
Wiener Filter Modifications for Gravity Field Data
Using Different Resolution Levels and Non-
Stationary Noise
C. Kotsakis, F. A. Bayoud, M.G. Sideris
Department of Geomatics Engineering, University of Calgary
2500 University Drive N.W., Calgary, Alberta, Canada, T2N 1N4, Email: ckotsaki@ucalgary.ca

Abstract. One of the most basic tools in optimal spectral
gravity field modelling is the method of Wiener filtering.
Originally developed for applications in analog signal
analysis and communication engineering, Wiener filtering
has become a standard linear estimation technique of mod-
ern operational geodesy, either as an independent practical
tool for data ‘de-noising’ in the frequency domain or as an
integral component of a more general signal estimation
methodology (input-output systems theory). Its theoretical
framework is based on the Wiener-Kolmogorov linear pre-
diction theory for stationary random fields in the presence
of additive external noise, and thus it is closely related to
the (more familiar to geodesists) method of least-squares
collocation with random observation errors. The main
drawbacks of Wiener filtering that make its use in certain
geodetic estimation applications problematic stem from the
stationarity assumption for both the signal and the noise
involved in the approximation problem. In this paper, we
introduce a modified Wiener-type linear estimation filter
that can be used with noisy data obtained from an arbitrary
deterministic field under the masking of non-stationary
random observation errors. In addition, the sampling reso-
lution of the input data is explicitly taken into account
within our estimation algorithm, resulting in a resolution-
dependent optimal noise filter.

1  Introduction – Problem statement
Wiener filtering is a well-established and efficient
optimal estimation method that can be used for geo-
detic data ’de-noising’ in the frequency domain. Its
theoretical framework is based on the famous
Wiener-Kolmogorov linear prediction theory for sta-
tionary random fields, in the presence of stationary
additive noise (Kailath 1974, Priestley 1981). The
application of the Wiener filter in geodesy, both as an
independent practical tool for data pre-processing
and as an integral part of a more general linear esti-
mation methodology (input-output systems theory,
Sideris 1996), has been primarily focused on prob-
lems related to optimal spectral gravity field model-
ling. Many numerical studies have been performed
using (implicitly or explicitly) the Wiener filtering
procedure for various physical geodesy estimation

problems, including: de-noising of gravity anomaly
data prior to gravimetric geoid computations (Li and
Sideris 1994), optimal separation of the gravity
anomaly signal from external noise (and other resid-
ual) effects for the identification of certain geological
features (Pawlowski and Hansen 1990), simultaneous
optimal noise filtering of airborne gravity vector data
(Wu and Sideris 1995), and optimal frequency-
domain estimation of the anomalous potential from
airborne gradiometry data (Vassiliou 1986). A de-
tailed theoretical discussion on the use of the Wiener-
Kolmogorov linear filtering theory in gravity field
estimation, and its relationship with other linear ap-
proximation techniques traditionally used in geodesy
(i.e. least-squares collocation), can be found in Sans
and Sideris (1997); see also Sideris (1996).

In order to employ the classical Wiener spectral
filtering algorithm with noisy geodetic data, a sta-
tionarity assumption has to be made for both the true
(unknown) signal and the random measurement
errors. Such a modelling choice becomes quite prob-
lematic and unrealistic for many gravity field appli-
cations, since the underlying true signals (e.g. gravity
anomaly) cannot admit a stochastic/probabilistic in-
terpretation (and thus the stationarity property be-
comes meaningless in this case), and the additive
data noise does not usually follow a spatially uniform
statistical behaviour.

In this paper, we present a modified mean-square-
error (MSE) spectral optimization procedure which,
in conjunction with a certain translation-invariance
condition, leads to a linear estimation filter that can
be applied to an arbitrary finite-energy deterministic
field with compact support (such as a gravity anom-
aly signal or the Earth’s topography signal) under the
masking of generally non-stationary additive noise.
Furthermore, the sampling resolution of the input
data is explicitly taken into account within our esti-
mation algorithm, resulting in a resolution-dependent



optimal noise filter. This provides a more ‘opera-
tional-friendly’ approach to the Wiener filtering
spectral technique for geodetic applications, since the
data resolution parameter has not been directly incor-
porated in previous formulations of frequency-do-
main estimation problems for gravity field signals.
Due to space limitations and for the shake of notation
economy, all the following developments will be
restricted in a simple one-dimensional (1D) frame-
work. Two-dimensional planar generalizations are
quite straightforward and they will soon be published
elsewhere.

