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Abstract. The aim of this paper is to present a gen-

eral solution of the weight choice problem for the 

reference stations in minimally constrained network 

adjustment. Our treatment is based on the optimiza-

tion of the accuracy of the estimated network coor-

dinates over all possible choices of minimum con-

straints on the reference stations. The optimal crite-

rion considers the joint effect of the data and datum 

noise on the estimated coordinates and it is imple-

mented over an arbitrary subset of the network sta-

tions. The final solution leads to a flexible treatment 

of the datum choice problem by allowing the weight 

matrix of the reference stations to be tuned to vari-

ous options regarding the frame quality in the ad-

justed network. 
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straints; datum choice problem; data noise effect; 

datum noise effect; frame optimization. 

 

 

1  Introduction 
 

The datum choice problem (DCP) is a well known 

hassle in geodetic network adjustment with coordi-

nate-based models. It is linked to the optimal esti-

mation of a set of coordinates from a singular sys-

tem of normal equations obtained by the network 

data analysis within a linearized least squares (LS) 

framework (e.g. Dermanis 1985; Schaffrin 1985; 

Teunissen 1985). The usual treatment of the DCP 

requires that a set of external constraints is used to 

complement the missing datum information in the 

available data. Several options exist for the selec-

tion and the implementation of those constraints 

into the network adjustment procedure, each of 

which has its own merits for the final estimated 

solution. In this study we concentrate on the so-

called minimum constraints (MCs) which fix the 

datum defect of the geodetic network without inter-

fering with its estimable characteristics from the 

available data (Sillard and Boucher 2001). 

 These datum constraints are typically applied 

over a number of reference stations that are includ-

ed in the network adjustment and have a priori 

known coordinates with respect to the user’s desired 

reference frame. Their general expression is given 

in terms of the linear system 

 

ext( )   E x x 0                        (1) 

 

which corresponds to the well known inner con-

straints or, more precisely, partial inner constraints 

since only a part of the network stations is involved 

in the datum definition process (Meissl 1969; Blaha 

1971). The above constraints enforce the harmoni-

zation of the (non-estimable) frame parameters of 

the geodetic network with the respective frame pa-

rameters implied by the known coordinates x
ext

 of 

the reference stations. The matrix E stems from the 

usual Helmert transformation model using only the 

rows that correspond to the datum defect of the un-

derlying network (Sillard and Boucher 2001). 

The use of Eq. (1) offers a restrictive optimality 

for the estimated coordinates in the chosen frame. 

In fact, the fundamental property of the network 

solution under these constraints is the minimization 

of the propagated data noise on the estimated coor-

dinates of the reference stations. This suggests that 

there are two limitations which Eq. (1) is not able to 

handle in network adjustment problems, namely: 

(i) the optimal control of the propagated data noise 

on other network stations (apart from the refer-

ence stations), and  

(ii)  the optimal control of the random errors in the a 

priori reference coordinates x
ext

 and their propa-

gated effect (hereafter called datum noise effect) 

on other network stations.  

Both of these issues are crucial in the context of the 

optimal datum choice for minimally constrained 

networks and they have to be treated in a more gen-

eral setting than the one provided by the classic 

inner constraints in Eq. (1). Specifically, the use of 

a weight matrix for the reference stations according 

to the extended form of inner constraints 

 

  

ext( )   EP x x 0                        (2) 

 

enables us to overcome the aforementioned limita-

tions within a zero-order optimization scheme for 

geodetic networks. This result has been established 

in Kotsakis (2013) where the choice problem for the 

weight matrix P was tackled on the basis of the 



joint minimization of the data and datum noise ef-

fects over all network stations.  

The aim of this paper is to present a useful ex-

tension of the previous result by considering the 

minimization of the data/datum noise effects over 

an arbitrary subset of the network stations. This 

generalization provides a flexible treatment of the 

DCP by allowing the weight matrix of the reference 

stations to be tuned to various options regarding the 

frame quality of the adjusted network. Essentially, 

we formulate herein an MC-based scheme for geo-

detic network adjustment under an optimality prin-

ciple for the estimated coordinates of any desired 

group of the network stations. 

