-data 
network, are provided by the following covariance 
matrices: 
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where E  denotes the mathematical expectation 
operator. The evaluation of these CV matrices will 
be discussed in more detail in the following section. 



Given the theoretical relationship among the three 
types of height data, and the incorporation of an 
appropriate parametric corrector surface model, the 
orthometric height difference for a new (i.e. not 
belonging in the original test network) baseline kl  
as obtained from relative GPS levelling is: 
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where x̂  is the vector containing the estimated 
parameters of the corrector surface model, as 
obtained from the adjustment of the synthetic 
observations (Eq. 4) in the test network (for more 
details, see Kotsakis and Sideris, 1999). For our 
study, we are interested in the achievable accuracy 
for the orthometric height difference klH∆ . This 
accuracy can be evaluated by simply applying 
variance-covariance propagation to Eq. (10), 
resulting in the following formula: 
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where 2
klh∆σ  and 2

klN∆σ are the variances of the 

relative ellipsoidal and geoidal heights of the new 
baseline, and xC ˆ  is the a-posteriori CV matrix of 
the adjusted parameters in the corrector surface 
model. This CV matrix is obtained from the multi-
data adjustment of the GPS/levelling/geoid test 
network. Due to space restrictions, more details and 
mathematical formulas for the derivation of the xC ˆ  
matrix will be provided in a future journal paper by 
the authors. 
 
3 Test Description 
Although this study does not make use of actual 
height data values, the height accuracy information 
that is used and the test network configuration are 
simulated to mirror realistic conditions. The 
selected test network consists of a subset of the GPS 
benchmarks in the south-western part of Canada 
(314 points in Alberta and British Columbia) 
covering �� 5549 ≤≤ ϕ  and �� 110120 −≤≤− λ , 
which translates to an approximate network 
coverage area of 667km × 685km as depicted in 
Figure 1. 

Full CV matrices for the GPS and orthometric 
heights at the test network points were obtained 

through separate simulative adjustments, which 
used the measuring accuracy of GPS and spirit 
levelling as input, according to the following 
standard formulation: 

dbmm ⋅=)(σ                       (12) 

where σ  is the standard deviation of the observed 
height differences in mm, b  is the height difference 
accuracy based on published standards for GPS and 
levelling, and d  is the baseline length in km 
(Kearsley et al., 1993).  

Fig. 1 Distribution of test network points 
 

Three different orders of levelling accuracy were 
used for assigning the a-priori value H∆σ  for each 
baseline in the adjustment of the levelling network 
(Fig. 2), namely dmm7.0 , dmm3.1 , and 

dmm2 , referring to first, second and third order 
respectively. National standards for the accuracy of 
vertical control vary depending on the country 
(Kearsley et al., 1993; Ollikainen, 1997; van 
Onselen, 1997). In our case, the U.S. standards were 
implemented for both levelling and GPS, as they 
were readily available (NGS, 1994). For the case of 
levelling, larger baselines ( kmd 80> ) usually 
constitute part of a national levelling campaign and 
adhere to first order levelling standards, followed 
by denser regional levelling campaigns 
( kmdkm 8030 ≤< ) of second order, and finally 
local levelling lines ( kmd 30≤ ) which are of third 
order accuracy.  

The accuracy for observed GPS height 
differences also degrades as the baseline length 
increases, mainly due to the spatial decorrelation of 
atmospheric GPS errors (Fotopoulos, 2000). In our 
analysis, ten different orders for the ellipsoidal 
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height accuracy are used as they are defined by the 
U.S. standards (NGS, 1994). The a-priori accuracy 

h∆σ  for each baseline in the separate adjustment of 
the GPS network was assigned based on the 
baseline length. For every 10km increase in 
baseline length the value of dbh =∆σ  changed 
according to b = (0.5, 0.7, 1, 1.3, 2, 3, 6, 15, 30, 60) 
mm (e.g. for kmd 55= , mmb 3= ). The GPS 
network geometry used for the adjustment is shown 
in Fig. 2 (bottom). It is evident by comparing the 
two network configurations in Fig. 2 that the 
levelling network geometry is weaker than the GPS 
network due to the stringent line-of-sight 
restrictions of spirit levelling (Ollikainen 1997).  

