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Abstract: The topographical masses outside the 

geoid have to be removed completely for its 

determination using Stokes’s boundary value 

problem (BVP) approach. The mathematical and 

the physical treatment of this problem play an 

important role in the computation of a precise 

(local or regional) gravimetric geoid solution. 

There are various gravity reduction techniques 

used in physical geodesy to treat this problem. 

Bouguer reduction, residual terrain model (RTM) 

reduction, Airy-Heiskanen (AH), Pratt-Hayford 

(PH) and Vening Meinesz isostatic models, and 

the Helmert condensation method are mostly 

discussed. One of the most rugged areas of 

Canadian Rockies, which lies in latitude between 

49N and 54N and in longitude between 124W 

and 114W, is selected to compute different 

gravimetric geoid solutions using the AH and PH 

topographic-isostatic reduction techniques, 

Helmert’s second condensation method and the 

Rudzki method. The geoid is computed from 

Stokes’s integral formula with the rigorous 

spherical kernel by the one dimensional fast 

Fourier transform algorithm, and the OSU91A 

model as reference global field. A digital terrain 

model of 15×15 arc seconds is used to compute 

the effect of topography and its indirect effect for 

the different reduction schemes. The results 

obtained from the gravimetric geoid solutions are 

finally compared with the GPS-levelling derived 

geoid undulations of this area. 
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1 Introduction 
 

The topographical effect is one of the most 

important components in the solution of geodetic 

BVPs, and should be treated properly in the 

determination of a precise geoid. The classical 

solution of geodetic BVP using Stokes’s formula 

for geoid determination assumes that there should 

be no masses outside the geoid. The gravity 

measurements should be referred to the geoid, 

which requires the actual Earth’s topography to be 

regularized. There are several reduction 

techniques, which differ depending on how these 

topographical masses outside the geoid are dealt 

with. Each gravity reduction scheme treats the 

topography in a different way. In theory the 

gravimetric solution for geoid determination using 

different mass reduction methods should give the 

same result, provided the indirect effect is taken 

into account properly (Heiskanen and Moritz, 

1967).  

 

In practice, the choice of reduction method 

depends on the magnitude of the indirect effects, 

smoothness and smallness of reduced gravity 

anomalies, and the geophysical meaning of its 

reduction method (Heiskanen and Moritz, 1967). 

The complete Bouguer reduction removes all the 

topographic masses above the geoid giving smooth 

anomalies but introducing excessively large 

indirect effects. Topographic-isostatic reductions 

remove topographical masses with their isostatic 

compensation, and fulfill all the requirements of a 

good reduction technique. Helmert’s second 

method of condensation is mostly used in practice 

throughout the world as a mass reduction scheme 

for geoid determination. In this reduction method, 

the topographic masses between geoid and the 

Earth’s surface are condensed on the geoid 

forming a surface layer. The direct topographic 

effects and indirect effects using this condensation 

reduction method have been discussed in the 

literature; see for example, Heiskanen and Moritz, 

(1967), Wichiencharoen (1982), Vanicek and 

Kleusberg (1987), Wang and Rapp (1990), Sideris 

(1990), Martinec and Vanicek (1993), Martinec et 

al. (1993) and Heck (1993). 

 

The purpose of this paper is to study gravimetric 

geoid determination using different reduction 

methods, in planar approximation, in a rugged area 

of the Canadian Rockies. Although the 

topographic and isostatic reductions are used quite 

often, the Rudzki reduction is not. The inversion 

method of Rudzki shifts all the masses into the 

interior of the geoid in such a way that there is no 
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indirect effect. This reduction method has no 

geophysical meaning (Heiskanen and Moritz, 

1967). The TC program written by Forsberg 

(1984) is modified for this paper to obtain 

different gravimetric quantities.  Details on the 

computation of different topographic-isostatic 

anomalies using TC program is also given by Abd-

Elmotaal (1998). 

 

2 Computational methodology 

 
Global geopotential model, local gravity 

information and digital terrain model represent the 

low, medium and high frequency part of the 

gravity signal, respectively. Gravimetric geoid 

solution is carried out using remove-restore 

technique in this investigation for all gravity 

reduction methods. Each method treats the 

topography in a different way.  