 

 
 

2  Problem formulation 
 

The general problem that is treated herein can be 

briefly described as follows. Our starting point is a 

singular system of normal equations (NEQ) 

 

 

o( )   N X X u                           (3) 

 

which is obtained from the linearized LS adjustment 

of a geodetic network. It is considered that the rank 

defect of the above system is solely caused by the 

datum deficiency in the used data. Without loss of 

generality, we assume that any nuisance parameters 

have been eliminated beforehand from the NEQ 

system, so that the term XXo contains only the 

unknown corrections to the approximate coordi-

nates of the network stations. 

The total coordinate vector in Eq. (3) is parti-

tioned as 

 

  


 
 
 

x
X

x
               (4) 

 

where x refers to the reference stations that are in-

cluded in the network and x' corresponds to the new 

stations whose coordinates represent the primary 

unknowns of the estimation problem at hand. 

The rationale of our study relies on the exact 

(MC-based) inversion of the NEQ system using the 

datum information that is contained in the reference 

stations. In such cases the estimated coordinates ˆ x  

produce a “soft” densification of the external frame 

(i.e. the one realized by the prior coordinates of the 

reference stations) in the sense that the datum trans-

fer through the MCs does not interfere with frame-

related parameters that are already defined by the 

available data. 

According to the previous setting, the usual da-

tum choice is provided by the system of (partial) 

inner constraints in Eq. (1). The corresponding solu-

tion is obtained through the general formula (Koch 

1999) 

 

o T 1 Tˆ    ( ) ( )   X X N H H u H c         (5) 

 

where the constraint matrix H and the vector c are 

given by the following expressions  

 

   H E 0                             (6) 

 

ext o  ( ) c E x x                   (7) 

 

The covariance (CV) matrix of the above solution 

has the form (ibid.) 
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and it corresponds to a generalized inverse of the 

normal matrix with minimum trace over the refer-

ence stations
1
. This is a well known result in net-

work optimization theory upon which the use of 

inner constraints was introduced in geodetic prac-

tice (Blaha 1971); see also Grafarend (1974) and 

Schmitt (1982). 

 The CV matrix from Eq. (8) reflects only the 

data noise effect in the estimated coordinates, thus 

ignoring the influence of random errors in the 

known coordinates x
ext

 of the reference stations. 

The latter introduce a datum-related noise in the 

estimated solution which reflects the uncertainty of 

the (non-estimable part of the) coordinate system 

itself for the adjusted network. The optimal control 

of this datum noise effect, concurrently with the 

data noise effect, is an important issue for the 

minimally constrained network adjustment, how-

ever it cannot be handled through the classic inner 

constraints. 

An additional concern stems from the fact that 

the minimum-trace property of the previous CV 

matrix refers only to its part related to the reference 

stations. The coordinates of the new stations are not 

estimated in an optimal way under the choice of Eq. 

(1). A worthy enhancement, therefore, is to look for 

an MC matrix Q to replace the classic inner-

                                                 
1
 The minimum-trace property of the error CV submatrix x̂Σ  in 

Eq. (8) is equivalent to a simple (unweighted) LS fit of the ad-
justed network to the known coordinates xext of the reference 

stations using the Helmert transformation model that involves 

only the non-estimable frame parameters of the underlying net-
work. 



constraint matrix E, so that the revised datum con-

straints 

 

 
ext( )   Q x x 0                   (9) 

 

yield optimal accuracy for the estimated coordinates 

at the new stations (or any selected subset of net-

work stations) with respect to the desired reference 

frame. 

