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S U M M A R Y
The optimal inversion of a linear model under the presence of additive random noise in the
input data is a typical problem in many geodetic and geophysical applications. Various methods
have been developed and applied for the solution of this problem, ranging from the classic
principle of least-squares (LS) estimation to other more complex inversion techniques such
as the Tikhonov–Philips regularization, truncated singular value decomposition, generalized
ridge regression, numerical iterative methods (Landweber, conjugate gradient) and others. In
this paper, a new type of optimal parameter estimator for the inversion of a linear model
is presented. The proposed methodology is based on a linear transformation of the classic
LS estimator and it satisfies two basic criteria. First, it provides a solution for the model
parameters that is optimally fitted (in an average quadratic sense) to the classic LS parameter
solution. Second, it complies with an external user-dependent constraint that specifies a priori
the error covariance (CV) matrix of the estimated model parameters. The formulation of this
constrained estimator offers a unified framework for the description of many regularization
techniques that are systematically used in geodetic inverse problems, particularly for those
methods that correspond to an eigenvalue filtering of the ill-conditioned normal matrix in
the underlying linear model. Our study lies on the fact that it adds an alternative perspective
on the statistical properties and the regularization mechanism of many inversion techniques
commonly used in geodesy and geophysics, by interpreting them as a family of ‘CV-adaptive’
parameter estimators that obey a common optimal criterion and differ only on the pre-selected
form of their error CV matrix under a fixed model design.

Key words: biased estimation, covariance constraint, decorrelation, discrete inverse problem,
regularization.

1 I N T RO D U C T I O N

A generic estimation problem in many geodetic and geophysical

applications is that of determining a set of unknown determinis-

tic parameters which are observed through a known transformation

model and corrupted by additive random noise. This type of problem

is commonly formulated in terms of a linear system of observation

equations y = Ax + v, which needs to be uniquely solved for the

unknown parameter vector x given a set of noisy data y (Tarantola

1987; Menke 1989; Dermanis & Rummel 2000). The residual term

v describes the effect of random disturbances in the input data,

whereas the elements of the matrix A correspond to known coef-

ficients that depend on the conditions of the physical system un-

der study. Note that such problems are inherently ill-posed as they

can never have a unique solution due to the existence of the un-

known random observation errors. In algebraic terms, we deal with

an underdetermined system that has an infinite number of solutions,

since for every candidate solution x̂ for the parameter vector there

always exists a corresponding estimate of the unknown data errors,

v̂ = y − Ax̂, which satisfies the original system of observation

equations.

Typical examples of such discrete inverse problems arise in sev-

eral fields of geosciences, including gravity field modelling and
satellite geodesy (Schwarz 1979; Rummel 1985; Sanso & Rummel

1989; Xu 1992; Xu & Rummel 1994; Ilk et al. 2002), satellite or-
bit determination (Engelis & Knudsen 1989; Beutler et al. 1994;

Tapley et al. 2004), tectonic plate motions (Chase & Stuart 1972;

Minster et al. 1974), satellite altimetry and ocean circulation stud-
ies (Wunsch & Minster 1982; Knudsen 1992; Fu & Cazenave 2001),

magnetic field modelling (Parker et al. 1987; Backus 1988), atmo-
spheric tomography (Kunitake 1996; Kleijer 2004), seismology and
acoustic tomography (Crosson 1976; Aki & Richards 1980; Pavlis

& Booker 1980), wave propagation and scattering theory (Bee &

Jacobson 1984; Koch 1985) and core and mantle dynamics (Parker

1970; Gire et al. 1986; Nataf et al. 1986).

A fairly common approach for solving parameter estimation prob-

lems in linear models is the method of least-squares (LS) which pro-

vides an optimal solution x̂L S that reproduces as close as possible
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the given data by minimizing the weighted differences between the

original measurements y and the model-induced observables Ax̂L S .

In statistical terms, the LS solution gives an unbiased estimate for

the unknown parameters provided that there are no modelling errors

or other hidden systematic effects in the data. In addition, it has the

minimum mean squared estimation error (MSEE) among all linear

unbiased estimators if the chosen weight matrix for the input data

is equal to the inverse covariance (CV) matrix of their random ob-

servation errors; for more details, see Menke (1989), Koch (1999)

and Rao & Toutenburg (1999).

Within the context of geodetic and geophysical applications, the

LS methodology has been used not only as an optimal algorithm for

estimating a set of unknown parameters from noisy measurements

in a given linear model, but also as a trend analysis tool for identify-

ing the main features of partially known physical systems through

the fitting of simple analytic models to complex data records. In any

case, the accuracy of LS inversion results may not be satisfactory

in practice if the underlying linear model that relates the available

data and the unknown parameters is ill-conditioned. In such cases,

one or more eigenvalues of the corresponding normal matrix are

close to zero, thus causing a large statistical uncertainty in the LS

solution even for very precise data sets (Hoerl & Kennard 1970; Sen

& Srivastava 1990). In this category belong many geodetic estima-

tion problems that can be expressed in the linear form y = Ax + v,

including the downward continuation of gravity field measurements

from satellite or aerial altitude to the surface of the earth, the in-

version of altimetric data for marine gravity determination, and the

computation of gravity gradients from gravity anomaly data. For

a general overview of ill-posed inverse problems in geodesy, see

Neyman (1985) and Ilk (1991).

Various alternative techniques to the classic LS method have been

developed in order to improve the parameter estimation accuracy in

linear model inversion. Despite their differences and (sometimes)

conflicting interpretations, most of these regularization techniques

seem to follow a common rationale which points to the fact that

a successful solution to a discrete inverse problem should not be

solely determined by the quality of the fit between the data and

the corresponding observables obtained from the estimated model

parameters (i.e. the typical ‘LS logic’), but it requires also some

quality control for the estimated parameters themselves. As an

example, we can mention the method of Tikhonov–Philips regu-

larization (Tikhonov & Arsenin 1977) which has been used ex-

tensively for the stable inversion of ill-conditioned linear models

based on a hybrid optimal criterion that takes into account both

the data-model fitting aspect and the size or smoothness of the ac-

tual model parameters (Schwarz 1979; Schaffrin 1980; Ilk et al.
2002; Kusche & Klees 2002; Ditmar et al. 2003). Other perspec-

tives of the Tikhonov–Philips inversion scheme have also been con-

sidered by many researchers, including its implementation from a

biased estimation or ridge regression viewpoint (Xu 1992; Xu &

Rummel 1994; Bouman & Koop 1997), and its Bayesian interpre-

tation which involves a priori parameter weighting (Xu & Rum-

mel 1994) and variance component estimation procedures (Koch

& Kusche 2002). Alternative regularization approaches that have

been followed for the optimal inversion of linear models include

the truncated singular value decomposition (TSVD) or bandpass

filtering (Xu 1998), stochastic regularization techniques (Schaffrin

1985, 1989), LS collocation (Rummel et al. 1976, 1979) and nu-

merical iterative methods (Landweber algorithm, conjugate gradi-

ent algorithm). A detailed comparison of regularization techniques

for geodetic inverse problems has been given in Bouman (1998),

where a unified framework for the spectral behaviour of several

regularized estimators was presented; see also Gerstl & Rummel

(1981).

