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Abstract. The problem of modelling the aliasing error 

in single-input single-output (SISO) linear systems with 

gridded input data is studied. First, a general linear esti-

mation framework for SISO systems, based on the use of a 

multiresolution reference scaling kernel, is established, 

which includes the usual FFT-based numerical approxi-

mation of geodetic convolution integrals as a special case. 

The output signal error is modelled with the help of a 

spatio-statistical parameter (sampling phase) that depends 

on the resolution of the input data grid. A frequency do-

main algorithm is then developed which computes the de-

cay rate of a certain output error functional with respect to 

the data resolution level, using the power spectra of the 

input signal, the chosen scaling estimation kernel, and the 

theoretic convolution kernel of the linear system. A simple 

numerical experiment is also included to compare the ac-

curacy of the classic FFT approach in SISO approximation 

problems against the proposed generalization that utilizes 

an arbitrary reference scaling kernel. 
 

 

1  Introduction – Problem Formulation 
 

The theoretical solution of many geodetic problems can 

generally be described in terms of a single-input single-

output (SISO) system, as the one shown in Fig. 1. A 

fully known (deterministic) signal is used as input to a 

certain ‘black box’, which produces a new and unique 

output signal according to some operatorial equation 

. S gf   The nature of the input and output signals, as 

well as the properties of the system operator S, are dic-

tated by the problem at hand.  

 

 

 

 

Fig. 1  A theoretical single-input/single-output system 
 

Some typical geodetic examples include the problem of 

gravimetric geoid determination from Stokes’ integral 

formula, the computation of various terrain dependent 

gravity field quantities (e.g. indirect effect, terrain cor-

rection, etc.) from the Earth’s topography signal, and 

the analytic upward continuation of the anomalous po-

tential using Poisson’s kernel, among many others.  

In practice, the system of Fig. 1 needs to be modi-

fied since we cannot access the full (continuous) input 

field ),(xg  as required by the theoretical formulation 

of most physical geodesy problems. The input data is 

usually given in a discrete gridded form, and thus some 

external estimation model is always necessary to ap-

proximate the output signal )(xf  in a unique optimal 

sense. Such a situation is illustrated in the system of 

Fig. 2, where the input is now a series of gridded signal 

values Znnhg )(  at a uniform resolution level h, and 

the output corresponds to an estimate )(ˆ xf  of the true 

field under consideration. In this case, the system op-

erator will depend not only on the theoretic kernel S, 

but it will additionally incorporate some estimation 

model to overcome the underdeterminacy of the prob-

lem caused by the limited input signal information.  

 

 

 

 

 

Fig. 2  An operational single-input/single-output system with 

gridded input data at resolution level h 
 

The task of this paper is to study the output estimation 

error )()(ˆ xfxf   of the SISO system, shown in Fig. 2, 

as a function of the input data resolution. In order to 

simplify the error analysis, two basic conditions will be 

imposed on the estimators of such systems, namely 

linearity and translation-invariance. Considering the 

convolution character of most theoretical models 

gf  S  in physical geodesy, the latter assumption 

should not raise any major objections. Actually, in the 

authors’ opinion the translation-invariance (T-I) re-

striction must always be assigned in every geodetic es-

timation method, even for non-linear schemes. Other-

wise, how can one justify the dependence of the be-

haviour of the output signal estimate on the origin of 
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the reference system used to describe the position of 

the input data values  ? At this point, we should state 

that by translation-invariance we mean the property of 

a system/algorithm/operator to shift its output (without 

altering its behaviour) when a corresponding shift in 

the input signal occurs. Note that for the case of the 

SISO system in Fig. 2, a data signal of the form 

Znnhg  )(   does not necessarily correspond to a sim-

ple shifted version of the input signal ,)( Znnhg   un-

less we restrict the value of   to be an integer multiple 

of the sampling resolution h. In the theoretical SISO 

system of Fig. 1, on the other hand, the admissible in-

put shift value can be any real number. 

For the purpose of this paper, the system in Fig. 2 

will be further simplified according to the separable 

model shown in Fig. 3. The signal approximation will 

now consist of two basic steps that are connected in a 

linear cascading manner. The first step corresponds to a 

convolution-type interpolation procedure using the 

original gridded data in conjunction with some basic 

estimation kernel, whereas the second step involves the 

application of a convolution operator to the interpolated 

input field )(ˆ xg  according to an underlying theoretical 

model gf  S  (e.g. Stokes’ integral formula). Note 

that this kind of system ‘factorization’ applies also for 

non translation-invariant linear estimation methods, 

such as collocation (minimum norm interpolation) in 

Hilbert spaces with non homogeneous reproducing 

kernels; see Moritz (1980). 

