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Summary. — An interesting connection between the statistical collocation method and the multi-
resolution/wavelet framework of signal approximation is made in this study. The rapid developments in multi-
resolution analysis theory over the past few years have provided very useful (theoretical and practical) tools for
approximation and spectral studies of irregularly varying signals, opening thus new possibilities for «non-
stationary» gravity ficld modelling. In this paper we demonstrate that the classic multiresolution formalism
according to Mallal's pioneering work lies at the very core of some of the approximation principles traditionally
used in physical geodesy problems, In particular, it will be shown that the use of a spatio-statistical (non-
probabilistic) minimum mean square error criterion, for optimal linear estimation of deterministic signals, always
gives rise to a generalized multiresolution analysis in the Hilbert space L2(M), under some mild constraints on
the spatial covariance function and the power spectrum of the unknown field under consideration. Using the
theory and the approximation algorithms associated with statistical collocation, a new constructive (frequency
domain based) framework for building generalized multiresolution analyses in L2() is presented, without the
need of the usual dyadic restriction that exists in classic wavelet theory. The multiresolution and ‘non-stationary’
aspects of the statistical collocation approximation procedure are also discussed, and linally some conclusions
and recommendations for future work are given.

[1. RUOLO DELLA COLLOCAZIONE STATISTICA COME STRUMENTO PER SVILUPPARE ANALISI GENERA-
LIZZATE MULTIRISOLUZIONE NELLO SPAZI0 DI HILBERT [P(SH),

Sommario. — In questo studio si sviluppa un’interessante collegamento tra il metodo della collocazione
statistica ¢ Papparato multirisoluzione/wavelet dellapprossimazione del segnale. I rapidi sviluppi nella teoria
dell’analisi multirisoluzione negli ultimi anni hanno reso disponibili utilissimi strumenti (sia teorici che pratici)
per Papprossimazione e lo studio dello spettro di segnali irregolarmente variabili, aprendo cosi nuove possibilita
nella modellizzazione del campo di gravitd «non-stazionario». [n questo lavoro si dimostra che il classico
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formalismo multirisoluzione secondo il pionieristico contributo di Mallat, ha un ruolo centrale in alcuni dei
principi di approssimazione utilizzati tradizionalmente nei problemi di geodesia fisica. In particolare, si dimostra
che l'adozione di un criterio di minimo crrore quadratico medio spaziale-statistico (non-probabilistico), per la
stima lineare ottimale di segnali deterministici, consente sempre un’analisi generalizzata multirisoluzione nello
spazio di Hilbert L*()) sotto alcuni (non troppo stringenti) vincoli relativi alla funzione spaziale di covarianza ¢
alla spettro di intensita del campo incognito in considerazione. Applicando la teoria e gli algoritmi di ap-
prossimazione associati alla collocazione statistica, viene qui presentalo un nuovo apparato costruttivo (ba-
sato sul dominio di frequenza) per la realizzazione di analisi generalizzate multirisoluzione in L2(), senza la ne-
cessitd dell'usuale ipotesi restrittiva diadica che sussiste nella classica tcoria delle wavelet. Vengono inoltre
discussi gl aspetti di multirisoluzione e «<non-stazionari» della procedura di approssimazione della collocazione
statistica e, infine, vengono presentate alcune conclusioni e raccomandazioni per il lavoro futuro.
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1. - INTRODUCTION

The concept of least-squares collocation (LSC) represents one of the major
theoretical (and practical) foundations in modern physical geodesy. Closely related
to Bjerhammar’s initial idea on discrete underdetermined boundary value problems,
collocation has evolved into a powerful optimal estimation method for either global
or local gravity field modelling. Despite the various different interpretations and their
associated mathematical concepts upon which LSC has been based (see, e.g.,
Tscherning, 1986; Sanso, 1986), a rigorous unified approach that merges both the
purely deterministic (Krarup’s formulation) and the purely stochastic (Wiener’s linear
prediction theory) approximation viewpoints behind collocation has long been
established by Sanso (1980). Such an approach has eliminated, to some degree, most
of the «pitfalls» in each individual original formulation (e.g. reproducing kernel or
norm choice problem, non-stochasticity of the actual gravity field); see also Moritz
(1980), Moritz and Sanso (1980). In this way, collocation is usually considered as a
rigorous linear statistical method for gravity field approximation, where the term
«statistical» is used not to describe some underlying stochastic behavior of the actual
gravity field, bul rather to specify the spatio-statistical nature ol the deterministic
norm that is used to quantify the approximation error and to optimize the ap-
proximation algorithm.