The objective of this paper is to present a new parameter es-

timator x̂ for linear models y = Ax + v, which unifies under a

common statistical framework all regularization methods that are

systematically used in geodetic inverse problems. Our study lies

on the fact that it adds an alternative perspective on the optimal

statistical properties and the regularization mechanism of many in-

version techniques commonly used in geodesy and geophysics, in-

cluding Tikhonov–Philips regularization, generalized ridge regres-

sion (GRR) and TSVD estimation. The structure of the paper is

organized as follows. In Section 2, the formulation and the prop-

erties of the new parameter estimator are presented along with the

derivation of its analytic form. Additional topics of study in this

section include the MSEE performance and the inherent bias char-

acteristics of the new estimator, as well as the admissible range for

the signal-to-noise ratio (SNR) of an arbitrary linear model that

guarantees better MSEE performance when using the new estima-

tor over the classic LS solution. Some particular regularization as-

pects associated with the new parameter estimator are discussed in

Section 3, where it is shown that all regularized inversion techniques

corresponding to an eigenvalue filtering of the normal matrix of the

underlying linear model y = Ax + v are essentially special cases

of the general estimation framework presented herein. An exam-

ple for the numerical solution of a typical ill-conditioned problem

in physical geodesy, namely the downward continuation of satellite

gradiometry data for the determination of a gravity anomaly grid

on the surface of the Earth, is given in Section 4 to demonstrate the

practical implementation and the usefulness of the new estimator

in geodetic inverse problems. Finally, some concluding remarks are

given at the end of the paper.

2 C V- A DA P T I V E PA R A M E T E R

E S T I M AT I O N I N L I N E A R M O D E L S

2.1 Problem formulation

Let us consider the standard linear model that is commonly used

for tackling discrete inverse problems in geodesy (Xu & Rummel

1994; Xu 1998; Dermanis & Rummel 2000)

y = Ax + v, (1)

where y is a known observation vector, A is a matrix of known

coefficients whose values depend on the geometrical and physical

conditions of the data modelling process and x is a vector of un-

known deterministic parameters. The residual term v corresponds

to a vector of zero-mean random variables with a CV matrix Cv,

and it describes the effect of random errors and other stochastic

disturbances in the available data. Although it is not crucial for our

problem formulation to specify the exact nature of the observations

and the unknowns, it is nevertheless worth mentioning that eq. (1)

often corresponds to a discretized Fredholm integral equation of

the first kind with noisy data. This type of integral equations pro-

vides the fundamental mathematical basis for describing and study-

ing several ill-posed inverse problems in geodesy and geophysics

(Neyman 1985; Ilk 1991; Bouman 1998). In gravity field modelling,

for example, the system in eq. (1) can describe the problem of marine

gravity determination from satellite altimetry data using Hotine’s or

Stokes’ integral, or the downward continuation of satellite and/or

aerial gravity field data based on Poisson’s integral (Heiskanen &

Moritz 1967).
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The optimal inversion of eq. (1) will be based on a tailoring
methodology, according to which a known reference estimator of x
is modified in such a way that it produces an improved solution for

the unknown model parameters. This kind of constructive reasoning

has actually shaped the development of several parameter estima-

tors in statistics theory (Bibby & Toutenburg 1977). Following Rao

(1973), an improved estimator may be heuristically described as one

which is derived in the following manner: starting with some pre-

scribed solution, say x̂1, having known statistical properties of bias,

variance, etc., we try to adapt it in some way so that a newly gen-

erated estimator x̂2 (based on x̂1) is better in terms of some chosen

criterion function. For instance, if the criterion function is the MSEE,

then we should say that x̂2 is better than x̂1 if E{(x̂2 − x)T(x̂2 − x)}
is smaller than E{(x̂1 − x)T(x̂1 − x)} (for more details, see Bibby &

Toutenburg 1977).

In this paper, we form an optimal estimator x̂ for the parameter

vector x in a linear model y = Ax + v based on a linear transfor-

mation of the classic LS solution (or equivalently, the minimum-

variance linear unbiased solution). Thus, we have the following

general scheme

x̂ = Rx̂L S (2)

with x̂L S denoting the usual LS estimator

x̂L S = (
ATC−1

v A
)−1

ATC−1
v y (3)

and R being a transformation matrix that needs to be determined

according to some optimal criteria for the performance of x̂.

Despite its optimal statistical properties, the LS solution in eq. (3)

gives poor results when the original linear model is ill-conditioned.

The effect of the matrix R in eq. (2) should thus be understood in a

‘regularization’ context as an attempt to correct the LS solution by

adjusting it closer to the true vector x. In fact, many well-known reg-

ularization techniques are known to produce parameter estimators

that can take the form of eq. (2) for specific expressions of the matrix

R, including Tikhonov–Philips regularization, GRR, shrunken LS

estimation, TSVD estimation and principal component estimation

(Marquardt 1970; Mayer & Willke 1973). Note that the numerical

implementation of the modified estimator x̂ does not necessarily

require the prior computation of the entire LS solution (which is ac-

tually problematic in the case of ill-conditioned problems), provided

that the matrix product R (AT C−1
v A)−1 can be separately evaluated

in a numerically stable and efficient manner (more details given in

Section 3).

Our aim is to determine a general form for the regularization

matrix R by combining (i) a ‘global’ optimal criterion that minimizes

the weighted difference between the original LS solution and the

transformed LS solution obtained from eq. (2) and (ii) a constraint

that sets the error CV matrix of the modified estimator x̂ equal to an

a priori, user-specified form.

As it will be shown in later sections, all existing regularization

methods for discrete inverse problems that correspond to an eigen-
value filtering of the ill-conditioned normal matrix N = AT C−1

v A
can be formulated as special cases of the aforementioned frame-

work. This kind of unification adds an interesting perspective on

the statistical properties and the regularization mechanism of many

inversion techniques that are currently used in geodesy and geo-

physics, by interpreting them as a collection of ‘CV-adaptive’ pa-

rameter estimators that obey the same optimal criterion and differ

only on the pre-selected form of their error CV matrix under a fixed

model design.

2.2 CV-adaptive inversion methodology and optimal

regularization matrix

A fundamental characteristic of the LS solution is its unbiasedness,

E{x̂L S} = x under the absence of any modelling errors. From the

Gaussian viewpoint of LS estimation theory, the property of unbi-

asedness is essentially a constraint that is a priori imposed on the

first moment of a linear estimator in conjunction with the minimum

MSEE principle.

Here we seek an optimal parameter estimator x̂ by imposing an

a priori constraint on its second (centred) moment Cx̂ = E{(x̂ −
E{x̂})(x̂ − E{x̂})T}. Since the general form of x̂ is taken as a linear

transform of the LS solution according to eq. (2), a constraint on its

second centred moment can be formulated in terms of the matrix

equation

RN−1RT = Cx̂, (4)

where Cx̂ is the user-specified CV matrix of the estimated param-

eters, N =AT C−1
v A is the normal matrix of the underlying linear

model, and R is the required transformation matrix.

Note that the CV matrix of the estimated model parameters

is identical to the CV matrix of the corresponding estimation

errors e = x̂ − x, since

Cx̂ = E{(x̂ − E{x̂})(x̂ − E{x̂})T}
= E{(x̂ − E{e} − x)(x̂ − E{e} − x)T}
= E{(e − E{e})(e − E{e})T}
= Ce.

The required regularization matrix R cannot be uniquely determined

through the matrix constraint in eq. (4). Hence, apart from its CV-

adaptivity, an additional optimal property will be assigned to the

estimator x̂ in terms of the principle

ϕ(x̂) = E{‖(x̂ − x̂L S)‖2} = E{(x̂ − x̂L S)TP(x̂ − x̂L S)} = min, (5)

where the weight matrix P is taken as the inverse CV matrix of the

LS solution; P = C−1

x̂L S = N.