 

First, the gravity anomaly is reduced in a remove 

step using a mass reduction scheme to formulate 

boundary values on the geoid, which can be 

expressed as 

 

GMT ΔgΔgΔgΔg                       (1)    

 

where Δg is the gravity anomaly, 
T

Δg  is the 

attraction change due to the removal of topography 

with compensation or condensation depending on 

the reduction method used and 
GM

Δg  is the 

reference gravity anomaly from geopotential 

model The total geoid obtained as the result of the 

restore step (in remove-restore technique) can then 

be expressed as 

 

indΔgGM NNNN                       (2) 

 

where 
GM

N  denotes the long wavelength part of 

the geoid obtained from a geopotential model, 

Δg
N represents residual geoid obtained by using 

Δg from equation (1) in Stokes’s formula and 

ind
N is the indirect effect on geoid, which depends 

on the mass reduction method used. Stokes’s 

integral formula with the rigorous spherical kernel 

by the one-dimensional fast Fourier transform 

algorithm is used in this paper (Haagmans et al., 

1993). The formulas for the computation of 

GM
Δg and 

GM
N are given in Heiskanen and Moritz 

(1967). 

The indirect effect on geoid, 
ind

N in equation (2), 

can be computed from Bruns’s formula, as 

follows: 

 

γ

ΔT
Nind 

                      (3)       

 

where ∆T is the change in the potential at the 

geoid, which depends on the reduction method 

used and is described in details in the following 

sections. The indirect effect on gravity, which 

reduces gravity anomaly from geoid to the co-

geoid, can be expressed as a simple free-air 

reduction (Heiskanen and Moritz, 1967) 

 

ind0.3086Nδg   mGal         (4) 

 

2.1 Airy-Heiskanen, Pratt-Hayford and Rudzki 

topographic models 

 

The AH model is based on the principle that 

mountains are floating on the material of higher 

density forming roots under mountains and anti-

roots under the oceans. The condition of floating 

equilibrium for the continents can be formulated 

as (Heiskanen and Moritz, 1967) 

 

0hρtΔ                                   (5) 

 

where t is the root depth, ∆ρ is the density contrast 

between the crust and the upper mantle, which is 

taken equal to 0.6 3g/cm  for this test, h is the height 

of the topography and 
0

ρ is the standard crust 

density of 2.67 3g/cm . The normal thickness of the 

Earth’s crust is assumed to be 30 km. The 

attraction change 
Tg  in equation (1) can be 

expressed as 

 

CTT AAΔg         (6) 

 

where
T

A  is the attraction of all topographic masses 

above the geoid and 
C

A  is the attraction of  the 

compensating masses based on the AH principle. 

The two components in the right hand side of 

Equation (6) can be expressed as 
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G is Newton’s gravitational constant, ρ (x, y, z) is 

the topographical density function, ∆ρ is the 

density contrast, D is the normal thickness of 

Earth’s crust and E denotes the integration area. r 

(x, y, z) is the distance kernel defined as  

 
1/2222 )zy(xz)y,r(x,  .       (8) 

 

Equation (7) can be numerically integrated using 

rectangular prisms with the computation point 

coinciding with the origin of the coordinate system 

as (Nagy, 1966): 
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The difference between the gravitational potential 

of the actual topographical masses and that of the 

compensating masses, ∆T in equation (3), can be 

expressed as 

 

CT TTΔT         (10) 

 

where 
T

T and 
C

T  are the gravitational potentials of 

the topography and compensating masses 

respectively. The individual components in the 

right hand side of equation (10) can be expressed 

as 
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   (11) 

Equation (11) can also be numerically integrated 

integration using rectangular prisms with the 

computation point coinciding with the origin of 

the coordinate system (Nagy, 1966): 
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The PH topographic model is based  on the 

principle that the mass of each column of same 

cross section is equal and there is constant density 

under the level of compensation. The topographic 

masses are distributed between the level of 

compensation and the sea level. The original 

density of the column according to this principle 

for the continental case can be expressed as 

(Heiskanen and Moritz, 1967) 

 

0ρ
hD

D
ρ


        (13) 

 

where D is the compensation depth, which is 

assumed equal to 100 km for this test. The 

Bouguer reduction is usually carried out using 

constant density and thus the density defect is 

computed by   

 

0ρ
D

h
Δρ                      (14) 

 

The attraction change and potential change based 

on this reduction method can be formulated in the 

same way as in equation (6) and in equation (10)  

respectively, where
C

A will represent the attraction 

and 
C

T  the potential of the compensating masses 

according to the PH theory.  The attraction 

j)(i,A
C

and the potential of the compensating 

masses j)(i,T
C

can be given in the same way as in 

equations (9) and (12) : 
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The inversion reduction of Rudzki shifts all the 

topographic masses inside the geoid so that 

equation  (10) becomes zero, which means the co-

geoid of Rudzki coincides with the geoid 

(Heiskanen and Moritz, 1967). The density of the 

inverted masses is equal to that of topography and 

the thickness of the inverted masses is equal to the 

height of the topography in planar approximation. 