One of the main characteristics of Sansd’s spatio-statistical formulation for the
collocation problem is that it leads to the same solution algorithm as the purely
deterministic/stochastic approaches. In this case, however, instead of using a
reproducing kernel in some arbitrary Hilbert space or a covariance (CV) function of
a stochastic signal, we only need a spatial CV function defined through a certain
spatial averaging operator over the unknown deterministic signal. The «stationary»
form of this spatial CV function has created the false belief among many geodesists
that we still need to model the gravity field of the Earth as a stationary stochastic
process, which is furthermore perceived as a strong limitation of the statistical
collocation framework since the actual behavior of the gravily field is «non-
stationary». However, such a claim is absolutely meaningless because no stochastic
nature is assigned to the unknown field, and the property of stationarity is not de-
fined at all for deterministic signals; see also the related discussion given in Sanso
(1980).
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In order to eliminale any stationarity concerns about the statistical collocation
framework, and to additionally encourage the transition towards the usc of wavelet-
based approximation techniques in gravity field modelling, the aim of this paper is to
show that the spatio-statistical mean square error criterion (for optimal linear
estimation in deterministic fields), in conjunction with regularly gridded data, is
directly related to certain sequences of nested multiresolution subspaces in L*(),
similar to the ones encountered in the classic (dyadic) multiresolution approxi-
mation theory which was originally developed by Mallat (1989a, b). Wavelel bases
and multiresolution signal analysis are two strongly related and relatively new
mathematical concepts, that have been developed at an explosive rate during the last
years in both theoretical and practical sense. Their conslantly increasing popularity
within various scientific areas is due to their ideal ability to analyze locally many
transient («non-stationary») physical phenomena, and to approximate them at
different (spatial/time) scale levels according to a zoom-in/zoom-out approach.
Using the theory and the actual approximation algorithms associated with statistical
collocation, the paper will present a new consiruclive ([requency domain based)
framework for building generalized multiresolution analyses (and thus wavelet-type
bases) in the Hilbert space L?()), without the need of the usual dyadic restriction
that exists in classic wavelet theory.

2. - MULTIRESOLUTION APPROXIMATION THEORY AND WAVELETS

The concept of multiresolution theory for signal approximation is a relatively
recent one, originally formulated by Mallat (1989a, b). Wavelet signal expansions,
on the other hand, have existed long before Mallat’s developments, with their most
common example being the asymptotic approximation of L? signals by translates of
piecewise-constant base functions (i.e. Haar wavelets). Since there exists a very
strong connection between these two concepts, they are usually considered as the
two sides ol the same coin, although there do cxist pathological cases of wavelet
expansions which cannot be identified under Mallat’s mulliresolution framework. In
this section we are going to present just a brief overview {rom these two vast
mathematical subjects, restricting ourselves to what is only necessary in order to
follow the discussion in the following sections. A fully comprehensive reference
including some of the most recent developments, can be found in the boolk by Mallat
(1998) and in the excellent review paper by Jawerth and Sweldens (1994). Geodetic
and geophysical applications of multiresolution/wavelet theory are discussed in
the papers by Freeden and Schneider (1998), Kumar and Foufoula-Georgiou
(1997), Ballani (1996), Li (1996), and Keller (1998), among many others.
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2.1. - MULIRESOLUTION ANALYSIS

A multiresolution analysis (MRA) in the Hilbert space L*() is defined as an
infinite sequence of closed linear Hilbert subspaces V; < L*()), having the following
five properties (Jawerth and Sweldens, 1994):

a) VicV,, VieZ (1.a)
b) f(x) eV, & f(2x) e Vy,, (1.b)
c) f(x)eV, e f(x+n2)eV,, VneZ (1.c)
d) U=, Vi=L* ) and N7 V;={0} (1.d)

e) A scaling function ¢(x) € V,, with a non-vanishing integral, exists such that the
family @(x — n),., is a Riesz basis of V.

The definition given above is not minimal, in the sense that some of the
conditions a) - ) can be derived from the remaining ones (Wojtaszczyk, 1997).
However, it has been customary to use all these five properties of an MRA as
independent statements. A Riesz basis is just a generalization of the notion of an
orthonormal basis in Hilbert spaces, corresponding to a set of linearly independent
functions that forms a complete, «oblique» and stable system of reconstructing
elements. If we have a Riesz basis ¢,(x),., in a Hilbert space H, then there always
exists a unique biorthonormal system ¢, (x),., which also forms a Riesz basis for H.
The biorthonormality property between the two systems can be expressed through
the relation

< (pn(‘x) ’ ‘I}m (X) s 61‘1,111 (2)

where <,> denotes the inner product in the Hilbert space H, and §,,, is the
Kronecker delta. More details for Riesz bases can be found in Heil and Walnut
(1994), Young (1980), and Woijtaszczyk (1997).

If a Riesz basis (under the usual L? inner product) is formed by the translates
P(x — 1)y, of a basic scaling function ¢(x), then the Fourier transform ®(w) of the
scaling function should satisfy the following condition (see, e.g., Jawerth and
Sweldens, 1994):

0<ALY [d(w+2mk)[" < B <o, (3)
Ik

for some strictly positive, finite bounds A and B. If equation (3) is true, then the sets
o(x/h — n),., form Riesz bases for their corresponding closed linear spans, for any
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non-zero value of the scaling parameter & (Unser and Daubechics, 1997). In this way,
the translates of the scaling function o(2ix - n),_, will also form a Riesz basis in each
corresponding subspace V; of an MRA. Condition (3), for the special case where the
family o(x - 1), is an orthonormal set, takes the simple form

2B <des, (4)

0<A<Y |O(w+2nk)
I

In every nested subspace Vi of an MRA, an infinite number of complete
orthonormal sets can be constructed from a given Riesz basis ¢(2x - 1),_,,
according to the orthonormalization trick given in Young (1980, p. 48); sce also
Holschneider (1995, p. 187), Wojtaszczyk (1997, pp. 24-25). These orthonormal
sets will, too, be comprised of integer translates of a basic function. For the same
MRA in L*(W), therefore, we can have many different choices for the generating scaling
lunction,

Let us now denote by ¢(x) a scaling function which generates a complete
orthonormal system for a certain MRA. Each subspace V,; of this MRA is a
reproducing kernel (rk) Hilbert space (under the usual L? inner product), with its
reproducing kernel %; (x, v) given by