2  Methodology – Problem formulation
The main problem that is studied in this paper is the
frequency-domain estimation of an unknown deter-
ministic field )()( 2 ℜ∈ Lxg  using its noisy gridded
samples Znnhd ∈)(  according to the observation
equation

)(    )(    )( nhvnhgnhd +=                        (1)

where )(nhg  are the true signal values, )(nhv  is a
random non-stationary noise sequence, and h  corre-
sponds to the data sampling resolution. The unknown
signal will be assumed to have a compact spatial
support over the real line, covering the interval

.0 Xx ≤≤  In this way, the integer sampling index n
in Eq. (1) can be essentially restricted within the fi-
nite range ),1(0 −≤≤ Nn  where .)1( hNX −=

The associated stochastic model used to describe
the behaviour of the measurement random errors, in
terms of second-order moment information, is de-
fined by the equations

{ } 0    )( =nhvE                                   (2a)

{ } ),(    )(    )( 22 nhnhnhnhvE vv σσ ==    (2b)

{ } ),(    )( )( mhnhmhvnhvE vσ=    (2c)

where E is the probabilistic expectation operator. The
symbol )(2 ⋅vσ  denotes the noise variance at a specific
data point, whereas ) , ( ⋅⋅vσ  corresponds to the noise
covariance (CV) between two data points. The Fou-
rier transform of the noiseless signal grid will be
denoted by )(ωG  and it is given by the formula
(Oppenheim and Schafer 1989)
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where the overbar symbol will generally be used to
indicate a periodic function. We will also use the
notation )(ωV  for the Fourier transform of the input
data noise, which is defined as follows:
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Similarly, the Fourier transform of the gridded data
values )(nhd  is given by the equation
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Note that the noise signal is zero everywhere outside
the input data grid (N points), since the underlying
unknown field )(xg  has been assumed to have com-
pact spatial support and thus no measurements are
performed outside this region.

Two basic properties will be imposed a-priori in
the estimation procedure, namely linearity and
translation-invariance. The reason for introducing
the second property is to obtain a signal estimate

)(ˆ xg  that is independent of the reference system
used to describe the physical position of the data
points. Stated in a simplified way, if we change the
origin of the coordinate system on the real line by
some arbitrary translation xt  (without ‘moving’ the
unknown field or the associated data grid), we want
the new signal approximation to be just a translated
version )(ˆ xtxg +  of the initial estimate in the origi-
nal reference system. The justification of such a
modelling choice for spatial estimation problems
relies basically on our logic and mathematical intui-
tion, and it is not affected by the physical properties
of the true signal and noise involved in the approxi-
mation procedure. If one chooses to follow a non
translation-invariant methodology, he should at least
be able to explain physically the dependence of the
output signal estimate on the origin of the coordinate
system used to reference the unknown field and the
discrete input data. Note that the translation-invari-
ance condition has often been applied in the theoreti-
cal formulation of optimal estimation methods using
errorless discrete data (Sans  1980, Kotsakis 2000a),
although its justification is not altered by the pres-
ence of (stationary or non-stationary) noise in the
input observations.



Based on the two assumptions of linearity and trans-
lation-invariance, the signal estimation formula will
have the general convolution-type expression
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where )(xhξ  is an unknown filtering kernel that
needs to be determined in some optimal sense. The
subscript h is used to indicate that the estimation
kernel will generally depend on the specific data
resolution level. The last equation can be illustrated
through the linear system shown in Fig. 1.

3  Estimation kernel optimization
The output signal error produced by the filtering
formula in Eq. (6) can be decomposed into two dis-
tinct components, i.e.

)(    )(    )(ˆ    )(    )( xexexgxgxe vh +=−=                     (7)

where )(xeh  is the part of the total estimation error
caused from the use of discrete data with finite sam-
pling resolution (aliasing error), and )(xev  is the
additional part due to the noise presence in the signal
samples.

In the absence of any noise from the discrete input
data, the best we can do is to obtain just an interpo-
lated model )(~ xg  for the unknown field that will
depend on the true signal values at the given spatial
resolution. We will assume that such a noiseless sig-
nal model is given in terms of a linear and transla-
tion-invariant formula, as follows:
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or, equivalently, in the frequency domain
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where )(xhϕ  is some interpolating/modelling kernel
that generally depends on the sampling interval h.
The noise-dependent estimation error will be meas-
ured with respect to such a linear interpolating model
for the unknown field, i.e.