A similar version of the above problem was pre-

sented in Kotsakis (2013) for the case of the joint 

minimization of the data/datum noise effects over 

all network stations. The theoretical investigation in 

that study showed that the MC matrix should have 

the factorized form  Q EP , with P being a suit-

able weight matrix for the reference stations. 

Herein we treat the case of minimizing the 

data/datum noise effects over an arbitrary subset of 

the network stations. The optimal MC matrix 

should again have the same factorized form while 

the weight matrix of the reference stations will have 

a more general structure than the one given in Kot-

sakis (2013). 

 

 

 

3  General expressions for the CV          
matrix of a MC solution 

 

Before we proceed with the optimal datum choice 

in minimally constrained networks (more specifical-

ly, the optimal choice of the weight matrix for the 

reference stations), it is instructive to review the 

various CV matrices involved in the accuracy as-

sessment of the estimated network coordinates. 

In general, the total CV matrix of a MC solution 

can be expressed as a sum of two components 

 

 

total obs mc
ˆ ˆ ˆ   
X X X

Σ Σ Σ           (10) 

 

which contain the contributions from separate error 

sources, that is the data and datum noise effects, 

respectively. Their analytic forms are derived 

through straightforward covariance propagation to 

Eq. (5) and they are given by the general expres-

sions 

 

 

obs
ˆ

T 1 T 1 ( ) ( )   
X

Σ N H H N N H H           (11) 

 

and 
 

 

mc
ˆ

T 1 T T 1 ( ) ( )   
X cΣ N H H H Σ H N H H     (12) 

 

The previous equations are valid for any network 

solution that is determined by an arbitrary set of 

MCs 

 

 

o( )   H X X c                          (13) 

 

where the pseudo-observation vector c is associated 

with a prior CV matrix cΣ .  

Taking into account well known algebraic iden-

tities from the MC theory in singular NEQ systems 

(e.g. Kotsakis 2012), the following equivalent ex-

pressions can be also used 

 

obs
ˆ

T 1 T T 1 T 1 ( ) ( ) ( )    
X

Σ N H H E HE EH E  

         (14) 

and 

 

mc
ˆ

T T 1 T 1 ( ) ( ) 
X cΣ E HE Σ EH E         (15) 

 

where E  denotes the inner-constraint matrix for the 

entire network which, in accordance to the partition 

of Eq. (4), is expressed as 

 

   E E E    and   

T  NE 0         (16) 

 

For more details and the mathematical proofs of the 

preceding equations see Kotsakis (2012, 2013). 

Note that, for simplicity, the a priori variance factor 

is assumed to be equal to one. 

The CV matrix obs

X̂
Σ  is always singular and it 

contains the effect of the data noise on the MC solu-

tion. It corresponds to a reflexive generalized in-

verse of the normal matrix N and its rank defect is 

equal to the datum defect of the network observa-

tional model. The trace minimization of this matrix 

was used as a criterion for solving the DCP in the 

context of network optimization theory (e.g. Blaha 

1971, Schmitt 1982), thus leading to the classic type 

of inner constraints for geodetic network adjust-

ment. 

The CV matrix mc

X̂
Σ  is also singular and it re-

flects the datum noise effect in the MC solution. In 

fact, it quantifies the accuracy of the estimated co-

ordinates due to random errors in the pseudo-

observation vector c. From a geodetic viewpoint, it 

is a necessary component for the realistic accuracy 

assessment of frame realizations obtained via 

minimally constrained networks on a number of 

reference stations. In such cases Eq. (13) should be 

expressed in the partitioned form 



   

o

o

ext o

o
  ( ) 




 

 

 
 
 
 H c

Χ Χ

x x
Q 0 Q x x

x x
         (17a) 

 

or equivalently 

 

 

ext( )   Q x x 0                  (17b) 

 

where Q is an arbitrary MC matrix to be applied to 

the reference stations of the underlying network 

(and it will be optimally determined in the next sec-

tion).  