Ri(x,y)=21k(21x,21y) (5)
and
’(x,y) =23 ¢(x—n)o(y-n) (6)

where k(x, y) is the r.k of the «unit» resolution subspace V. For some technical
mathematical conditions, see the paper by Walter (1992). It can also be shown that
the collection of functions k(x, 1), , = k(x - n, 0),c, provides an alternative Riesz
basis for the MRA subspace V,, (Walter, 1992). The biorthonormal basis correspon-
ding to k(x, n),., has some very special properties, namely being a sampling
basis lor the same subspace V. The expansion of an arbitrary signal f(x) e V,,
with respect to such a basis, takes the form of a sampling theorem associated
with the specific subspace V,, i.c.
fx)=%, fn) s(x-n). (7)
n
The situation can easily be extended for any MRA subspace V. More details for
the connection between sampling theorems and L? multiresolution theory can be
found in Walter (1992), Zayed (1993), Xia and Zhang (1993), Aldroubi and Unser
(1992, 1994). An excellent reference is also Nashed and Walter (1991), where the
notion of sampling theorems is studied in a general, arbitrary Hilbert space
setting.
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2.2, - MULTIRESOLUTION APPROXIMATION

The original definition of an MRA, according to Mallat (1989.b), differs slightly
from the one given in eq. (1). In Mallat’s conception, instead of intro-ducing a priori
a scaling function ¢(x), the central role is played by a sequence of orthogonal
projectors P, associated with a sequence of translation-invariant and dyadically
nested subspaces V,. These projectors are used to determine the best linear L
approximation of an arbitrary signal f(x) e L*(*R) at a specific dyadic resolution level
21, The consistency of this approximation scheme was also enforced by the fact that
P; should converge to the identity operator as the resolution index j increases. The
existence of a scaling function, whose integer translates generate the sequence of the
corresponding nested subspaces, can then be proven according to the fundamental
theorem given in Mallat (1989.b).

Assuming that ¢(x) is an orthonormal scaling function in some MRA, the or-
thogonal projection of an arbitrary signal f(x) e L*()) onto a nested subspace V;will
be given by the formulas (see, e.g., Mallat, 1989.a)

(Pf) (%)= X a(n) (2'x—n) (8.a)
a(n) =21 | f(x) p(2'x - n) dx. (8.b)

The projection procedure is illustrated in fig. 1, where the first filter ®(-27 m)
from eq. (8.b) has a kind of «anti-aliasing» role for the given dyadic resolution
level. In Unser and Daubechies (1997) and Blu and Unser (1999), the above
orthogonal projection scheme is analytically described for the general case
where a non-orthonormal Riesz basis is used in the multiresolution frame-
work,

Analysis Synthesis
Sampling
f(x) - a(n) | ®ehw
> P2 o) /> —| 2 92 ) f———>
Y 8(x-2 'n)

Fig. 1 — Orthogonal projection onto a subspace V; of an MRA (usc of orthonormal scaling function).
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2.3, - WAVELETS

Associated with every MRA in L*() is a corresponding wawelet basis, which
provides the means to connect consistently and efliciently signal information from
different resolution levels, according to a zoom-in/zoom-out approach. If we denote
by W, the orthogonal complement of the linear subspace V,in Vj,; (i.c. Vi@ W, =
Vi), then there exisls a basic mother wawvelet Tunction y(x) such that the family

i
V(2 — n),,., will provide a Riesz basis for every Wi. The Hilbert subspace W, c L2()
contains basically the signal «details» needed to go from the dyadic resolution level
2/ to the next upper resolution level 2" within the specific MRA {V;}. Furthermore,
the collection of all these Riesz wavelet bases (from all the different detail subspaces
W,) will form a single Riesz basis for the whole Hilbert space L*()); see, e.g., Jawerth
and Sweldens (1994).

In this way, the study of a signal at a specific dyadic resolution level 2* can be
considerably enriched by computing its wavelet coefficients at coarser resolution
values 2/ < 2% ie.

k-1

x)=Y am) e x-n)= Y Y b, ) wR2ix-n), Y eV,. (9)

j=—ea n

The wavelet spectrum b(#n, j) can be used for a spatially localized analysis of the
signal behavior, providing in this way a very useful tool (over the classic Fourier-
based methods) for spectral studies of irregularly varying fields. Detailed algorithms
for the computation of the wavelet coefficients b(r, j) from the scaling coefficients a(#)
can be found in many places in the wavelet literature and they will not be given here
(see, e.g., Mallat, 1998). These algorithms cover all possible cases, from the simplest
one where the translates of both the scaling function ¢(x) and the mother wavelet
w(x) provide orthonormal bases f[or their corresponding spaces, to the most
complicated case where the translates of ¢(x) and/or y(x) create just general non-
orthogonal Riesz bases.

3. - STATISTICAL COLLOCATION AND DATA RESOLUTION

In this section, the optimal linear approximation problem for an unknown
deterministic field g e L*(M) will be solved in such a way, that the immediate
connection between the approximated field g and the available data resolution will
explicitly appear in the solution formulas. In particular, the final optimal estimate
will be seen to depend only on a single basic kernel ¢ € L*()), which is scaled
accordingly to «match» the given data resolution level. We will assume that the
available discrete data represent noiseless point values g(nh) of the unknown field

 — |



THE ROLE OF STATISTICAL COLLOCATION AS A TOOL, ETC. 133

itself, taken on a uniform grid with known resolution level /1. The field is considered
as 1D for simplicity. The multi-dimensional case (i.e. when the unknown field be-
longs in the L*(M?%) or the L*(°) Hilbert space) is just a straightforward extension of
the following derivations.