C
A in equation (6) is the attraction due to the 

inverted masses in this method and can be 

expressed as follows 
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2.2 Hemert’s second method of condensation 

 

Hemert’s second method of condensation can be 

regarded as PH isostatic reduction when the depth 

of compensation goes to zero (Heiskanen and 

Moritz, 1967). This method is mostly used in 

practice.  The attraction change in equation (6) 

based on this condensation scheme can be 

expressed in planar approximation as 

 

cAAΔg
CTT

                    (17) 

 

where c is classical terrain correction, which here 

represents the difference between the attraction of 

topography computed on the surface of the 

topography and the attraction due to the condensed 

masses computed on the geoid. This condensation 

method is not a gravity smoothing terrain 

reduction and thus the use of other reduction 

methods is recommended to smooth gravity 

anomalies for gridding. The indirect effect on 

gravity for this reduction scheme can be given as 

(Sideris and She 1995) 
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The indirect effect on geoid can be formulated in 

planar approximation as (Wichiencharoen, 1982) 
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where 0r  is the planar distance between 

computation and running point.  

 

3 Numerical tests 

 
One of the most rugged areas in the Canadian 

Rockies bounded by latitude between 49ºN and 

54ºN and longitude between 124º W and 114ºW is 

selected to compute different gravimetric geoid 

solutions with AH and PH isostatic reductions, the 

Rudzki inversion method and Helmert’s second 

method of condensation. A total of 9477 measured 

gravity values are used for this test, the 

distribution of which is given in figure 1. The 

normal gradient of 0.3086 mGal is used for the 

computation of Free-air anomalies. The standard 

constant density of 2.67 3/ cmg is assumed. The 

digital terrain model of 15′′ grid resolution is used 

to compute the attraction of the topography, 

attraction of compensating or condensed masses 

and the indirect effects. There is a maximum 

elevation of 3840 m with standard deviation of 

543 m in the test area. The attraction of the 

topography and the attraction of the compensating 

masses are computed using a radius of 300 km 

around the computation point. The reference 

gravity field is computed from OSU91A 

geopotential model complete to degree and order 

360.  

 

The statistics of gravity anomalies for different 

topographic-isostatic reductions are presented in 

table 1. Topographic-isostatic anomalies based on 

AH and PH theory are the smoothest, with a 

standard deviation around 18 mGal. The gravity 

anomalies based on Helmert’s second method of 

condensation have highest range between  

maximum and minimum values as well as 

standard deviation compared to those of other 

reduction methods. The removal of global 

reference field does improve the statistics of 

reduced gravity anomalies for Helmert and Rudzki 

inversion schemes but not for Bouguer, AH and 

PH topographic-isostatic methods. Faye and  

 
Fig 1. The distribution of gravity points in the test area of 

Canadian Rockies 
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Fig 2. Faye gravity anomalies 
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Fig 3. Rudzki gravity anomalies



Table 1. The statistics of gravity anomalies (mGal) 
 

Reduction Scheme Gravity anomalies Max Min Mean STD 

Faye (Helmert) cgFA    245.56 -150.59 -13.65 57.41 

 AOSUcgFA 91  198.07 -193.44 -6.75 48.03 

Refined Bouguer cgg BFA   -4.67 -212.03 -109.23 43.62 

 AOSUcgg BFA 91  20.75 -284.62 -102.33 69.76 

Airy-Heiskanen 
AHFA Ag   

AOSUAg AHFA 91  
56.46 -200.58 -24.32 18.70 
59.52 -224.73 -17.43 33.33 

Pratt-Hayford 
PHFA Ag   

AOSUAg PHFA 91  

50.71 -204.17 -28.97 18.22 

56.94 -228.32 -22.07 34.74 

Rudzki 
RFA Ag   

AOSUAg RFA 91  
125.56 -176.38 -16.58 36.03 

76.22 -200.53 -9.67 25.68 

 

La
tit

ud
e 

()

Longitude ()

-124 -123 -122 -121 -120 -119 -118 -117 -116 -115 -114

54

53

52

51

50

49

 
Fig 4. Airy-Heiskanen gravity anomalies 

 

Rudzki anomalies are highly correlated with 

topography while the correlation of AH and PH 

anomalies with topography is not much. Figure 2, 

3 and 4 show Faye, Rudzki and AH gravity 

anomalies respectively.   