  

   

 

 

 

Fig. 3  Linear and translation-invariant single-input/single-

output estimation system with gridded input data at resolution 

level h 

 

Our focus will be on the development of an algorithmic 

procedure that can compute the decay rate of a suitable 

functional of the output signal error with respect to the 

data resolution h, for different choices of the interpolat-

ing kernel. The numerical approximation of convolu-

tion integral formulas gf  S  using fast Fourier trans-

form (FFT) techniques, which is routinely applied in 

gravity field applications with gridded data, will also be 

investigated as a special case of the system shown in 

Fig. 3. Due to space limitations and for the shake of 

notation economy, all the following discussions will be 

restricted in a one-dimensional setting. Two-dimen-

sional planar generalizations are quite straightforward 

and they will soon be published elsewhere. 
 

2  SISO Estimation System with a 
Multiresolution Reference Kernel 

 

Before we study the output estimation error of the 

SISO system in Fig. 3, a more specific characterization 

of its interpolating component should first be made. 

Since it is assumed that the input data is always given 

in a gridded form with a uniform spatial resolution, we 

will adopt the general interpolatory model 
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where )(x  is some scaling approximation kernel 

whose spread adapts to the data grid resolution through 

an appropriate dilation. The use of convolution-based 

linear interpolating schemes of the form of Eq. (1) is 

very popular in the signal processing community, espe-

cially in view of their close connection with the mul-

tiresolution analysis and wavelet theory (Blu and Un-

ser, 1999; Unser, 2000). The estimation kernel )(x  

acts as a low-pass filter on the periodic (aliased) spec-

trum of the input sequence ),(nhg  with its filter band-

width being ‘tuned’ to the sampling interval h. Its ac-

tual choice can be quite arbitrary and the only essential 

restriction is the so-called Riesz condition (Unser and 

Daubechies, 1997) 
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where )(  is the Fourier transform of ),(x  and A, B 

denote finite constants. The above condition guarantees 

that Eq. (1) gives a unique and stable signal expansion 

(in the 2L  norm) for any set of square summable input 

values }. )( { nhg  Note that Eq. (2) is not restrictive at 

all and it is satisfied by virtually any approximation 

kernel used in practice (e.g. sinc kernel, polynomial B-

splines, etc.). The optimal determination of )(x  in the 

context of statistical collocation theory is discussed in 

Kotsakis (2000a). It is worth mentioning that the cho-

sen scaling kernel does not need to be strictly interpo-

lating (i.e. )()(ˆ nhgnhg  ), and all the following dis-

cussions will equally hold for both interpolating and 

quasi-interpolating schemes. 
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The second component of the SISO system in Fig. 3 

corresponds to a simple convolution operation of the 

form ),(ˆ)()(ˆ xgxsxf   where )(xs  is some theoretic 

kernel specified by the problem under consideration 

(e.g. Stokes’ kernel). Taking into account Eq. (1), the 

final estimation formula for the output signal is 
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or, equivalently, in the frequency domain 
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where )(S  and )(ˆ F  denote the Fourier transforms 

of the theoretic kernel and the estimated output signal, 

respectively. Note that the integer index n in all above 

summations generally runs from   to .   How-

ever, in cases of input signals with compact spatial 

support the previous series have a finite number of non-

zero values, and the index n will accordingly be re-

stricted within a finite range. 

In practice, the evaluation of the estimated signal 

)(ˆ xf  takes place only in a finite number of points, usu-

ally on the same points at which the gridded input data 

)(nhg  is given. Due to the convolution character of Eq. 

(3), such a numerical task can be very efficiently im-

plemented using FFT methods and it requires the 

knowledge of the discrete values .)()/( nhxxshx   

An interesting special case occurs if we set the scal-

ing kernel in Eq. (3) equal to the Dirac delta function 

).(x  Using the reproducing property of the delta func-

tion under the convolution product ‘  ’, the estimation 

formula for the output signal is simplified as follows: 
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The last equation is just a simple discretization of the 

theoretical (continuous) convolution model implied in 

the SISO system of Fig. 1, i.e. 
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In fact, its use is equivalent to applying the familiar 

parallelogram rule for the numerical integration of the 

above formula. The fast evaluation of Eq. (5) at the in-

put data points using FFT techniques has been the stan-

dard approximation framework for a variety of geodetic 

problems over the past fifteen years (Sideris, 1994). 