The parameter estimator x̂ is thus characterized by two basic

statistical properties.

1. It adheres to a minimization criterion that provides an optimal

weighted fit with the LS solution according to eq. (5). The particu-

lar choice of the weight matrix P as the inverse CV matrix of x̂L S

ensures that the information about the parameter estimation accu-

racy in the original LS solution is assimilated into the new estimator

by adjusting the elements of x̂ according to the dispersion of the

corresponding elements of x̂L S .

2. It complies with a user-dependent constraint that specifies the

variance and the correlation structure of the parameter estimation

errors through an a priori selected CV matrix Cx̂ . Particular strate-

gies and further discussion pertaining to the choice of Cx̂ will be

given in Section 3.

From the combination of the above properties we can determine

the required regularization matrix R according to an analytic pro-

cedure which is described in detail in Appendix A. The final result

is given by the following formula:

R = N−1/2
(
N1/2Cx̂N1/2

)1/2
N1/2. (6)

In Appendix B it is proven that the above non-symmetric matrix is

also equal to the alternative expression

R = C1/2
x̂

(
C1/2

x̂ NC1/2
x̂

)1/2
C−1/2

x̂ . (7)
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Remark 1:

The square root C1/2 of a symmetric non-negative definite matrix C
is a unique matrix which is determined through the square roots

of its eigenvalues. In particular, if C = U�UT is the orthonor-

malized eigenvalue decomposition of C, then we have that C1/2 =
U�1/2 UT, where the diagonal matrix �1/2 contains the square roots

of the eigenvalues of C. Also, the inverse square root of a symmetric

positive definite matrix is defined as C−1/2 = (C1/2)−1 = (C−1)1/2

(for more details see Rao & Toutenburg 1999, pp. 362–363).

Remark 2:

Using the matrix identity ST1/2 S−1 = (STS−1)1/2, it is easily verified

that the optimal regularization matrix can also be expressed through

the formula

R = (Cx̂N)1/2. (8)

In the trivial case that we choose Cx̂ = N−1, the regularization

matrix becomes identity (R = I) and our inversion scheme simply

reproduces the LS solution, as it should be expected.

2.3 Bias of the CV-adaptive estimator

The CV-adaptive estimator that was introduced in the previous sec-

tion gives, in general, a biased solution for the unknown model

parameters. Its associated bias vector is

BIAS(x̂) = E{x̂} − x = (R − I)x, (9)

where R is the regularization matrix obtained from eq. (6) or (7).

By making use of the unbiasedness property of the LS solution, the

above bias vector can be also expressed as

BIAS(x̂) = E{x̂ − x̂L S} = E{d}, (10)

where d denotes the difference between our CV-adaptive estimator

and the LS estimator.

Let us now rewrite the minimization principle which was previ-

ously introduced for the construction of the regularization matrix R
(see eq. 5) in the equivalent form

ϕ(x̂) = E{‖d‖2} = E{dTNd} = min. (11)

The optimality of the CV-adaptive estimator, in terms of satisfying

the above criterion, is closely related to the reduction of its inherent

bias. This relationship is more clearly seen through a spectral repre-

sentation approach, and for this reason let us consider the eigenvalue

decomposition of the normal matrix N

N = U�UT, (12)

where U = [u1 . . . un] is a unitary matrix formed by the orthonor-

mal eigenvectors and � = diag(λ1, . . . , λn) is a diagonal matrix

containing the eigenvalues of N. Using the above factorization, the

criterion function ϕ(x̂) can be expressed as

ϕ(x̂) = E

{
dT

n∑
i=1

λi ui u
T
i d

}

=
n∑

i=1

λi E
{(

uT
i d

)2}
, (13)

where n is equal to the number of the unknown parameters (n =
dimx).

Also, using eq. (10), the bias vector can be represented in the

following spectral form

BIAS(x̂) = E{d} = E{UUTd}

= E

{
n∑

i=1

ui u
T
i d

}

=
n∑

i=1

E
{(

uT
i d

)}
ui . (14)

The squared magnitude (Euclidean length) of the above bias vector

takes the generalized Pythagorean expression

‖BIAS(x̂)‖2 =
[

n∑
i=1

E
{(

uT
i d

)}
ui

]T[
n∑

j=1

E
{(

uT
j d

)}
u j

]

=
n∑

i=1

(
E

{
uT

i d
})2

. (15)

Using the well-known fact that the mean squared value of any ran-

dom variable is always greater (or equal) than the square of its mean

value, we have that

‖BIAS(x̂)‖2 ≤
n∑

i=1

E
{(

uT
i d

)2}
. (16)

Comparing eqs (13) and (16), we can conclude that the minimization

of the criterion function ϕ(x̂) is equivalent to a weighted minimiza-

tion of the maximum bias’ Euclidean spectral components, with

respect to the orthonormal basis formed by the eigenvectors of the

normal matrix N.

Remark 3:

The fact that the CV-adaptive estimator is optimized through a fitting

to the classic LS solution may be perceived as a ‘weak’ point, due

to the problems associated with the LS solution in ill-conditioned

problems. However, a closer look at the formulation of the mini-

mization principle in eq. (5) reveals that the fitting does not take

place with a particular LS solution, but rather it takes place over

the entire ensemble of possible solutions that we would obtain if we

repeat the data collection and the LS inversion process an infinite

number of times. Moreover, as seen from the previous analysis, the

optimality of the CV-adaptive estimator in terms of achieving a best

average quadratic fit with the LS estimator is essentially a means to

control its inherent bias.

2.4 MSEE performance and admissible SNR range

The evaluation of the statistical accuracy of the CV-adaptive esti-

mator x̂ requires the analysis of its MSEE matrix

MSEE(x̂) = E{(x̂ − x)(x̂ − x)T}. (17)

The above matrix is usually decomposed into two parts which reflect

the additive contributions of the internal precision (variance and

correlation structure) and the external accuracy (bias) to the total

mean squared error of the estimated parameters. Taking into account

the bias expression from eq. (9), we have

MSEE(x̂) = E{(x̂ − x)(x̂ − x)T}
= E{(x̂ − E{x̂} + E{x̂} − x)(x̂ − E{x̂} + E{x̂} − x)T}
= E{(x̂ − E{x̂} + BIAS(x̂)][x̂ − E{x̂} + BIAS(x̂))T}
= E{(x̂ − E{x̂})(x̂ − E{x̂})T}

+E{(x̂ − E{x̂})[BIAS(x̂)]T}
+E{BIAS(x̂)(x̂ − E{x̂})T}
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+E{[B I AS(x̂)][BIAS(x̂)]T}
= Cx̂ + BIAS(x̂)[BIAS(x̂)]T

= Cx̂ + (R − I)x[(R − I)x]T

= Cx̂ + (R − I)xxT(R − I)T, (18)

where Cx̂ is the a priori chosen CV matrix of x̂, and R is the asso-

ciated regularization matrix obtained from eq. (6) or (7).

We shall consider a scalar measure of the total MSEE of x̂, namely

the trace of its MSEE matrix

mse(x̂) = trMSEE(x̂)

= trCx̂ + xTQx (19)

which can be used to quantify the average (per parameter compo-

nent) MSEE of the entire solution. Note that Q denotes the sym-

metric matrix

Q = (R − I)T(R − I) (20)

which is non-negative definite due to its factorization as a product

of a square matrix with its transpose (Harville 1997, p. 213). In this

way, the following basic inequality holds (Strang 1988, pp. 348–349)

qminxTx ≤ xTQx ≤ qmaxxTx (21)

for any parameter vector x. The quantities q min and q max correspond

to the minimum and maximum eigenvalues of Q, and they depend

directly on the regularization matrix R. The maximum eigenvalue

q max, in particular, plays an important role in the assessment of the

performance of the CV-adaptive estimator. The quadratic form xT

Qx is equal to the squared magnitude of the bias vector BIAS(x̂) =
(R − I)x, and thus q max quantifies the maximum relative bias effect

in the parameter solution x̂.