3.1. - GENERAL FORMULATION

Since we are seeking a linear approximation, the recovered signal g(x) will have
the general form

x) 2 n’h (pn h ) (10)

where ¢, ,(x) is a family of unknown base functions which should be optimally
selected to approximate g(x). The dependence (if any) of these base functions on the
data resolution is introduced through the use of the subscript /. If we further impose
the condition of translation-invariance for the estimated field g with respect to the
spatial reference system (in the multi-dimensional case this becomes invariance
under more general affine transformations of the reference system), then the family
®n.n(x) should be generated from a single kernel ¢y, (x), such that:

(pn,h(x):(ph(x_nh) (11)

and eq. (10) becomes

8(x)=2, a(nh) ¢, (x-nh). (12)

n

The approximation formula (12) can now be illustrated in terms of the linear
filtering procedure shown in fig. 2. Applying the Fourier transform to the above
convolution equation, we get:

G(w) = Gy (0) @, (0) (13)

where é(m) and @, (w) are the Fourier transforms of the app_roximated signal and the
basic «interpolating» kernel ¢,(x), respectively. The term G (w) corresponds to the
periodic Fourier transform of the generalized function

B )= Z Sa—nh)=3 gnh)dx-nh) (14.a)

and it has the form (Oppenheim and Schafer, 1989)

Gy (o) = ;11 12 G(aw 2;1tk ]— S g(nh) e ™" (14.b)
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with G(w) being the Fourier transform of the true unknown signal g(x), and 8(x) is
the classic Dirac delta function.

Approximation
Filter

Sampling
g(x) g(nh) 8(x)
=® 2 ([)h(w)

T

> 8(x—nh)

Fig. 2 - Filtering configuration of linear, translation-invariant signal approximation using discrete samples.

Note that the previous frequency domain formulas imply that we have sampled
the unknown signal g(x) e L*(N) over its entire (finite or infinite) support. If the
available data grid g(n/1) covers only some limited part of the signal’s support, then
the previous Fourier transform formalism is certainly not valid and a rectangular
window function should be additionally incorporated. In order to avoid such
complications, we will assume that the unknown field g(x) we try to approximate
covers only the region inside the given data grid boundaries. Although such an
assumption may be unacceptable for applications involving temporal signals with
finite data grids (where predictions into the future may be required), it nevertheless
provides a very reasonable framework for local approximation studies in spatial
lields. It should also be emphasized that, even though g(x) is assumed zero outside
the given data grid boundaries, its approximation g(x) by eq. (12) may exhibit a non-
zero pattern at points outside the data grid. Of course, the theoretical case of in-
finitely extended 1D data grids is still embedded in all the previous equations.

Another, more technical, condition that should also be imposed in order for
the previous frequency domain framework to be rigorously correct, is (o assume
that the available data sequence g(nh) is always «measurable», in the following
sense:

> | g(nh)| < oo, (15)

Indeed, under such a condition the periodic Fourier transform G, (m) in eq.
(14.b) will always converge uniformly to a finite, continuous function of o (see, e.g.,
Oppenheim and Schafer, 1989, p. 47).
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3.2. - A SPATIO-STATISTICAL OPTIMAL PRINCIPLE

The approximation error, in both the space and the frequency domain, for the
given data configuration g(rnh) is
e(x) =g(x)-§(x), E(w)=G(w)-G(w) (16)
and its power spectrum can easily be derived by taking eq. (13) into account, i.e.

E(w) |2 = E(0) E () = G(w) G (w) - ®, (0) G(0) G, (0) -

- ‘ ., 17
~ @ (0) G (@) G () + Dy (0) @y (0) Gy (0) G (0) i

where the asterisk * denotes complex conjugation.

The sampled sequence g(n/), however, is not the only possible information that
we could have extracted from the unknown signal at the given resolution level A. If
we shift the sampler %S(x — k) by an amount x,, an infinite number of different data
sequences can be obtained, which all represent different sampling schemes for the
same unknown signal at the same resolution. The situation is illustrated in fig. 3,
from which we can see that (at a specific resolution value /1) all the possible sampled
sequences of g(x) can be described by the general form g(nh - x,), where the
sampling phase parameter x, varies between — h/2 <x, < i1/2.

g(x) A

2y

xt]

Fig. 3 — Different sampling configurations at a given resolution level A.

In accordance with the translation-invariance condition for the approximation
framework, the general linear equation for the approximated signal from an arbitrary
sampled sequence at the resolution level & will have the form
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8(x, x,) =Y g(nh—x,) @, (x +x, - nh). (18)
The Fourier transform of eq. (18), considered as a function of x only, vields
3 1 _ 2nk ) -i2K L
Glo,x)=—0p (@)Y Glo+ """ |e b (19)
h I h
where it is again assumed that all possible sampled sequences g(nh — x,) of the
unknown field are always measurable in the sense of eq. (15). Thus, for each different

sampling phase value x, we will have a correspondingly different approximation
error e(x, x,) i.e.