However, such an approach provides only a special, 

and rather crude, treatment within a more general con-

volution-based estimation algorithm according to Eq. 

(3). Furthermore, the use of a ‘reference’ scaling kernel 

)(x  for the gridded input data can be particularly 

beneficial if spectral analysis procedures are to be ap-

plied to the estimated input and output fields, and/or if 

a rigorous study of the SISO approximation problem 

within a Hilbert space framework is sought (Blu and 

Unser, 1999; Kotsakis, 2000b). In this paper, we will 

confine our attention on a general qualitative descrip-

tion of the approximation performance of Eq. (3) using 

various interpolating models (including the delta func-

tion) at different data resolution levels. Of special im-

portance for this purpose is the definition of a suitable 

error functional, which is presented in the sequel. 
 

3  Aliasing Error Modelling 
 

Let us now study the signal error produced by the lin-

ear estimation formula in Eq. (3), i.e.  
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as a function of the data resolution level h and the ref-

erence scaling kernel ).(x  It will be assumed that the 

discrete input values )(nhg  are noise free, and thus the 

output error )(xe  contains only the (deterministic) 

aliasing effect due to the finite sampling resolution. For 

cases with noisy input data in SISO linear estimation 

systems, see Sideris (1995) and Kotsakis (2000b). 

Obviously, a pointwise description of the aliasing 

error requires the pointwise knowledge of the full input 

field. Similarly, a spectral analysis for )(xe  also de-

mands the a priori knowledge of ).(xg  For practical 

applications, we need to develop alternative measures 

for studying the behaviour of the output signal error, 

whose evaluation is based on more ‘accessible’ (or 

more easily modelled) characteristics of the input field, 

such as its spatial covariance (CV) function or its 

power spectrum. For this purpose, we should express 

the output error as an explicit function of three distinct 

spatial parameters, according to the general form 
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where x denotes the spatial point location at which the 

error is evaluated, and the two additional parameters 

) ,( hxo  represent the sampling phase and the sampling 

resolution of the input data set, respectively. The last 

two quantities are not completely independent and they 

always satisfy the condition ;2/    2/ hxh o   for an il-

lustrative explanation of the sampling phase concept, 

see Kotsakis (2000a). The initial error formula in Εq. 

(7) is just a special case of Eq. (8) for zero sampling 

phase in the input data set (i.e. the uniform sampling 

starts at the origin of the reference system).  

Note that if we average the term ),,( hxxe o  (or even 

its squared value) over all sampling phase values ox  at 

a certain resolution level, we would still need to know 

the complete input field in order to compute such a 

mean (in a spatio-statistical sense) signal error ).,(~ hxe  
 

3.1  Error Modelling in the Space Domain 
 

Using the general error signal from Eq. (8), we can de-

fine a spatial error covariance function at a certain data 

resolution level and sampling phase value. Such a co-

variance function has the usual stationary-like form 
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and its value at the origin (‘error variance’) corre-

sponds to the square 2L  error norm for the associated 

data sampling parameters ox  and ,h  i.e. 

 

 
2

2
2  ),,(      ),,(    ),,0(

L
oooe hxxedxhxxehxc  





    (9b) 

 

However, such an error CV function still requires the 

complete (pointwise) knowledge of the input field 

).(xg  In order to overcome this limitation, we can now 

define a mean error covariance function over all possi-

ble sampling phase values, according to the integral 

formula 
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The value of this CV function at the origin is denoted 

by )(~2 h  (‘mean error variance’) and it corresponds to 

the mean square 2L  error norm averaged over all sam-

pling phases for a certain data resolution level, i.e. 
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The above resolution-dependent error functional is a 

very convenient measure for studying the average per-

formance of the signal estimation formula in Eq. (3). It 

is actually closely related to the spatio-statistical inter-

pretation of collocation according to Sans (1980), for 

the special case of gridded input data (Kotsakis, 

2000b). It has also been considered in an interesting re-

cent study on generalized interpolation models by Blu 

and Unser (1999). In the following, we will use a fre-

quency domain methodology for the computation of the 

mean error variance )(~2 h  from the power spectra of 

the theoretic convolution kernel ),(xs  the reference 

scaling kernel ),(x  and the input signal ).(xg  
 

3.2  Error Modelling in the Frequency 
Domain 

 