)(ˆ    )(~    )( xgxgxev −=                                             (9a)

whereas the (pure) aliasing error is

)(~    )(    )( xgxgxeh −=                                             (9b)

The actual form of the modelling kernel )(xhϕ  in Eq.
(8a) is irrelevant for the purpose of this paper. A very
popular choice that covers many different linear in-
terpolating (or quasi-interpolating) schemes, includ-
ing band-limited (Shannon) interpolation, spline-
based interpolation and also more general wavelet
approximation models, is based on the use of certain
scaling functions )(xϕ  which adapt to the data grid
resolution through a dilation operation (see, e.g.,
Unser 2000), i.e.

)(    )( h
xxh ϕϕ =                                                        (10)

The optimal determination, the intrinsic properties
and the connection of such interpolating scaling ker-
nels with the statistical collocation framework are
discussed in detail in Kotsakis (2000a, b). For the
purpose of this paper, it is sufficient to consider

)(xhϕ  in Eq. (8a) as an arbitrarily chosen interpolat-
ing kernel with a well-defined Fourier transform

),(ωΦh  that is used to obtain a continuous signal
approximation in the absence of any noise from the
discrete input data.

Sampling Noise
Filtering
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ξ (x)
  h

Fig. 1  Linear and translation-invariant signal estimation using discrete noisy data.



In addition, it can be assumed that )(xhϕ  is such
that: (i) the signal expansion in Eq. (8a) is always
stable, and (ii) the aliasing error component )(xeh
vanishes as the data resolution increases; for more
details, see Kotsakis (2000b) and Unser (2000).

The unknown filtering kernel )(xhξ  in Eq. (6)
will now be determined by minimizing the noise-
dependent part )(xev  of the total signal error. The
optimization procedure will be carried out exclu-
sively in the frequency domain using the familiar
mean-square-error (MSE) criterion

minimum    )(     )( 2 =
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where )(ωvE  is the Fourier transform of ),(xev  and
)(ωveP  is the (noise-dependent) mean error power

spectrum of the estimated output signal. Note that the
term ‘mean’ corresponds to its usual probabilistic
interpretation, in contrast to the optimization scheme
that is usually followed for the ‘reference’ interpo-
lating model )(xhϕ  where the MSE is defined in a
spatio-statistical deterministic sense. In Kotsakis
(2000a, b) the optimal determination of the model-
ling kernel )(xhϕ  was based on the spatio-statistical
power spectrum of the deterministic error component

),(xeh  whereas here the optimization of the noise
filtering kernel )(xhξ  employs the mean power
spectrum of the stochastic error component ).(xev

Using the previous equations, it is easy to show
that the (noise-dependent) mean error power spec-
trum of the output signal is given by the formula
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where the asterisk * denotes complex conjugation,
and )(ωΞ h  is the Fourier transform of the unknown
filtering kernel ).(xhξ  The auxiliary term )(ωvP  in
the last equation corresponds to the quantity

{ }
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For the derivation of the result in Eq. (12) we have
used the fact that { } ,0)( =ωVE  in accordance with
the zero-mean stochastic model introduced for the

data noise in Eq. (2a); for more details, see Kotsakis
(2000b). The optimal estimation filter )(ωΞ h  can
now be determined using Eqs. (11) and (12). The
underlying procedure is straightforward and it gives
the final result
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In the next section, the separable Wiener-like form of
the above filter is explained in detail.

4  The separable structure of the
optimal estimation filter

The final result in Eq. (14) indicates that the optimal
estimation procedure can be decomposed into two
individual steps (filters) which are connected in a
linear cascading manner. The first step, expressed by
the periodic filter component ),(ωW  has the role of
‘de-noising’ the discrete input data using information
about the average behaviour of the input noise and
the unknown field at the given resolution level. The
second filter component ),(ωΦh  on the other hand, is
solely used to obtain a continuous representation for
the output signal ),(ˆ xg  based on an a-priori selected
interpolating/modelling kernel ).(xhϕ  These two
basic steps of the optimal estimation procedure are
illustrated in the linear system of Fig. 2. Note that,
even though the optimal estimation principle was
applied to the continuous (noise-dependent) signal
error ),(xev  the noise filtering part of the linear esti-
mation algorithm takes place at a discrete level and it
is not affected by the choice of the ‘reference’ inter-
polating model.