Applying the previous inequality into eq. (19), we get

trCx̂ + qminxTx ≤ mse(x̂) ≤ trCx̂ + qmaxxTx. (22)

Let us now compare the CV-adaptive estimator x̂ and the classic

LS estimator x̂L S , in terms of their MSEE performance. Due to its

unbiasedness property, the MSEE matrix of the LS estimator is equal

to its CV matrix

MSEE(x̂L S) = Cx̂L S = N−1 (23)

and thus the scalar MSEE takes the simple form

mse(x̂L S) = trN−1 =
n∑

i=1

1

λi
. (24)

In this case, the MSEE of the LS parameter estimator is bounded as

follows

1

λmin

≤ mse(x̂L S) ≤ dimx

λmin

, (25)

where λmin denotes the minimum eigenvalue of the normal matrix

N.

By comparing eqs (22) and (25), we see that the MSEE of the

LS estimator has an upper bound that is completely independent

of the magnitude of the unknown model parameters, whereas the

MSEE of the CV-adaptive estimator has an upper bound that depends

directly on the Euclidean length of the parameter vector. Such a

result indicates the potential of the biased estimator x̂ to produce

better results (with significantly smaller MSEE compared to the

classic LS solution) in inverse problems with sufficiently low SNR.

In fact, an admissible SNR range for an arbitrary linear model can

be derived, within which the CV-adaptive estimator is guaranteed to

outperform the LS estimator in the MSEE sense.

Let us first define the SNR of a linear model y = Ax + v in terms

of the ratio

SN R = xTx/ dim x

trCv/ dim y
. (26)

The above quantity reflects the average (per parameter component)

relative power of the parametric model with respect to the average

noise level in its input data.

Taking into account eqs (22) and (24), the following inequality

gives a sufficient condition to ensure MSEE improvement in linear

model inversion when using the CV-adaptive estimator instead of

the LS estimator [i.e. mse(x̂) < mse(x̂L S)]

trCx̂ + qmaxxTx < trN−1 (27)

or equivalently

xTx <
trN−1 − trCx̂

qmax

. (28)

Using the SNR definition from eq. (26), we finally obtain

SN R <
dimy

dimx

trN−1 − trCx̂

qmaxtrCv
(29)

which defines the admissible SNR range for a linear model that

justifies the use of the CV-adaptive estimator x̂. The smaller the

SNR value of a particular model y = Ax + v with respect to the

upper bound given in eq. (29), the greater will be the reduction of

the MSEE of x̂.

Note that the quantities dim x, dim y, trN−1 and trCv are model-

and data-dependent, whereas the terms q max and trCx̂ are controlled

by the a priori choice of the CV matrix for the estimated parameters.

As a final comment, we should mention that in every linear model

there will always exist an admissible SNR range for applying the

CV-adaptive biased estimator, provided that the latter is set to have

smaller total error variance than the LS solution. Indeed, in such a

case we have that trN−1 > trCx̂ and the right side of the inequal-

ity condition (29) will always give a positive upper bound for the

admissible SNR of the underlying linear model.

3 C H O I C E O F Cx̂— R E G U L A R I Z AT I O N

A S P E C T S

3.1 General remarks

The a priori choice of the error CV matrix for the estimated pa-

rameters is a key issue for the implementation of the CV-adaptive

estimator x̂. Although it may seem perplexing to formulate an inver-

sion scheme which conforms to a user-specified error CV structure

for the estimated model parameters, the introduction of an exter-

nal constraint for Cx̂ should be seen as a prospective regularization

tool that gives us the flexibility to obtain and compare different so-

lutions for the model parameters with particular statistical quality

characteristics.

A relevant example is the case where the CV-adaptive estimator is

designed to give a fully decorrelated solution with uniform precision

for the model parameters, Cx̂ = σ 2I. This particular choice (which

is actually equivalent to a special implementation of GRR, as it

will be explained later on) can be beneficial in inverse problems

y = Ax + v with a large number of unknown parameters that will

be subsequently used for the determination of other quantities of

interest z = f (x). The existence of a diagonal-scalar CV matrix Cx̂

simplifies to a large extent the accuracy assessment of ẑ = f (x̂),
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at least with respect to the rigorous propagation of random-related

errors.

From an algebraic viewpoint, the regularization process in linear

model inversion is usually viewed in terms of its filtering effect on

the spectral representation of the traditional LS estimator (Gerstl &

Rummel 1981; Bouman 1998). The LS inversion of a linear model

y = Ax + v can be represented through the orthogonal expansion

x̂L S =
n∑

i=1

(
uT

i b
)

λi
ui , (30)

where b denotes the data-dependent vector

b = ATC−1
v y (31)

and {ui}, {λi} are the eigenvectors and eigenvalues of the normal

matrix N = AT C−1
v A

N = U�UT =
n∑

i=1

λi ui u
T
i . (32)

In ill-conditioned inverse problems one, or more, of the eigenvalues

{λi} have very small magnitudes, thus causing problems of numer-

ical instability and significant noise amplification in the LS solution

from eq. (30).

In order to overcome these problems and obtain a stable solu-

tion with satisfactory accuracy, the classic LS estimator is modified

according to the general scheme

x̂′ =
n∑

i=1

δi

(
uT

i b
)

λi
ui . (33)

The role of the filter factors {δ i} is to stabilize the inversion of the

input data, while improving the overall accuracy of the estimated

model parameters. The above filtering mechanism provides a com-

mon view on various regularization methods in ill-conditioned in-

verse problems, whose individual characteristics are dictated by the

form of their corresponding filter factors. The analytical expressions

of {δ i} for many popular regularization techniques used in geode-

tic and geophysical inverse problems, including Tikhonov–Philips

regularization, GRR, LS collocation, TSVD, Landweber iteration

method and conjugate gradient iteration method, can be found in

Bouman (1998).

In the next section, it is shown that the CV-adaptive estimator

from Section 2 corresponds to an eigenvalue filtering of the type

given in eq. (33) for a particular ‘restrictive’ choice of the error CV

matrix Cx̂ for the model parameters.

3.2 CV-adaptive regularization in the LS-based

eigenvector basis

The problem of selecting the CV matrix of the estimated model

parameters for the implementation of the CV-adaptive estimator x̂
can be simplified if the choice of Cx̂ is restricted to an a priori
general form. Specifically, we adopt the following scheme:

Cx̂ = UDUT, (34)

where U is the unitary matrix associated with the eigenvalue de-

composition of the normal matrix N = ATC−1
v A (see eq. 32), and

D = diag(d 1, . . . , dn) is an arbitrary diagonal matrix with non-

negative elements. In this way, the CV matrix Cx̂ is constrained

to have the same eigenvectors as the normal matrix of the underly-

ing linear model, and its a priori selection is reduced into a problem

of specifying only its eigenvalues.

Based on eq. (34), the optimal regularization matrix from eq. (6)

or (7) takes the form

R = U(D1/2�1/2)UT, (35)

where � is the known eigenvalue matrix of the normal matrix N.