Fig. 2 Levelling (top) and GPS (bottom) Network 
Configurations 

 
Following the separate adjustments of the levelling 
and GPS networks, full CV matrices, HC∆  and 

hC∆ , for the adjusted height differences were 
obtained. These CV matrices were used as input to 
a final integrated multi-data adjustment in order to 
obtain xC ˆ  (see Eq. 11). The input accuracy for the 

geoid undulation differences in the multi-data test 
network was approximated by a diagonal CV matrix 

NC∆ . Its diagonal values 2
N∆σ  were based on the 

performance evaluation of the GSD95 Canadian 
geoid model in Alberta and British Columbia 
(Véronneau, 1997). Specifically, baselines in the 
flat or rolling hills area of the network were 
assigned a relative geoid accuracy of 

kmmmcm /41 + , and those in more mountainous 
regions were assigned a lower accuracy of 

kmmmcm /101 + . Therefore the relative geoid 
accuracy depended both on the spatial separation of 
the points, as well as on the geographical location 
of the baseline. 
 
4 Analysis of Results 
A summary of the various test network 
configurations that were used is provided in Table 
1. The three network configurations labeled dense, 
mixed and sparse refer to the multi-data 
(GPS/levelling/geoid) test networks used to 
compute the a-posteriori accuracy xC ˆ  of the 
corrector surface model parameters. The different 
configurations for the multi-data test networks were 
selected in order to assess the effect of varying 
network geometry on the accuracy of relative GPS 
levelling for a new baseline that was not included in 
the original test network (see Fig. 3).  
 

Table 1. Test Network Configuration Profiles  
(d denotes the baseline length, in km) 

Network # obs µ (d ) σ(d)  Max (d)  
Levelling 390 27.9 13.5 95.2 
GPS 472 36.9 25.4 164.3 
Dense 514 41.1 33.3 438.2 
Mixed 425 32.3 20.3 128.1 
Sparse 408 30.6 18.9 128.1 

 
In Table 2, the results of the achievable accuracy 
for relative GPS levelling, according to the 
procedure described in the previous sections (see 
Eq. 11) are shown for baselines of varying lengths, 
from a minimum of 10km to a maximum of 100km. 
These results correspond to the averaged multi-data 
accuracy levels for baselines tested within and on 
the edge of the borders of the test networks (dense, 
mixed and sparse). The type of parametric model 
used was also varied according to Eqs. (6), (7) and 
(8). By examining the values in Table 2, it became 
evident that the input accuracy of the geoidal height 
differences klN∆  and the GPS height differences 
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klh∆  overshadowed any contribution from the 
parametric surface model, surpassing the 
contribution of this third term in Eq. (11) by several 
orders of magnitude. This is also the reason for not 
distinguishing in Table 2 between results from the 
different network configurations and parametric 
model types used, as the results did not vary 
significantly. 

Fig. 3 New baselines within and outside the test network 
 
Table 2. Standard error of relative height components (cm) 

d (km) 
klh∆σ  klN∆σ  klH∆σ  

from Eq. (11) 
10 4.74 5.00 6.89 
20 6.71 9.00 11.23 
30 8.22 13.00 15.38 
40 9.49 17.00 19.47 
50 10.61 21.00 23.53 
60 11.62 25.00 27.57 
70 12.55 29.00 31.60 
80 13.42 33.00 35.62 
90 14.23 37.00 39.64 
100 15.00 41.00 43.66 

 
Since the internal accuracy of the GPS and geoid 
heights is independent of the type of the parametric 
corrector surface used and the network 
configuration, it is more illuminating to base the 
discussion of the results on the contribution of the 
third term in Eq. (11). This third term contains the 
contribution of the adjusted parameters of a pre-
specified model to the final GPS levelling accuracy, 
and is plotted for a number of different cases in Fig. 
4. In this figure, each error profile/line is labeled 
based on an abbreviation which states the test 
network configuration ('d', 's', 'm' for dense, sparse 
and mixed respectively), followed by a 3 or 7 for 

the model type as shown in Eqs. (6) and (8), 
respectively. The results for the 4-parameter model 
were also computed, however they were very 
similar to the 3-parameter model values and 
therefore omitted to avoid cluttering the graph.  