9(.96, x()) :g(X)—é(x, x()) (203)
whose Fourier transform is
1 [ 2mk) ik,
E(m, xy) = G(w) - % Oy (w) Y Glow+ Tl i ™, (20.b)
k 1

The optimal criterion for choosing the best approximation kernel ¢, (x) will be

1 h/2
Pi= 1]

-h/ 2

E(o, )| dx, = min. (1)

Equation (21) represents a minimum mean square error (MMSE) principle,
expressed in the frequency domain. The quantity P,(w) is nothing else than the mean
error power spectrum. Note that the term «mean» is not used in a probabilistic
sense (as in the classic Wiener linear prediction theory), but it has a rather spatio-
statistical meaning, In other words, the optimization of the linear approximation
algorithm does not employ the classic averaging expectation operator considering
different «experiment repetitions», but it is based on the average error over all
possible different sampling configurations for the given data resolution level /. In
Appendix A it is proven that

h/2 s
| JE(m,xU)|2dx0:hC(m)-cD;](co)C(m)f(l)h(m)C(m)+(l)h(m) Dy (w) C), (w) (22)

-h/2

where C(w) is the Fourier transform of the spatial covariance (CV) function ¢(x) of
the unknown deterministic signal g(x). This spatial CV function has the usual
«stationary» form

()= [80) gy +x)dy < C(0)=G(0) G'(0)=| G(w) (23)
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where the symbol ¥ in the last equation denotes a Fourier transform pair. The term
C(w) is thus just the usual signal power spectrum, and the term Cy(w) in eq. (22)
denotes its following periodization (see Appendix A):

C,(0)= l]z 12 C(uH sz J (24)

Using equations (21) and (22), we can finally obtain the optimal approximation
filter as follows:
Clo) _
Ch (OJ)

Clw)
% C((D"‘ 2%2}

Dy () =- (25)

For justification of the mathematical procedure that leads to the above result,
see Bendat and Piersol (1986), sect. 6.1.4, egs. (6.55)-(6.57), or Sideris (1995), egs.
(11)-(13). In this way, the corresponding optimal space domain kernel ¢,(x) can be
expressed through the scaling relationship

P (%) —(p( : J (26)

where the generating scaling function ¢(x) is defined in the frequency domain as

w
8
3 ( h ]

Ppx) e—— D(w)=

follows:

(27)

The above result can be casily verified by taking into account the fundamental
scaling property of the Fourier transform. Finally, if we combine egs. (12) and (26),
the optimal translation-invariant linear approximation formula for an unknown
deterministic field g(x) according to the MMSE principle (21), using its discrete
samples on a uniform grid with resolution level /, will have the wavelet-like form

g(x)="Y g(nh) (p( z —n}. (28)

It is worth mentioning that the basic reconstructing kernel ¢(x) will always be a
symmnetric function, since its Fourier transform in eq. (27) is always real-valued (i.e.
the signal power spectrum C(w) is always a real-valued function).
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3.3. - COMMENTS

The approximation of unknown deterministic functions in terms of convolution-
based linear models of the form (28) is very common in many signal processing
applications in the context of classical interpolation, quasi-interpolation, and multi-
scale approximation through projections into multiresolution subspaces (see, e.g.,
Unser and Daubechies, 1997; Blu and Unser, 1999). In such cases, the selection of
the basic approximation kernel ¢(x) is usually made a priori (e.g. sinc-based inter-
polation, polynomial spline interpolation, etc.), and its performance is evaluated
according to an assumed behavior for the unknown signal (e.g. bandlimitedness,
spectrum decay rate, smoothness, etc.) and/or certain theoretical error bounds
which depend on the form of the used kernel (i.e. Strang-Fix conditions); [or more
details, see Unser and Daubechies (1997). In the present paper, on the other hand,
we have a priori introduced a spatio-statistical mean error power spectrum as a
specific accuracy measure for the linear approximation algorithm, which is then
optimized in order to choose the «best» approximation kernel ¢(x) lor the specific
unknown signal g(x). The translation-invariance condition, which was also imposed in
the approximation procedure, makes this optimal kernel to depend only on the
«stationary» spatial CV function of the unknown field under consideration, according
to eq. (27). The additional dependence ol o(x) on the data resolution level /2, as it is
evident from eq. (27), will be discussed in detail in the next section.

In our derivations we never assumed that the optimally approximated signal
should reproduce the available noiseless data, i.e. g (nf1) = g(nh). However, this will
always be satisfied since the optimal approximation kernel ¢(x), defined by eq. (27),
is a cardinal (sampling) function. This simply means that

Jl n=0
o(r) = ’ 29.a
o) 0, n=41,42,+3,.... (29.2)

Indeed, using eq.(27) we easily sce that the Fourier transform @®(w) of the op-
timal approximation kernel satisfies the relation

5 C[ W+ 21 J
% O(w+21n) = £ C( - j’lznk.
k h h

which assures, through the well known Poisson summation formula, that the
corresponding space domain function ¢(x) is cardinal. Some technical mild con-
ditions on the signal power spectrum C(w), needed (o ensure the validity of eq.
(29.b), will be discussed in the next sections.

= (29.b)
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A very interesting similarity exists between the derived optimal approxi-
mation filter in eq. (25) and the classic Wiener filter for noisy, stationary random
signals. According to Wiener’s linear prediction theory, the optimal lilter is
defined as the ratio between the power spectral densities (PSDs) of the noiseless
stochastic signal and the noisy input signal, see Sideris (1995). This is very similar
to eq. (25), where the numerator C(®) is the Fourier transform of the spatial CV
function of the true deterministic signal g(x), and the denominator C (m) can be
identified as the Fourier transform of the CV function of the «noisy» input signal
Zu(x) [see eq. (14.a)]. In our case, the noise takes the form of the lost information
due to the discretization of the original signal (aliasing error), shown in fig. 2.