In this case, the auxiliary matrix Q = (R − I)T (R − I) is

Q = U(D1/2�1/2 − I)2UT (36)

and its eigenvalues {qi} are given by the general analytic formula

qi = (√
diλi − 1

)2 = (
1 −

√
diλi

)2
. (37)

Furthermore, the CV-adaptive estimator can be expressed in terms

of the spectral expansion

x̂ = Rx̂L S

= RN−1ATC−1
v y

= U(D1/2�1/2)UTU�−1UTATC−1
v y

= U(D1/2�1/2�−1)UTb

= U(D1/2�−1/2)UTb

=
n∑

i=1

√
di (uT

i b)√
λi

ui (38)

or equivalently

x̂ =
n∑

i=1

√
diλi

(uT
i b)

λi
ui , (39)

where the data-dependent vector b has been defined in eq. (31).

It is seen that the general choice of eq. (34) leads to a CV-adaptive

estimator which is equivalent to an eigenvalue filtering of the normal

matrix in the underlying linear model. As such, it can cover all

regularization techniques that are based on the spectral expansion

of eq. (33).

The filter factors {δ i} associated with the CV-adaptive estimator

have the general form

δi =
√

diλi (40)

and they depend uniquely on the chosen eigenvalues {di} for the

CV matrix Cx̂.

By inverting the previous formula, we get

di = δ2
i

λi
(41)

which establishes a one-to-one connection between existing reg-

ularized estimators that use specific parametrized forms for their

filter factors {δ i}, and the CV-adaptive estimator resulting from the

CV-matrix constraint in eq. (34).

A regularization scenario of particular interest within the context

of the CV-adaptive estimator is to set all eigenvalues {di} equal to

the same positive value σ 2. Such a choice implies an a priori di-

agonalization constraint for the CV matrix Cx̂ (‘whitening’ of the

parameter estimation errors) and it results in a decorrelated solu-

tion with uniform precision for the model parameters. It is actually

interesting that this type of solution can be equivalently obtained

through the well-known method of GRR by properly selecting its

built-in regularization parameters. In general, the filter factors as-

sociated with the GRR method are given by the formula (Bouman

1998)

δi = λi

λi + ki
, (42)
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Table 1. The analytic forms of the filter factors, the eigenvalues of the CV matrix for the estimated model parameters and the maximum eigenvalue of the

auxiliary matrix Q, for some common regularization techniques in linear model inversion.

Regularization method Filter factors Eigenvalues of the CV matrix Cx̂ Maximum eigenvalue of Q
qmax = max(1 − √

di λi )
2

Tikhonov–Philipsa δi = λi
λi +k di = λi

λi +k qmax = k2

(λmin+k)2

Generalized ridge regressionb δi = λi
λi +ki

di = λi
(λi +ki )2 qmax = max

ki ,λi

k2
i

(λi +ki )2

TSVDc δi =
{

1,i = 1, . . . , r
0,i = r + 1, . . . , n

di =
{

1/λi ,i = 1, . . . , r
0,i = r + 1, . . . , n

qmax = 1

Shrunken LS estimationd δi = a di = a2/λi qmax = (1 − a)2

Parameter decorrelation with uniform precision levele δi = σ
√

λi di = σ 2 qmax = (1 − σ
√

λmin)2

aThe symbol k denotes the scalar regularization parameter used in Tikhonov–Philips regularization (Schwarz 1979).
bThe symbols {ki } correspond to the set of regularization parameters associated with the implementation of generalized ridge regression (Xu & Rummel

1994).
cThe symbol r corresponds to the rank truncation parameter in the TSVD regularization method (Xu 1998).
dThe symbol a corresponds to the shrinkage factor of the LS solution for the implementation of the shrunken LS estimator (Mayer & Willke 1973).
eThe symbol σ denotes the common standard deviation for the estimation errors in the parameter decorrelation regularization method (see this section).

where {ki} is a set of regularization parameters that appear in the

GRR solution

x̂GRR = (ATC−1
v A + UKUT)−1ATC−1

v y (43)

and K = diag(k 1, . . . , kn); see Xu & Rummel (1994).

If we set

ki =
√

λi (1 − σ
√

λi )

σ
(44)

for some chosen positive σ that satisfies σ < 1/
√

λi for every

eigenvalue λi of the normal matrix N, then the GRR filter factors

from eq. (42) become

δi = σ
√

λi . (45)

The equivalent filtering implementation of the CV-adaptive estima-

tor x̂, according to eqs (39) and (40), requires that the eigenvalues

{di} of Cx̂ should be chosen as

di = δ2
i

λi
=

(
σ
√

λi

)2

λi
= σ 2 (46)

which in turn implies the diagonalization constraint Cx̂ = UDUT =
σ 2I.

In Table 1, the analytic forms of the filter factors {δ i}, the corre-

sponding eigenvalues {di} of the CV matrix Cx̂, and the maximum

eigenvalue q max of the auxiliary matrix Q, are provided for some

known regularization methods (see also Bouman 1998). Note that

all regularized estimators shown in Table 1 can be considered as

special cases of the CV-adaptive estimator x̂, for a particular a pri-
ori constraint on the CV matrix of the estimated parameters drawn

from the general choice Cx̂ = UDUT.

Remark 4:

A more general regularization scheme can emerge from the use of

the CV-adaptive estimator if the chosen eigenvectors of Cx̂ are dif-

ferent from the eigenvectors of the normal matrix N = ATC−1
v A.

In this case, the optimal approximation of the unknown parameter

vector is performed in a different orthogonal basis than the one used

in traditional regularization schemes which rely on the eigenvalue

filtering with respect to the eigenvector basis associated with the nor-

mal matrix N (see Section 3.1). In the context of the present paper,

the use of such a different ‘regularization basis’ should be linked to

the ability of the CV-adaptive estimator to impose an arbitrary struc-

ture on the error variances and covariances of the inversion results.

As an example, we can mention the choice Cx̂ = diag(σ 2
1 , . . . , σ 2

n )

with σ 2
1 �= �= · · · �= σ 2

n , which gives a decorrelated solution with

different error variances for the estimated parameters.

4 N U M E R I C A L E X A M P L E

A simulated numerical experiment has been performed to demon-

strate the practical implementation and the usefulness of the pro-

posed CV-adaptive regularization scheme. This particular example

has been motivated by a similar experiment that is reported in Xu

(1998) and it deals with a typical ill-posed inverse problem of down-

ward continuation of gravity field functionals. More specifically, we

consider the determination of a gravity anomaly grid on the surface

of the Earth using gradiometric observables collected at satellite

altitude of 200 km. The basic mathematical model that is used for

the design of the experiment is given by the integral equation

Trr = R

4π

∫ ∫
σ s

�gS′′(r, ψ)dσs (47)

where Trr is the second radial derivative of the disturbing potential,

R is the mean radius of the Earth, �g is the gravity anomaly signal,

and σ s denotes the unit sphere. The kernel function S ′ ′ (r , ψ) cor-

responds to the second derivative of the generalized Stokes function

with respect to the geocentric radial distance r (for more details, see

Xu 1998).