The Fourier transform of the mean error CV function in 

Eq. (10), considered as a function of  only, can easily 

be expressed in the average form 
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where ),,( hxE o  is the Fourier transform of the error 

signal in Eq. (8) with respect to the parameter x. Hence, 

the mean error CV function is just the inverse Fourier 

transform of the mean error power spectrum, where the 

‘mean’ in both domains is meant in a spatio-statistical 

sense over all sampling phase values at a given data 

resolution level h. Using Eqs. (8) and (12), we can also 

obtain the following equation for the mean error power 

spectrum of the estimated output signal (Kotsakis, 

2000b): 
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where 
2

 )( S  is the power spectrum of the theoretic 

convolution kernel ),(xs  and ),(
~

hC in
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mean (spatio-statistical) power spectrum of the aliasing 



 

 

error in the interpolated input field )(ˆ xg  according to 

Eq. (1). The formula in Eq. (13) expresses a frequency-

domain propagation law for the mean aliasing error in 

the SISO linear estimation system of Fig. 3. The input 

aliasing error ),(
~

hC in
e   depends directly on the chosen 

scaling kernel )(x  and it is given by the general form  
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where 
2

 )( G  is the power spectrum of the true input 

field ),(xg  and the superscript * denotes complex con-

jugation. For a proof of Eq. (14), see Kotsakis (2000a).   

The computation of the mean error variance for the 

estimated output field, which is defined by Eq. (11), 

can now be performed in the frequency domain ac-

cording to the integral formula 
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since ),(~ hce   and ),(
~

hCe   form a Fourier transform 

pair. For more details and discussion, see Kotsakis 

(2000b, ch. 5). Similarly, the mean error variance of the 

interpolated input field )(ˆ xg  will be given by a corre-

sponding integral formula, as follows: 
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In order to demonstrate the behaviour of the output 

mean error variance )(~2 h  for different choices of the 

reference scaling kernel, a simple example is presented 

in Fig. 4. The error curves shown in this figure corre-

spond to the case where the power spectrum of the in-

put signal )(xg  follows the simple model ,)1( 12   

and the theoretical convolution kernel )(xs  is the 

Gaussian function ).( 2xexp   Five different choices for 

the estimation kernel )(x  have been considered, 

namely: (i) linear orthonormal B-spline function, (ii) 

linear interpolating B-spline function, (iii) cubic inter-

polating B-spline function, (iv) sinc (Shannon) kernel, 

and (v) Dirac delta function. As it was previously dis-

cussed, the latter case (i.e. )1)(   is identical with a 

simple FFT-based numerical approximation of convo-

lution integrals using gridded input values (parallelo-

gram rule for numerical integration). For the analytical 

space and frequency domain expressions of the various 

B-spline kernels, see Unser (1999).           

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4  Decay rate of the output mean error variance with re-

spect to the input data resolution, using various reference 

scaling kernels )(x  

 

 

3.3  Remarks 
 

The above example gives an indication of the accuracy 

improvement in the convolution-based estimation algo-

rithm of Eq. (3) due to the use of a proper scaling ker-

nel ).(x  Although the asymptotic decaying pattern of 

the mean error variance )(~2 h  seems to be the same 

regardless of the reference estimation kernel, the per-

formance of the FFT-based discrete methodology (i.e. 

delta kernel case, see Eq. (5)) worsens significantly as 

h increases. Of course, in order to evaluate the signifi-

cance of such a difference in geodetic applications (e.g. 

local geoid determination from gravity data), we need 

to use realistic and properly scaled power spectra mod-

els for the input signal, as well as theoretic convolution 

kernels associated with actual geodetic problems. The 

result in Fig. 4 is merely a simple 1D numerical experi-

ment, where the scales in both axes do not reflect any 

specific physical meaning.  

Note that the square root of the mean error variance 

)(~2 h  is not expressed in the same units as the actual 

output error ),,,( hxxe o  but it corresponds to a ‘root-

mean-square (rms)’ value of the 2L  error norm in a 
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spatio-statistical sense; see Eq. (11). For practical ap-

plications with compactly supported input fields ),(xg  

we can obtain a more useful average error estimate 

(expressed in the same units as the output signal) by 

simply dividing the value of )(~ h  by the spatial extent 

of the input data grid. For more details, see Kotsakis 

(2000b). 