 Note that the vector c is often set to zero by se-

lecting the approximate coordinates of the reference 

stations to be equal to their a priori known values in 

the desired frame. This does not eliminate the da-

tum noise effect which should be always accounted 

in terms of the matrix mc

X̂
Σ  (see Eq. (12) or (15)) 

using the auxiliary covariance expression 

 

  

ext T c xΣ QΣ Q                 (18) 

 

where ext
xΣ  corresponds to the prior CV matrix of 

the reference station coordinates extx . 

 

 

 

4  Optimal datum choice in MC               
networks – a general formulation 

 

For the purpose of this study, the optimal datum 

choice is linked to the minimization of an objective 

functional that quantifies the accuracy of the esti-

mated coordinates at (all or part of) the network 

stations. A standard option for this functional is the 

trace of the total CV matrix total

X̂
Σ  which was ana-

lytically described in the previous section. Hence, 

the DCP is formulated in terms of the optimization 

problem 

 

   

total
ˆ

Tmin  tr
ΧQ

SΣ S                (19) 

 

or, more explicitly 

 

      

obs mc
ˆ ˆ

T Tmin  tr 
Χ ΧQ

SΣ S SΣ S            (20) 

 

where Q is the sought MC matrix and S corre-

sponds to a “selection matrix” for the participating 

stations in the optimality principle. Note that the 

MCs are applied only to the reference stations (see 

Eq. (17)) while the optimality principle may refer to 

any subset of network stations. 

 Considering the partition scheme in Eq. (4), 

some examples of the selection matrix are 

 

   S I 0 ,      S 0 I ,     S I  

 

which can be used for the accuracy optimization of 

the estimated coordinates at the reference stations, 

at the new stations, or at all network stations, re-

spectively. 

 The MC matrix that satisfies the optimality 

principle in Eq. (20) can be derived from the equa-

tion 

 

        

  

obs mc
ˆ ˆ

T T( ) ( )
  

tr tr 


 
Χ Χ

SΣ S SΣ S
0

Q Q
          (21) 

 

The dependence of obs

Χ̂
Σ  and mc

Χ̂
Σ  on the matrix Q 

stems from Eqs. (14)-(15) taking also into account 

the relationships in Eqs. (17)-(18). After some 

lengthy derivations the solution of the last equation 

is obtained as 

 

 

ext 1  ( )  xQ E Σ Σ                           (22) 

 

where the matrix Σ is defined by the formula 

 

  

T

T T T 1( )    


 
 
 
 

Σ L

N S SE ES S
L Σ

            (23) 

 

(the above partitioning is compatible with the one 

introduced in Eq. (4)). The proof of the above result 

for the case S I  is given in Kotsakis (2013) 

whereas the proof for an arbitrary selection matrix 

S I  can easily be obtained as a straightforward 

extension of the derivations given in that paper. 

 

 

General remarks 
 

The optimal weight matrix for the reference stations 

in MC network adjustment has the general form 

 

ext 1  ( )  xP Σ Σ                           (24) 

 

where ext
xΣ  is the CV matrix of their prior coordi-

nates and Σ is an auxiliary matrix obtained by Eq. 

(23). We underline that the last expression stems 

from a formal optimization scheme which has led to 



the factorized form of Eq. (22), thus proving that 

the weighted inner constraints is indeed the appro-

priate tool to ensure special optimal properties for 

the realized frame in a minimally constrained net-

work. 

The weight matrix P depends on two compo-

nents each of which has a distinct role in the MC 

network adjustment. The first component is respon-

sible for minimizing the propagated data noise on 

the estimated coordinates of a group of network 

stations that is specified by the selection matrix S. 

The second component, on the other hand, is related 

to the filtering of the random errors in the reference 

stations coordinates from the final network solution. 

This dual role of the weight matrix is dictated by 

the joint presence of the data and datum noise ef-

fects, both of which influence in their own way the 

frame quality in the adjusted network. 