Assuming that we have available n discrete gradiometric obser-

vations of Trr (e.g. via a satellite gravity mission such as GOCE),

the integral formula in eq. (47) can be discretized according to the

following linear model

(4π R/10)T i
rr =

∑
k

S̄′′(ri , ψik)�σk�gk, i = 1, 2, . . . , n (48)

(see e.g. Xu & Rummel 1995; Xu 1998), where �gk are block-

mean gravity anomalies, the constant (4π R/10) originates from

the generalized Stokes’ formula and unit regulation, and �σ k and

S̄ ′′(r, ψ) are given by

�σk =
∫∫

σk

dσ (49)
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Table 2. Statistics of the true (simulated) block-mean gravity anomalies �g, in comparison with the statistics of

the estimated block-mean gravity anomalies obtained from: (i) standard LS inversion (�gLS) and (ii) regularized

decorrelation (�gR = R�gL S) for varying values of the a priori constrained error variance (all values in mgal).

Max Min Mean Sigma rms

True field 83.970 −74.643 1.231 24.716 24.746

Standard LS inversion 118.651 −101.403 1.166 53.041 53.054

Regularized decorrelation with σ 2 = 4 mgal2 160.642 −83.584 9.250 58.856 59.578

Regularized decorrelation with σ 2 = 1 mgal2 80.321 −41.792 4.625 29.428 29.789

Regularized decorrelation with σ 2 = 0.25 mgal2 40.161 −20.896 2.312 14.714 14.895

S̄′′(r, ψ) = t3{(1 − t cos ψ)

[
3(1 − t2)

D3
− 4/D3

]
−1 + t2

D3
− 10/D − 18D + 2

−3t cos ψ

(
15 + 6 ln

1 − t cos ψ + D

2

)
(50)

t = R/r (51)

D = (1 − 2t cos ψ + t2)1/2. (52)

Using the discretized model of eq. (48), a linear system of observa-

tion equations y = Ax+v can be formed, where y is the data vector

with elements (4πR/10)T i
rr , A is the design matrix whose elements

correspond to the products S̄′′(ri , ψik)�σk , x is the unknown vec-

tor of surface block-mean gravity anomalies �gk , and v is the data

noise vector.

For our experiment, true 1◦ × 1◦ block-mean gravity anomaly

values have been simulated within an 10◦ × 10◦ test area, using the

Hirvonen CV function model

C�g(ψ) = Co

1 + (ψ/a)2
, (53)

where Co = 675 mgal2, and the parameter a has been selected

such that the correlation length of the gravity anomaly field is ξ =
15.5 km. The number of satellite gradiometric observables Ti

rr is

400, taken on an 30′ × 30′ grid that is located directly above the

area of interest at a constant altitude of r = 200 km. The accuracy

of Ti
rr is set to 0.01 E (1 E = 10 −9 s−2), which was also employed in

similar simulations by Koop (1993), Xu & Rummel (1995) and Xu

(1998). The random errors v for the determination of the synthetic

observations from the simulated gravity anomalies are generated

according to (4π R/10) N(Ti
rr), where N(Ti

rr) is a Gaussian random

number generator with mean zero and variance 10−4E2.

We shall compare two different estimators for the downward con-

tinuation of the gradiometric data and the determination of the sur-

face gravity anomaly grid. First, the inversion of the gradiometric

measurements is performed using the standard LS methodology,

without applying any special regularization tool. The condition num-

ber of the normal matrix is 1.93×106, and its eigenvalues range from

1.58×10−5 to 30.57. As expected, the accuracy of the LS inversion

results is considerably poor, giving an average error standard de-

viation of ±50 mgal in the estimated gravity anomaly values. The

detailed statistics of the LS estimation errors are shown in Table 3,

where it is seen that extreme errors of more than ±120 mgal

occur during the downward continuation of the gradiometric data.

In Table 2, we see the statistics of the estimated �g values which

exhibit much stronger variability than the original true values, thus

indicating the numerical instability of the downward continuation

process through a simple LS inversion algorithm.

Alternatively, the inversion of the gradiometric data Ti
rr is per-

formed using the CV-adaptive regularization scheme by constrain-

ing the CV matrix of the estimated gravity anomalies to a specific

a priori model. In particular, we examine three different constraint

choices all of which correspond to a diagonal matrix of the general

form Cx̂ = σ 2I. In this way, it is ensured that the parameter esti-

mation errors during the downward continuation process become

uncorrelated (i.e. ‘whitening’ of the estimated gravity anomalies)

and they have a common user-dependent variance. The value of σ

has been set equal to 2, 1 and 0.5 mgal, respectively. The results

obtained from this CV-adaptive decorrelating inversion scheme are

presented in Tables 2 and 3.

From the error statistics shown in Table 3, we see that there is

a clear improvement in the downward continuation results when

using the CV-adaptive regularized estimator. By setting the error

standard deviation in the estimated gravity anomalies σ = 1 mgal,

for example, the rms error drops from 48.53 mgal (standard LS

inversion) to 27.75 mgal. There is of course a remaining bias in

the estimated gravity anomalies that amounts to about 3.4 mgal on

average, which is nevertheless well below the statistical uncertainty

of the results. It must be noted that, as the value of the a priori
constrained error variance σ 2 becomes smaller, the corresponding

bias in the results of downward continuation decreases considerably

(see Table 3). In this way, when we set σ = 0.5 mgal, then the

rms estimation error is reduced to 21.67 mgal and the average bias

drops to approximately 1 mgal. However, the trade-off in this case

lies on the oversmoothing that takes place in the resulting grid of

block-mean gravity anomalies, as seen in the values of Table 2.

5 S U M M A RY A N D C O N C L U S I O N S

A new approach for constructing optimal parameter estimators for

the inversion of linear models has been presented in this paper. Our

methodology is based on a linear transformation of the classic LS

estimator and it adheres to two basic criteria. First, it provides a

solution that is optimally fitted (in an average quadratic sense) to

the classic LS parameter solution. Secondly, it complies with an

external constraint that specifies a priori the error CV matrix for

the estimated model parameters. The MSEE performance of the new

estimator, as well as its optimality with respect to the maximum size

of its inherent bias, have been explained and analysed. Furthermore,

an expression for the admissible SNR range of the underlying linear

model has been derived, within which the new estimator always

outperforms (in the MSEE sense) the usual LS solution.

The paper does not claim the development of an autonomous

regularization method that competes against other well-known in-

version techniques, such as Tikhonov–Philips regularization, GRR

or TSVD estimation. The aim of the paper was to present a cer-

tain theoretical formulation, based purely on statistical concepts

and criteria, for the optimal inversion of linear models that leads to

a general CV-adaptive biased estimator. It has been shown that the
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Table 3. Statistics of the estimation errors in the block-mean gravity anomalies obtained from (i) standard LS

inversion of the gradiometric data and (ii) regularized decorrelation for varying values of the a priori constrained

error variance. The statistics of the estimation bias in the downward continuation results that are obtained from

the regularized decorrelation inversion scheme are also shown. Note that the bias vector for the whole set of the

block-mean gravity anomalies is determined as BIAS(�gR) = (R − I)x, where x contains the true (simulated)

values and R corresponds to the optimal regularization matrix for each a priori choice of σ 2 (all values in mgal).