As it can be seen from Fig. 2, it is not really nec-
essary to modify the interpolating kernel )(xhϕ  of
the reference signal model in Eq. (8a) when dealing
with noisy input data. The optimization of the noise-
dependent output error adds only an intermediate
periodic filter that is applied to the original data grid

)(nhd  and it produces a new estimated signal se-
quence )(ˆ nhg  in which the effect of the random ob-
servational errors has been minimized in a certain
translation-invariant linear fashion. We can then use
this ‘synthetic’ grid as input to the interpolating
model of Eq. (8a), in order to get a continuous (also
linear and translation-invariant) approximation of the
unknown field at the given resolution level.



The structure of the optimal filter in Eq. (14) is very
similar to the classic Wiener estimation filter (i.e.
they are both defined in terms of a certain signal-to-
noise ratio (SNR) expression). However, there do
exist conceptual differences between the two filtering
schemes, since in our formulation: (i) the unknown
field has been modelled as a deterministic (instead of
stochastic) signal, and (ii) the additive data noise has
not been restricted to being stationary. Therefore, it is
important to clarify in this case what is the exact
meaning of the two frequency-domain terms that
appear in the expression of our SNR-type optimal
noise filter ).(ωW  From Eq. (14), we have that
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where N is the total number of points in the input
data grid. The auxiliary functions, )(ωA  and ),(ωB
in the last equation correspond to the Fourier trans-
forms of two associated sequences which have the
following CV-like expressions (for a proof, see
Kotsakis 2000b, ch. 5):
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The first sequence in Eq. (16a) can easily be identi-
fied as the discrete (spatio-statistical) CV function of

the true deterministic signal at the given data resolu-
tion level, and thus the term )(ωA  in Eq. (15) is just
the power spectrum of the true signal values ).(nhg
The second sequence in Eq. (16b), on the other hand,
does not exactly correspond to the discrete noise CV
function and, as a result, the frequency-domain
quantity )(ωB  in Eq. (15) should not generally be
viewed as the power spectral density (PSD) function
of the data noise. Such an interpretation is possible
only in the special case where the input noise is
(weakly) stationary. Indeed, in such situation the
noise covariance vσ  in Eq. (16b) between two arbi-
trary data points with coordinates mh  and nhmh +
becomes a function of their distance only, which is
obviously equal to .nh  Therefore, vσ  can be taken
outside of the summation operator, leaving the sum-
mation result in Eq. (16b) equal to N. In the more
general case of non-stationary noise, the sequence

)(nhb  can be interpreted as a ‘mean’ CV function of
the random observation errors. Its value at the origin
gives an average indication of the noise level at every
data point of the input grid, i.e.
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whereas its values at the other points correspond to
‘averages’ of the noise covariance over pairs of data
points with coordinate difference equal to .nh  Note
also that both sequences in Eqs. (16a) and (16b) are
always symmetric, and they take zero values outside
the range )1()1( −≤≤−− NnN  due to the finite spa-
tial support of the input signal ).(xg  More details
and comments on the properties and practical imple-
mentation of the optimal noise filter )(ωW  can be
found in Kotsakis (2000b, ch. 5).
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Fig. 2  The cascading structure of the optimal linear estimation filter.
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5  Numerical experiment
In order to examine the performance of the optimal
noise filter )(ωW  from Eq. (15) at different data
resolution levels, and under the presence of non-
stationary observational noise, a simple numerical
experiment was performed. First, a one-dimensional
deterministic signal ),(xg  assumed to represent some
gravity anomaly profile, was synthesized using a
truncated Fourier series expansion with a record
length of 200 km (see Fig. 3). Four different sam-
pling resolution levels (h) were used to create the
various gridded data sets, namely 0.1, 0.5, 1.0 and
5.0 km. All the signal grids ),(nhg  at every resolu-
tion level, were partitioned into three equal spatial
blocks, labeled as left (L), central (C), and right (R).
The simulated data noise, which is subsequently
added to the true signal samples, will have a different
stochastic behaviour in each of the three grid blocks.

Fig. 3  The true (simulated) signal.