 

The indirect effect on gravity for Helmert, AH and 

PH models is considered before applying Stokes’ 

formula for these reductions. The statistics of this 

effect is given in table 2. The indirect effect on 

geoid undulation for PH isostatic reduction 

changes the geoid as much as nearly 10 m while 

that for Helmert method changes 47 cm. Table 2 

shows the statistics of indirect effects on geoid for 

different reductions. Figure 5 shows the indirect 

effect on geoid for Partt-Hayford model. The 

indirect effect for Helmert method is computed 

considering terms, a regular and an irregular part, 

of equation  (19). The maximum indirect effect for 

all reductions is seen in mountains. 

 
Table 2. Indirect effects on gravity (mGal) and on geoid 

undulation (m) 
 

Geoid Model Indirect 

Effect 

Max Min Mean STD 

Helmert gravity 0.26 0.00 0.04 0.03 

 geoid 0.01 -0.47 -0.12 0.08 

Pratt Hayford gravity 3.08 0.18 1.35 0.75 

 geoid 9.97 0.59 4.36 2.41 

Airy Heiskanen gravity 2.61 0.09 1.04 0.64 

 geoid 8.46 0.31 3.36 2.06 

 

 

 
Fig 5. The indirect effect on geoid for  PH model (m) 

 

A total of 258 GPS benchmarks available in the 

test area is used to fit gravimetric geoid solutions 

with GPS-leveling geoid, the distribution of which 

is given in figure 6. There are no GPS leveling 

points above the elevation of 2000 m. A Four -

parameter trend surface is applied to fit 

gravimetric geoid solutions with GPS-leveling. 

The statistics of the difference of gravimetric 

geoid undulations with GPS-leveling before and 

after fit are given in table 3. Gravimetric geoid 

determination based on Rudzki inversion 

topographic reduction shows the smallest 

differences from GPS-leveling before fit. The 

absolute magnitude of maximum, minimum and 

mean values of the difference between isostatic 

gravimetric solutions based on AH and PH with 

GPS-leveling before fit is much higher compared 

to those of Rudzki and Helmert methods but their 

standard deviation is less than Helmert’s method. 
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Fig 6. Distribution of GPS-leveling points 

 



Table 3. Statistics of different gravimetric geoid solutions (m) 

(values in the parentheses are before fit) 
 

Geoid Model Max Min Mean STD 

Helmert 0.54 

 (-0.69) 

-0.75 

 (-3.48) 

0.00 

 (-2.22) 

0.25 

 (0.58) 

Airy-Heiskanen 0.66 

 (-5.25) 

-1.04 

 (-7.63) 

0.00  

(-5.99) 

0.35  

(0.45) 

Pratt Hayford 0.64 

 (-5.85) 

-1.02  

(-8.21) 

0.00 

 (-6.64) 

0.35 

 (0.44) 

Rudzki 0.47 

 (0.47) 

-0.97  

(2.63) 

0.00  

(-1.52) 

0.24 

 (0.43) 

 

4 Conclusions 
 

Different mass reduction schemes, Helmert second 

method of condensation, AH and PH isostatic 

models and Rudzki inversion method have been 

applied in the classical solution of BVP using 

Stokes’s approach in one of the most rugged areas 

of Canadian Rockies. Helmert anomalies present 

the most rough gravity field for this area while 

topographic-isostatic anomalies show smoother 

field as well as less correlation with topography. 

The removal of reference field does not improve 

the statistics of isostatic anomalies of AH and PH 

models but does improve that of Helmert and 

Rudzki reductions. 

 

Indirect effect on geoid undulation with 

topographic-isostatic models changes the geoid 

surface as much as 10 m.  Indirect effect with 

Helmert method changes the geoid undulation 

maximum of 47 cm. 

 

Rudzki-geoid shows best overall statistics in the 

differences from GPS-levelling and should, 

therefore, become a standard method for geoid 

determination. There is a large difference in the 

statistics between absolute geoid of AH and PH 

models with GPS-levelling geoid before fit. These 

large biases possibly indicate that the reference 

gravity field from OSU91A geoptential model 

does not agree with topographic-isostatic models 

in the test area. More studies regarding the 

improvement of absolute geoid for these models 

should be carried out. Helmert and Rudzki geoid 

show similar characteristics after the fit and show 

better results compared to those based on AH and 

PH models. 
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