It should be noted that, in contrast to Wiener filtering theory, no stochastic
concepts are used in the present paper for the linear approximation problem. The
term cowariance furnction, that has been used throughout this section, should be
understood in a purely spatial deterministic sense [eq. (23)] and nof in any stochastic
context under some stationarity and ergodicity assumption. This is especially import-
ant in view of the so-called «stationarity restriction» problem which is believed to
exist in the statistical collocation framework. Our present formulation can be
considered as «slalionary» only in the sense that we use a 1D covariance function
for 1D signals, which results solely from the logical requirement of having a
translation-invariant approximation scheme (i.e. independent of the origin of the
reference system used to describe the position of the data points). See also the related
discussion given in Sanso (1980). This, however, does not mean that the approxi-
mated/unknown signals have (or should have) a uniform behavior across their do-
main, and it certainly does not exclude us from obtaining localized information for
this varying behavior.

4. - THE MULTIRESOLUTION CHARACTER OF STATISTICAL COLLOCATION

The final result of section 3.2 is quite general and it did not involve any
particular concepts from Mallal’s multiresolution theory. It is a rather remarkable
fact that the statistical collocation framework actually leads to a scale-invariant
signal approximation scheme (i.e. independent of the scale of the reference system
used to describe the position of the gridded data points), similar to the one en-
countered in wavelel approximation theory. However, there is a signilicant differ-
ence between the collocation model of eq. (28) and the classic wavelet-based
approximation methodology, due to the fact that the optimal approximation kernel
¢(x) associated with the collocation case is now changing for every different data
resolution level A, according to the frequency domain [orm in eq. (27).
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The most appropriate way to describe the behavior of the signal approximation
model of eq. (28), with the associated kernel ¢(x) defined by the frequency domain
form in eq. (27), is to characterize it as: a) translation-invariant; b) scale-invariant,
and c) data resolution-dependent. Regardless of the origin and the scale of the
relerence system used to describe the physical/spatial position of a given set of
gridded data points, the approximated ficld according to the statistical collocation
algorithm will always have the same form. Let us briefly demonstrate the scale-
invariance aspect of the collocation approximation algorithm (a similar methodology
can also be employed for the translation-invariance aspect). Il we use a new
reference system &’ = x/a to describe the original unknown field g(x) and the
position of its point data values g(r/1), then we basically want now to approximate a
new unknown field g'(x) = g(ax) using its point data values g'(nh'y=g'(nh/a) =
g(nh).

The application of the basic approximation formula (28) yields

T bl %) [ h x
g(x)—‘? g(n/z)(p( o n)_; g(n . ](g{ 77 n] -

=3 gty o 4 -] - e

which demonstrates the scale-invariance properly ol the spatio-statistical
collocation. Note that the sampling resolution of the unknown deterministic field g
is the same for both reference systems x' and x (i.e. we use the same point data
values cach time). The above situation of scale-invariant signal approximation, for a
certain data resolution level 4, is illustrated in an abstract way in lig. 4.

The optimal kernel ¢(x) in the statistical collocation model of cqg. (28) is
appropriately scaled (shrinked or expanded) in order to «match» the resolution level
h of the given data grid g(nh), as this is expressed in the scale of the used reference
system. The linal approximated field g'(x) is then formed by adding translates of the
scaled optimal kernel ¢(x/%), which are centered at all data points. Although such a
linear approximation scheme obeys very closely the classic multiresolution/wavelet
spirit, it cannot really be identified as such since the actual form of ¢(x) is also a
function of the data resolution /4 itself. On the other hand, the standard wavelet
approximation theory requires the use of a fixed scaling kernel @(x), which is just
tuned in the desired resolution level of the signal approximation by proper dyadic
scalings (see, section 2).
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e

Reference
System x

Reference S i,
Systemx'=xa/a

Fig. 4 - Scale-invariant signal approximation at a certain data resolution level /i (the value of the scaling
parameler a is assumed a > 1),

In order to better understand the above essential difference, we should express
the optimal kernel ¢(x) associated with the statistical collocation procedure in the
following parameterized form [see, eq. (27)]:

C( o J

o(x, 1) ;> D(w, h1) = _\n) (31.a)
E (& ® + ?Lk
k h h

where the data resolution A plays the role ol a constant parameter in the last
equation. According to the fundamental scaling property of the Fourier transform,
the scaled version @(x/h) = gy (x) of the optimal approximation kernel ¢(x) will thus
have the following frequency domain form:

q)(x,hJ L; h(b(hu),h):hiam) (31.b)

h ¥ C{w% ZRkJ
kk h
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which is identical with the Wiener-like approximation filter that was derived in
section 3.2, eq. (25). For cach different value of the data resolution parameter 4, the
basic optimal kernel in eq. (31.a) will assume a correspondingly different waveform,
and hence the approximation model of eq. (28) will not employ scaled versions of
the same @(x) for every data sampling level /. Therefore, we see that the statistical
collocation concept not only does it produce a scale-invariant signal approximation,
but in addition it also «forces» the behavior of the basic approximation kernel to be
adapted to the current data resolution in a certain optimal fashion, as suggested hy
eq. (31.a). It is very important to note that, regardless of the actual value of 4, the
function o(x, k) always corresponds to a cardinal (sampling) kernel, as it was ex-
plained in section 3.3.