A brief note must be made regarding the consistency 

of the linear SISO system in Fig. 3, as the data resolu-

tion increases. Regardless of the choice of the reference 

scaling model ),(x  the output signal error should 

eventually vanish in some sense, as the data sampling 

step h becomes infinitely small. Using as error measure 

at each data resolution level the spatio-statistical power 

spectrum ),(
~

hCe  , it is easily shown that 
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The above condition imposes a very mild normalization 

constraint (i.e. 1 (0)  ) for the admissibility of the 

scaling kernels that should be generally used in linear 

SISO estimation systems of the form shown in Fig. 3. 

The study of the mean aliasing error as a function of 

the data resolution level can also be performed in the 

interpolated input signal ),(ˆ xg  according to the inte-

gral error formula of Eq. (15b). Note that in such case it 

is meaningless to consider the choice )()( xx    for 

the reference scaling kernel, since no specific continu-

ous model would be implied for the input field (i.e. 

)(ˆ xg  is a sequence of Dirac impulses at the data 

points). Nevertheless, a considerable simplification of 

Eq. (15b) occurs if we restrict the scaling kernel to be a 

symmetric function. In this case, Eq. (15b) is equivalent 

to the formula 
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where the auxiliary kernel )(K  depends only on the 

adopted interpolating model and it is given by the 

equation 
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In the special case where the estimation kernel )(x  is 

also an orthonormal scaling function (Blu and Unser, 

1999), the form of the auxiliary kernel )(K  can be 

reduced to the very simple expression 

                      )( 2    2    )(  K                          (17c)    

The detailed description and proof of the above error 

algorithm, as well as more discussion with specific ex-

amples, can be found in Kotsakis (2000b, ch. 5). 
 

4  Conclusions 
 

The aim of this paper was to introduce a novel analytic 

approach for studying the aliasing error in linear and 

translation-invariant SISO estimation systems, as a 

function of the input data resolution. Our methodology 

allows to compare the accuracy of the usual FFT-based 

numerical approximation of convolution integral for-

mulas against more general linear estimation schemes, 

where a reference scaling kernel is employed for the 

gridded input data. Since the purpose of the paper was 

merely to give a short exposition of some general is-

sues involved in aliasing error modelling for SISO lin-

ear systems, a more detailed theoretical treatment in a 

multi-dimensional setting is needed for geodetic appli-

cations. 
 

 

References 
 

Blu T, Unser M (1999) Quantitative Fourier analysis of ap-

proximation techniques: Part I (Interpolators and Projec-

tors) and Part II (Wavelets). IEEE Trans. Signal Proc., 

47(10): 2783-2806. 

Kotsakis C (2000a) The multiresolution character of colloca-

tion. J. Geod., 74(3-4): 275-290. 

Kotsakis C (2000b) Multiresolution aspects of linear ap-

proximation methods in Hilbert spaces using gridded data. 

UCGE Report No. 20138, Ph.D. thesis, Dept. of Geomatics 

Engineering, University of Calgary, Calgary, Alberta. 

Moritz H (1980) Advanced Physical Geodesy. Herbert Wich-

mann Verlag, Karlsruhe. 

Sans F (1980) The minimum mean square estimation error 

principle in physical geodesy (stochastic and non-stochastic 

interpretation). Boll. Geod. Sci. Affi., 39(2): 111-129. 

Sideris MG (1994) Geoid determination by FFT techniques. 

Lecture notes for the International School on the Determi-

nation and Use of the Geoid. International Geoid Service 

(IGeS), DIIAR, Milan, Italy. 

Sideris MG (1995) On the use of heterogeneous noisy data in 

spectral gravity field modelling methods. J. Geod., 70: 470-

479. 

Unser M (1999) Splines: a perfect fit for signal/image proc-

essing. IEEE SP Magazine. 16(6): 22-38. 

Unser M (2000) Sampling – 50 years after Shannon. IEEE 

Proc., 88(4): 569-587. 

Unser M, Daubechies I (1997) On the approximation power 

of convolution-based least squares versus interpolation. 

IEEE Trans. Signal Proc., 47(7): 1697-1711. 