Max Min Mean Sigma rms

�gL S − �g 122.227 −104.609 −0.064 48.530 48.530

Regularized decorrelation with a priori constrained error std σ = 2 mgal

�gR − �g 146.599 −88.916 8.019 51.365 51.987

�gR − �g − BIAS(�gR) 4.254 −4.324 −0.269 1.882 1.901

BIAS(�gR) 147.035 −87.695 8.289 51.326 51.991

Regularized decorrelation with a priori constrained error std σ = 1 mgal

�gR − �g 70.607 −63.751 3.394 27.543 27.751

�gR − �g − BIAS(�gR) 2.127 −2.162 −0.135 0.941 0.951

BIAS(�gR) 70.826 −63.140 3.529 27.532 27.757

Regularized decorrelation with a priori constrained error std σ = 0.5 mgal

�gR − �g 56.137 −51.168 1.082 21.639 21.666

�gR − �g − BIAS(�gR) 1.063 −1.081 −0.067 0.471 0.475

BIAS(�gR) 57.093 −50.863 1.149 21.640 21.670

spectral representation of this parameter estimator offers a unified

treatment for existing regularization methods in ill-posed inverse

problems, particularly for those techniques that are based on the

eigenvalue filtering of the inverse normal matrix. Our study provides

an alternative viewpoint on the optimal statistical properties and the

regularization mechanism of many inversion techniques commonly

used in geodesy, by interpreting them as a family of ‘CV-adaptive’

parameter estimators that obey the same optimal criterion (i.e. op-

timal fitting with the LS solution in the mean squared sense) and

differ only on the pre-selected form of their error CV matrix under

a fixed model design.

Further studies and experimentation is obviously needed for the

assessment of the practical potential associated with our proposed

theoretical methodology in linear model inversion. The results ob-

tained from a simulation experiment that was presented in this study

certainly provide some encouragement for exploring new innova-

tive strategies in ill-posed geodetic inverse problems (e.g. regular-

ized decorrelation or optimal ‘whitening’ of the estimated model

parameters).
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A P P E N D I X A : D E T E R M I N AT I O N O F T H E O P T I M A L R E G U L A R I Z AT I O N M AT R I X

Given the usual LS estimator x̂L S and its associated CV matrix Cx̂L S = N−1 for an unknown parameter vector x in the linear model y = Ax+v,

we seek an optimal regularization matrix R such that the biased estimator

x̂ = Rx̂L S (A1)

minimizes the quadratic form

ϕ = E{(x̂ − x̂L S)TN(x̂ − x̂L S)} (A2)

and satisfies the following CV-adaptive constraint

RN−1RT = Cx̂, (A3)

where Cx̂ is a given symmetric positive-definite matrix. To a large extent, the proof that follows adheres to a similar derivation given in Eldar

& Oppenheim (2003).

Let us first apply an auxiliary invertible transformation to the vectors x̂ and x̂L S , as follows

ˆ̄x = N1/2x̂ (A4)

ˆ̄x
LS = N1/2x̂L S . (A5)
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In this way, the original quadratic form in eq. (A2) can be equivalently written as

ϕ = E{( ˆ̄x − ˆ̄xL S)T( ˆ̄x − ˆ̄xL S)}. (A6)

The CV matrices of the transformed vectors ˆ̄x and ˆ̄xL S will be given by the equations

Cˆ̄x = N1/2Cx̂N1/2 (A7)

Cˆ̄xL S = N1/2Cx̂L S N1/2 = N1/2N−1N1/2 = I. (A8)

Following from eq. (A1), the relationship between the transformed estimators ˆ̄x and ˆ̄xL S is expressed in terms of the linear equation

ˆ̄x = R̄ ˆ̄xL S, (A9)

where the matrix R̄ is related to the original regularization matrix R in terms of the transformation formula

R̄ = N1/2RN−1/2. (A10)

Let us consider the eigenvalue decomposition of the CV matrix given in eq. (A7)

Cˆ̄x = N1/2Cx̂N1/2 = VDVT, (A11)

where V is a unitary matrix whose columns correspond to the orthonormalized eigenvectors of Cˆ̄x, and D is a diagonal matrix that contains

the eigenvalues of Cˆ̄x.

Using the unitary matrix V, an auxiliary invertible transformation will now be applied to the vectors ˆ̄x and ˆ̄xL S , as follows

ˆ̄̄x = VT ˆ̄x (A12)

ˆ̄̄x
L S = VT ˆ̄xL S . (A13)

Due to the orthogonality of the matrix VT, the quadratic form in eq. (A6) can be equivalently expressed as

ϕ = E
{( ˆ̄̄x − ˆ̄̄xL S

)T( ˆ̄̄x − ˆ̄̄xL S
)}

. (A14)

The CV matrices of both transformed vectors ˆ̄̄x and ˆ̄̄xL S are now diagonal, since

Cˆ̄̄x = VTCˆ̄xV
Eq.(A11)= D (A15)

Cˆ̄̄xL S = VTCˆ̄xL S V
Eq.(A8)= VTIV = I. (A16)

Following from eq. (A9), the relationship between the transformed vectors ˆ̄̄x and ˆ̄̄xL S is given by the linear formula

ˆ̄̄x = ¯̄R ˆ̄̄xL S, (A17)

where the new matrix ¯̄R is related to the previous transformation matrix R̄ via the equation

¯̄R = VTR̄V. (A18)

Denoting by ¯̄m and ¯̄mL S the expectation vectors of ˆ̄̄x and ˆ̄̄xL S , respectively

¯̄m = E{ ˆ̄̄x} (A19)

¯̄m
L S = E{ ˆ̄̄x

L S} (A20)

the quadratic form in eq. (A14) can be decomposed as follows

ϕ = E{( ˆ̄̄x − ˆ̄̄xL S)T( ˆ̄̄x − ˆ̄̄xL S)}
= E{( ˆ̄̄xL S)T( ˆ̄̄xL S)} + E{( ˆ̄̄x)T( ˆ̄̄x)} − 2E{( ˆ̄̄xL S)T( ˆ̄̄x)}
= ( ¯̄mL S)T( ¯̄mL S) + traceCˆ̄̄xL S + ρ, (A21)

where the ancillary term ρ corresponds to the quantity

ρ = E{( ˆ̄̄x)T( ˆ̄̄x)} − 2E{( ˆ̄̄xL S)T( ˆ̄̄x)}. (A22)

Furthermore, we have

( ¯̄mL S)T( ¯̄mL S) = E{( ˆ̄̄xL S)T}E{ ˆ̄̄xL S} Eq.(A13)= E{(VT ˆ̄xL S)T}E{VT ˆ̄xL S}
= E{( ˆ̄xL S)T}VVT E{ ˆ̄xL S} Eq.(A5)= E{(N1/2x̂L S)T}E{N1/2x̂L S}
= E{(x̂L S)T}N1/2N1/2 E{x̂L S}
= xTNx.

(A23)
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Taking into account eq. (A16), the quadratic form ϕ from eq. (A21) can be now expressed as

ϕ = xTNx + dimx + ρ, (A24)

where x denotes the true vector of the unknown parameters.

The first two terms in the above equation do not depend on the required regularization matrix R (or on any of its transformed versions R̄

and ¯̄R), and thus the minimization of ϕ is equivalent to the minimization of the third term ρ which was defined in eq. (A22).

Taking into account the linearity of the expectation operator E{·}, we can express the quantity ρ in the alternative form

ρ =
n∑

k=1

E{( ˆ̄̄x[k])2} − 2
n∑

k=1

E{ ˆ̄̄x[k] ˆ̄̄x L S[k]}, (A25)

where ˆ̄̄x[k] and ˆ̄̄x L S[k] denote the kth elements of the vectors ˆ̄̄x and ˆ̄̄xL S , respectively. Since the auxiliary vector ˆ̄̄xL S also does not depend on

the regularization matrix R (or on any of its transformed versions R̄ and ¯̄R), the minimization of ϕ is thus reduced in finding the elements
ˆ̄̄x[k] that minimize the value of ρ as given in eq. (A25).