A zero-mean noise sequence )(nhv  was added to the
samples )(nhg  of the true signal in order to generate
the input data sets )(nhd  at each resolution level,
according to the observation equation given in Eq.
(1). The noise values originated from a non-
stationary and uncorrelated Gaussian stochastic proc-
ess, using the routines for random number generation
of the MATLAB software package. The noise vari-
ance )(2 nhvσ  was constant within each sub-block (L,
C, R) of the data grids, with its values set to 20
mGals2, 3 mGals2 and 6 mGals2, respectively. The
sample statistics of the total noise sequence, at every
resolution level, are given in Table 1.

The optimal noise filter ),(ωW  according to Eqs.
(15), (16a) and (16b), was computed via a fast Fou-
rier transform (FFT) algorithm for each of the four
sampling resolution levels (h), and it was then  mul-

tiplied by the FFT of the noisy gridded data ).(nhd
The result was finally transformed back to the space
domain using an inverse FFT algorithm.

Table 1.  Statistics of the total additive noise at various data
resolution levels (in mGals).

Data resolution
(in km) 0.1 0.5 1.0 5.0

Max 14.57 15.34 8.91 8.27
Mean 0.09 0.24 0.27 0.11
Min -15.09 -10.10 -11.98 -8.01
Std 3.15 3.08 3.09 3.01
RMS 3.15 3.09 3.10 3.01

In Fig. 4, the original noisy data )(nhd  and the fil-
tered signal estimates )(ˆ nhg  are shown for some
selective resolution levels h. The differences between
the true signal samples and the corresponding esti-
mated values are also shown in Fig. 5, whereas their
statistics are given in Table 2.

Fig. 4 Noisy and filtered signal values (in mGals) at two
different sampling resolution levels. The vertical dashed
lines mark the boundaries between the three blocks (L, C,
R) of the input data grid with the different noise variances
at each block.
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Fig. 5 Differences between the filtered and the true signal
values at two different sampling resolution levels.

Table 2.  Statistics of the differences between the true and
the filtered signal values at various data resolution levels (in
mGals).

Data resolution
(in km) 0.1 0.5 1.0 5.0

Max 1.47 1.28 3.50 6.48

Mean -0.09 -0.24 -0.26 -0.11

Min -2.06 -3.38 -4.15 -6.47

Std 0.54 0.91 1.30 2.53

RMS 0.55 0.94 1.33 2.54

It is interesting to observe that the output estimation
error for the filtered signal values is decreasing as the
data sampling interval h  becomes smaller. This is
evident from the comparison of the two graphs
shown in Fig. 5, as well as from the error RMS val-
ues given in Table 2. Such a result is not surprising
and it just confirms the (already well-known from
signal analysis theory) fact that oversampling leads
to noise reduction. For more details, see Kotsakis
(2000b).

6  Conclusions
We have presented a useful modification of the clas-
sic Wiener filtering algorithm which allows us to
work with deterministic (instead of stochastic) un-

known fields that are masked by additive non-
stationary noise. The informal similarities of our
frequency-domain estimation framework with the
Wiener filtering formalism stem from the initial
modelling choice in Eq. (6) that the optimal signal
estimate should be linear and translation-invariant.
This led to a convolution SNR-type computational
scheme that can always be implemented very effi-
ciently using FFT techniques. Of special importance
in our derivations was the decomposition of the total
signal estimation error into an aliasing-only compo-
nent and a noise-dependent component (see Sect. 3).
A detailed discussion on this subject, along with
some comments on the problems encountered when
we attempt to apply a ‘one-step’ optimization of the
total signal estimation error, can be found in Kotsakis
(2000b).

The spatial resolution of the noisy input data was
also taken directly into account within our estimation
procedure, revealing new interesting aspects related
to the structure and the performance of the optimal
noise filter as a function of the data grid density.

In terms of future work, our efforts should con-
centrate on extending the methodology presented
herein for multi-dimensional problems, both in planar
and spherical domains. Certain additional modifica-
tions are also needed in order to handle geodetic es-
timation applications that involve more than one type
of noisy signal data (multiple-input/single-output
systems), and not just the simple single-input/single-
output case that was studied here. Nevertheless, the
presented methodology can be proven a useful tool in
many existing geodetic problems, such as the optimal
spectral geoid determination from noisy gridded
gravity data or the FFT-based computation of various
height-dependent gravity field quantities from noisy
digital terrain models.
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