The varying behavior of the optimal approximation kernel ¢(x, 4), for different
data resolution levels /4, is shown in figures 5 and 6. Two different models for the
power spectrum C(w) of the underlying unknown signal are used. In particular, fig.
5 shows the Fourier transform ®(w, /1) from eq. (31.a) for the case where the signal
power spectrum has a Gaussian form, i.e.

C(w)=Be (32.2)
whereas fig. 6 illustrates the Fourier transform of the optimal approximation kernel
for the case where the signal power spectrum follows a slower decaying pattern than
the Gaussian, as follows:

C(w)= - 5 (32.h)
1+

with the symbol B denoting just an arbitrary constant value for both cases.

These graphs help considerably to understand the (somewhat peculiar) behavior
of the optimal approximation kernel in the statistical collocation framework. Under
proper mild conditions on the signal power spectrum C(w), the function ¢(x, #) in
eq. (31.a) will asymptotically converge to a well defined L*(W) cardinal kernel as &
— 0. All the individual members (i.e. functions) of this convergent sequence will be
L*(N) cardinal kernels as well. In the case of fig. 5, for example, it is obvious that the
spatial expression of the optimal approximation kernel will gradually converge (o the
sinc(x) function, On the other hand, as the data sampling resolution decreases (h — o),
the optimal approximation kernel ¢(x, #) will gradually become the zero function in
the L*(9) sense, as it is evident from the behavior of its Fourier transform in both
figures 5 and 6. The rigorous mathematical proof of the above statements, as well as
the derivation of the necessary mild conditions on the signal power spectrum C(w),
are beyond the scope of the present paper and they will not be presented here. Some
relevant details can be found in the next section.
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Fig. 5 — Fourier transform d(w, 1) of the optimal approximation kernel g(x, /) for various data resolution levels /i.
The underlying unknown signal is assumed to follow a Gaussian power spectrum C(w).
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Fig. 6 - Fourier transform d{w, /1) of the oplimal approximation kernel ¢(x, k) for various data resolution levels /.
The underlying unknown signal is assumed to follow the power spectrum model C(w) given in eq. (32.b).
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5. - GENERALIZED MULTIRESOLUTION ANALYSIS IN L*()1)

In this section we will explore in more detail the actual connection between the
statistical collocation model of eqs. (27) and (28), and the classic multi-resol-
ution/wavelet approximation framework which was briefly presented in section 2.
We shall also attempt to clarify a few mathematical details that were left unjustified
in the previous sections. In particular, it will be shown that under certain mild
conditions on the spatial CV function and the power spectrum of the unknown
signal g(x), the corresponding optimal kernel ¢(x, &) of eq. (31.a) produces a gen-
eralized MRA-type approximation scheme in the Hilbert space L()).

5.1. - MRA PROPERTIES OF THE OPTIMAL APPROXIMATION KERNEL

First, we need to establish that the optimal approximation kernel in statistical
collocation, as it is given in eq. (27) or eq. (31.a), is a well defined function in the
L*(R) Hilbert space for any real positive value of the data resolution /4. Using eq.
(31.a), the L* norm of the optimal kernel o(x, /) takes the following form:

where M, is an auxiliary 2r-periodic function, given by the formula

2
1 o  2nk ,
af 2 g B 2
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and the discrete sequence a, has of course the general form

1 w 2nk
=—0C — . 34.1
W=, [h T ] i

Let it be reminded that the signal power spectrum C(w) is always a real-valued,
non-negative and even function, which belongs in the L'(W) Hilbert space (i.c. since
the unknown signal g(x) is assumed to belong in the L?()) Hilbert space). Obviously,
the infinite series Za . corresponds to the 2n-periodic Fourier transform of a space
domain sequence b[n] constructed from the signal covariance values as follows (see,
e.g., Oppenheim and Schaler, 1989):

bln]=c(nh). (35)

Therefore, il the discrete sequence b[n] is absolutely summable, the series Za
will always converge uniformly to a finite, continuous, 2n-periodic function oi 0
(Oppenheim and Schaler, 1989, p. 47). In this way, we will impose the following
basic condition on the signal CV [unction ¢(x):

Condition 1:
Y |e(nh)| <o, Vh>0. (36)

Note that the above condition is always satisfied in the case where the underlying
unknown field g(x) has a compact support in the space domain. A simple example of
a CV function with infinite support, for which the above condition is valid, is the
Gaussian function. Under condition (36), the series Za, will converge uniformly for
every value of o and /4, and since all its individual terms a, are always non-negative,
the series Xaj, will also converge o a linite 2n-periodic function of w for every data
resolution level /1. It is also essential to ensure the validity of the following relationship:

1 (m 2rk

%ak:% : & hdl ¥ J;ﬁ() Voel, >0. (37)

There are various types of conditions, non-contradictory with the first condition
given in eq. (36), that can be imposed on the signal power spectrum C(w) in order
for eq. (37) to be true. For the purpose of this paper, we shall simply assume one of
the following:

Condition 2: (38)

a) C(w) =|G(w)]* >0, Yo e or
b) C{w) is allowed to vanish only at a finite number of arbitrary isolated points,
and/or in a finite number of closed frequency intervals. The signal power spectrum
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C(w) is also allowed to vanish at an infinite number of isolated points without
destroying the validity of eq. (37), as long as these infinite points arc not equidistant.