In order to find the minimum of ρ we will use the well-known cosine inequality (Papoulis 1991, p. 154)

E{x1x2} ≤
√

E{x2
1 }E{x2

2 } (A26)

which is valid for any pair (x 1, x 2) of real-valued random variables. Note that the equality sign in the previous inequality holds if and only if

the random variables are linearly related, x2 = ax1, where a is an arbitrary real scalar.

Putting the elements ˆ̄̄x[k] and ˆ̄̄x L S[k] in place of the arbitrary random variables x 1 and x 2, the cosine inequality of eq. (A26) yields

E{ ˆ̄̄x[k] ˆ̄̄x L S[k]} ≤
√

E{( ˆ̄̄x[k])2}E{( ˆ̄̄x L S[k])2} (A27)

or equivalently

−2E{ ˆ̄̄x[k] ˆ̄̄x L S[k]} ≥ − 2

√
E{( ˆ̄̄x[k])2}E{( ˆ̄̄x L S[k])2}. (A28)

By adding the term E{( ˆ̄̄x[k])2} to both sides of the above inequality, we get

E{( ˆ̄̄x[k])2} − 2E{ ˆ̄̄x[k] ˆ̄̄x L S[k]} ≥ E{( ˆ̄̄x[k])2} − 2

√
E{( ˆ̄̄x[k])2}E{( ˆ̄̄x L S[k])2} (A29)

and by summing over all possible values of the index k, we finally obtain

n∑
k=1

E{( ˆ̄̄x[k])2} − 2
n∑

k=1

E{ ˆ̄̄x[k] ˆ̄̄x L S[k]} ≥
n∑

k=1

E{( ˆ̄̄x[k])2} − 2
n∑

k=1

√
E{( ˆ̄̄x[k])2}E{( ˆ̄̄x L S[k])2} (A30a)

or equivalently

ρ ≥
n∑

k=1

E{( ˆ̄̄x[k])2} − 2
n∑

k=1

√
E{( ˆ̄̄x[k])2}E{( ˆ̄̄x L S[k])2}. (A30b)

The minimum value of ρ is attained when the equality sign in eq. (A30b) holds, and this occurs if and only if the cosine inequality in

eq. (A27) becomes an equality for every value of the index k, that is,

E{ ˆ̄̄x[k] ˆ̄̄x L S[k]} =
√

E{( ˆ̄̄x[k])2}E{( ˆ̄̄x L S[k])2}, k = 1, 2, ..., n (A31)

which obviously holds if and only if the random variables ˆ̄̄x[k] and ˆ̄̄x L S[k] are linearly related

ˆ̄̄x[k] = λk
ˆ̄̄x L S[k], k = 1, 2, ..., n, (A32)

where λk denotes an arbitrary scalar factor that depends on the index k.

C© 2007 The Author, GJI, 171, 509–522

Journal compilation C© 2007 RAS



A covariance-adaptive approach for regularized inversion in linear models 521

It is important to keep in mind that the elements ˆ̄̄x L S[k] are uncorrelated with each other with variances equal to one (Cˆ̄̄xL S = I). The

elements ˆ̄̄x[k] are also uncorrelated with each other, with variances specified by a given diagonal matrix (Cˆ̄̄x = D) which depends on the

a priori choice of the constrained CV matrix Cx̂ for the original estimated parameters; see eqs (A11), (A15) and (A16). In this way, the

proportionality constants λk in (A32) can be uniquely specified. Using vector notation, we have that ˆ̄̄x and ˆ̄̄xL S should be related through a

diagonal matrix � = diag(λ1, . . . ,λk, . . . ,λn)

ˆ̄̄x = � ˆ̄̄xL S (A33)

such that � = D1/2.

Hence, based on the vector transformation formula in eq. (A17), the regularization matrix ¯̄R becomes

¯̄R = D1/2. (A34)

From eq. (A18), and taking also into account eqs (A7) and (A11), we obtain the regularization matrix R̄

R̄ = V ¯̄RV
T = VD1/2VT

= (Cˆ̄x)1/2

= [N1/2Cx̂N1/2]1/2.

(A35)

Using the last result, the required regularization matrix R is finally determined from eq. (10) as

R = N−1/2R̄N1/2

= N−1/2[N1/2Cx̂N1/2]1/2N1/2.
(A36)

In order to conclude the proof, it is required to show that the above result satisfies the CV-adaptive constraint given in eq. (A3). We have

RN−1RT = N−1/2
[
N1/2 Cx̂ N1/2

]1/2
N1/2 N−1

(
N−1/2

[
N1/2 Cx̂ N1/2

]1/2
N1/2

)T

= N−1/2
[
N1/2 Cx̂ N1/2

]1/2
N1/2 N−1 N1/2

[
N1/2 Cx̂ N1/2

]1/2
N−1/2

= N−1/2
[
N1/2 Cx̂ N1/2

]1/2 [
N1/2 Cx̂ N1/2

]1/2
N−1/2

= N−1/2
[
N1/2 Cx̂ N1/2

]
N−1/2

= Cx̂

(A37)

which concludes our proof.

The auxiliary matrices D and Λ which have been used in the previous derivations are not related to the diagonal eigenvalue matrices D
and Λ that were introduced in the main body of the paper. In particular, the symbol D in the main paper corresponds to a diagonal matrix

containing the eigenvalues of the a priori constrained CV matrix of the estimated parameters Cx̂; see (34). The same symbol, however, is also

used in Appendix A to denote an auxiliary matrix that plays a supporting role in the presentation of the proof. Similarly, the symbol Λ in

the main paper corresponds to a diagonal matrix containing the eigenvalues of the normal matrix N (see (12)), whereas in Appendix A the

symbol Λ is employed to denote an auxiliary matrix that plays a supporting role in the presentation of the proof.

A P P E N D I X B : A N A LT E R N AT I V E F O R M U L A F O R T H E O P T I M A L

R E G U L A R I Z AT I O N M AT R I X

In Appendix A it was proven that the optimal regularization matrix R in the CV-adaptive estimator x̂ = Rx̂L S is given by the equation

R = N−1/2
[
N1/2 Cx̂ N1/2

]1/2
N1/2. (B1)

Here we shall derive an alternative equivalent expression for the above regularization matrix. From eq. (B1) we have

C−1/2
x̂ RC1/2

x̂ = C−1/2
x̂ N−1/2

[
N1/2 Cx̂ N1/2

]1/2
N1/2 C1/2

x̂ (B2)

and[
C−1/2

x̂ RC1/2
x̂

]2 = C−1/2
x̂ N−1/2

[
N1/2 Cx̂ N1/2

]1/2
N1/2 C1/2

x̂

× C−1/2
x̂ N−1/2

[
N1/2 Cx̂ N1/2

]1/2
N1/2 C1/2

x̂

= C−1/2
x̂ N−1/2

[
N1/2 Cx̂ N1/2

]1/2[
N1/2 Cx̂ N1/2

]1/2
N1/2 C1/2

x̂

= C−1/2
x̂ N−1/2 N1/2 Cx̂ N1/2 N1/2 C1/2

x̂

= C−1/2
x̂ Cx̂ N C1/2

x̂

= C1/2
x̂ N C1/2

x̂ .

(B3)
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Taking into account the result of the last formula, we can write that

C−1/2
x̂ RC1/2

x̂ = [
C1/2

x̂ N C1/2
x̂

]1/2
(B4)

and finally

R = C1/2
x̂

[
C1/2

x̂ N C1/2
x̂

]1/2
C−1/2

x̂ (B5)

which gives an alternative expression of the regularization matrix in eq. (B1).
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