The results in Fig. 4 depict the differences when 
using the dense, mixed and sparse network 
configurations. The figure also shows that in all 
cases the 7-parameter model deteriorates the final 

klH∆  accuracy by approximately 30%, compared 
to the 3-parameter model. However, it should be 
noted that all these differences are at the sub-cm 
level. At this point we can say that the parametric 
model is not a major contributing factor to the 
overall achievable accuracy of relative GPS 
levelling. Going back to Table 2, we can see that 
relative GPS levelling results in sub-decimeter 
accuracy for a 10km baseline, regardless of the 
parametric model chosen. The main factor that 
contributes to the achievable accuracy is the 
baseline length, as it comes into play through the 
estimation of the a-priori accuracy of GPS and 
geoid height data (as previously mentioned in the 
test description). When the baseline length is 
increased up to 100km, the relative GPS levelling 
accuracy degrades to over 40cm. By changing the 
accuracy of the GPS and geoid height determination 
at the newly established baseline, these results will 
change accordingly.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4 Accuracy contribution of the corrector surface model 

to GPS levelling 

It is well known that the process of traditional 
precise spirit levelling suffers from a number of 
practical limitations, due to the roughness of terrain, 
harsh environmental conditions, and restricted line- 
of-sight. In Canada this is most evident when we 
look at the distribution of vertical control stations, 
since the northern parts of the country are very 
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poorly surveyed. A major advantage of GPS 
levelling is the fact that GPS observations are not 
affected (as much) by the practical limitations of 
spirit levelling. Therefore, we conducted a number 
of investigations to determine the accuracy on a 
new baseline established through relative GPS 
levelling between existing control points in northern 
Alberta (AB). This area is situated approximately 
700km to 1000km north of the center of the test 
network, and levelling points are typically more 
sparsely distributed than in the southern part of the 
province. For the results that follow, the standard 
error of the GPS and geoid height differences were 
held fixed at 4cm and 5cm, respectively, regardless 
of the baseline length. The results for the achievable 
accuracy of GPS levelling for baselines situated in 
northern Alberta (away from the original test 
network; see Fig. 3) are shown in Table 3.  
 

Table 3. Results for baselines in northern AB 
Dist to orig. D 3-param 4-param 7-param 

(km) (km) (cm) (cm) (cm) 
Accuracy contribution of the corrector surface model 

730 27 0.101 0.092 0.304 
760 74 0.822 0.761 4.887 
890 31 0.294 0.253 2.127 

Accuracy of GPS levelling H∆σ  
730 27 6.404 6.404 6.410 
760 74 6.448 6.456 8.055 
890 31 6.408 6.410 6.747 

 
It is evident from the above table that for the case 
where the new baseline is situated farther away 
from the original test network, the influence of the 
third term in Eq. (11) becomes more prevalent. For 
instance, in the case of the 7-parameter model for a 
31km baseline that was located approximately 
890km north of the center of the original test 
network, the value of the third term is over 2cm. 
This is significant when a relative orthometric 
height accuracy of 6.7cm is achieved. Another 
similar example is given by the 74km baseline, 
where the accuracy contribution from the corrector 
surface parametric model is approximately 4.9cm.  

 
5 Conclusions 
A number of different investigations were 
conducted in order to analyze the effects of (i) the 
individual height data (GPS, levelling, geoid) 
accuracy and (ii) the accuracy of the corrector 
surface parameters, on orthometric height 
determination via relative GPS levelling. Overall, 

the influence of the accuracy of the corrector 
surface parameters was minimal compared to the 
accuracy contribution of GPS and geoid 
information. However, if we focus on the accuracy 
of the corrector surface parameters only, there is a 
slight difference (at the cm-level) when (i) using 
different geometrical network configurations, and 
(ii) using different types of parametric models for 
the corrector surface. Future studies will involve the 
use of actual height data values which allows for 
testing the 'reliability' of the input CV matrices 

hC∆ , HC∆ , and NC∆  and the form of the 
parametric model via variance component 
estimation.  
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