 

 

Minimization of the data noise effect 
 

If we ignore the random errors in the reference sta-

tions coordinates (i.e. ext xΣ 0 ) then the weighted 

MCs take the form 

 

  

ext1 ( )    EΣ x x 0                      (25) 

 

and the resulting network solution will have the 

minimum data noise effect at the stations specified 

by the selection matrix S which is hidden in the 

weight matrix 1Σ ; see Eq. (23). 

If the selection matrix involves only the refer-

ence stations of the underlying network, that is 

 S I 0 , then it can be shown that Eq. (25) is 

reduced to the form 

 

  

T ext( )   EE E x x 0                      (26) 
 

which, due to the invertibility of the matrix  

TEE , 

is equivalent to 

 

 

ext( )   E x x 0                           (27) 

 

In this special case, therefore, we reproduce the 

classic (unweighted) inner constraints whose opti-

mality is solely related to the minimization of the 

data noise effect at the reference stations. 

 

 

 

 

 

Minimization of the datum noise effect 
 

If we consider the minimization of the datum noise 

in the MC solution without accounting for the data 

noise effect, that is 

 

   

mc
ˆ

Tmin  tr
XQ

SΣ S                  (28) 

 

then the datum choice will be provided by the 

weighted MCs 

 

  

ext ext1 ( )  ( )  xE Σ x x 0                (29) 

 

It is noted that the weight matrix of the reference 

stations is independent of the selected stations that 

participate in the optimality principle. In contrast to 

the data noise effect, the minimization of the datum 

noise effect, over all or part of the network, requires 

a fixed weighting of the reference stations in terms 

of their prior CV matrix. In fact, if we take into ac-

count Eqs. (15)-(18) then we obtain the covariance 

decomposition formulae 

 

  

mc T
ˆ   θX

Σ E Σ E                 (30) 

 

and 

 

  

T ext1 T T 1( ) ( ) θ xΣ QE QΣ Q EQ         (31) 

 

where the matrix θΣ  describes the accuracy with 

which the (non-estimable) frame parameters are 

defined in the minimally constrained network. The 

datum noise minimization is equivalent to the trace 

minimization of θΣ  (see Kotsakis 2013) and it will 

not be affected by the selection matrix S that ap-

pears in Eq. (28). 

 

 

 

5  Conclusions 
 

The weight choice problem of the reference stations 

in minimally constrained networks has been inves-

tigated in this paper. Our treatment is based on the 

optimization of the total accuracy (considering both 

the data and datum noise effects) of the estimated 

coordinates over all possible choices of MCs on the 

reference stations. As a result of this procedure, we 

obtained a weighted type of MCs which encom-

passes the classic (unweighted) inner constraints as 

a special option within a more general setting for 

the datum choice problem.  



In contrast to Kotsakis (2013) the current treat-

ment allows the accuracy optimization of the mini-

mally constrained solution over an arbitrary subset 

of network stations and not necessarily over the 

entire network. Hence, the weight matrix of the 

reference stations is not generally unique since it 

depends on the network stations that participate in 

the optimality principle of Eq. (20). It is noted that 

the use of (the inverse of) the prior CV matrix of the 

reference stations as a weight matrix is warranted 

only for minimizing the datum noise effect in the 

estimated network coordinates – it does not contrib-

ute to the optimal control of the data noise effect 

over all or part of the network. 

A useful extension of the present study is the 

treatment of the weight choice problem for the ref-

erence stations in the case of non-minimal datum 

constraints. In our current approach the matrix E 

refers only to the non-estimable frame parameters 

and the implementation of the datum constraints 

 
ext( ) Q x x 0  does not affect any estimable 

frame characteristics in the underlying network. The 

case where the constraint matrix Q refers also to 

estimable frame parameters (e.g. scale in the case of 

GNSS networks) is more complicated since several 

properties that have been used in this paper’s alge-

braic derivations will simply not hold true. 
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