The justification (and adoption) of the previous restrictions on C(w) depends ba-
sically on the physical properties of the unknown field that we want to approximate.
The case where the signal power spectrum C(w) vanishes in an infinite frequency
interval (i.c. the unknown field g(x) is a bandlimited signal) requires special consider-
ation, and it will be treated separately in a future publication.

If we further assume that the signal power spectrum C(w) is a continuous func-

tion, i.e.
Condition 5. C(w) is continuous for every m e (39)
then, under the three previous conditions, (36), (38) and (39), the auxiliary term M’Qn(m)
in eq. (34.a) will always converge to a well defined, finite (bounded), strictly-posi-
tive, continuous, and 2r-periodic function, and therefore its integral in eq. (33) will
always be a finite number. This makes the optimal approximation kernel o(x, ), defi-
ned by eq. (31.a), a proper L*()) function for any real positive value of the data res-
olution level A.

Finally, the condition that the optimal approximation kernel ¢(x, /) in statistical
collocation has a non-vanishing integral (just like the scaling function of an MRA
should have a non-vanishing integral; see, section 2.1) requires that its Fourier
transform ®(w, /) does not vanish at the origin. Taking into account eq. (31.a), this
is transformed to the following simple condition for the signal power spectrum:

Condition 4:
C(w),o#0. (40)

We are now in position to consider an infinite sequence {Vi};., of closed linear
subspaces in L2()). Each element of this sequence is defined as the closed linear
span of the set {o(x/h; — n, k) | ne Z}, where o(x, k) is the optimal approximation
kernel given by eq. (31.a), and A; > 0 denotes the data resolution level associated with
each subspace V,. We will further assume that

Condition 5:
hi>hi+1’ V]EZ (41)

which makes {Vi} a subspace sequence of increasing resolution in the Hilbert space
L*(). Note that the scaling parameter A; is not restricted now to dyadic values (i.c.
h; = 27), as it happens in the classic MRA case. By definition, the above subspace
sequence satisfies the third (translation-invariance) basic property of an MRA (see,
eq. (1.c), section 2.1) for any possible form of the scaling parameter /4, i.e.

f(x)eV, o flx+nh) eV, Vnel. (42)
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In order for the specific sequence {V}} to satisty the first («nesting») property of
an MRA (see, eq. (1.a), section 2.1), we have to impose some additional restriction
on the way that the value of the scaling parameter A; changes from one subspace V;
to the next V, ;. In particular, we have to assume that for every j e Z

Condition 6:
h
h

=i
i+l

where ~a;eZ” -{1}. (43)

j?

The above condition implies that any two successive scaling parameters
associated with the subspace sequence {V}} should be related through a positive
integer number, different from unity. Note that the actual integer value a; may
change from one subspace pair (V;, V;,,) to another (Vi Vi), However, eq. (43)
will ensure that the scaling parameters associated with an arbitrary pair of subspaces
(Vi, Vi)ji<x are always related through a positive integer number as follows:

h

T: ad.,,...a.,, Vi<kelZ. (44)
I

i
[
S
The special case where the scaling ratio in eq. (43) assumes a fixed positive
integer value a (i.c. independent from the resolution index j) occurs if we restrict the
data resolution level A, associated with every subspace V;, to take the following ex-
ponential form:

hi=al, VjeZ (45)

where a is now a fixed positive integer number, different from unity. Dyadic subspace
schemes (as in the classic MRA framework) will of course arise if we set the value of
a in eq. (45) to be equal to 2. Nevertheless, the general condition of eq. (43) is all
that we actually need in order for the specific subspace sequence {Vi} to be nested.
The proof is very easy and it can be found in Appendix B,

Furthermore, the subspace sequence {V;} constructed from the optimal approxi-
mation kernel ¢(x, /;) will also satisfy the fourth («completeness») basic property of
an MRA (see, ¢q. (1.d), section 2.1). In order to prove that, we have to recall the fact
that the kernel ¢(x, h;) is always a cardinal/sampling function, regardless of the
actual value of the data resolution level A;. In this way, every signal that belongs in
an arbitrary subspace V; c L*(0) of the multiresolution sequence { Vit will have the
general form

n

fi(x) =3, fi(nh;) (p(;ﬁ -, hi} Vi(x)e V. (46.a)
J
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By taking into account eq. (31.a) and applying the Fourier transform to the last
equation, we obtain the general [requency domain form of every signal fi(x) be-
longing in an arbitrary subspace of the multiresolution sequence {V}}, i.e.

Fw)=— (@ zﬁbw2m1, Vi(®) eV, (46.b)

| 2rk | » I
| g =
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As the resolution index j increases, the data resolution level /i; associated with
the corresponding subspace V; becomes smaller and smaller, according to the general
condition imposed by eq. (41). Obviously, when /z; becomes infinitely small (j — e
& hy — 0), then eq. (46.b) will be reduced to a simple identity, i.c.

F(w) = F(o) (47.a)

which is naturally satisfied by every signal in the Hilbert space L*()). In other
words,

limV, = 12()). (47.b)
j-roe

On the other hand, when the resolution index j decreases, then the magnitude
of the corresponding scaling parameter /; will be increasing. In the limit, where 7
becomes arbitrarily large (j — - < I1; — o), the right-hand side of the frequency
domain equation (46.h) will be reduced 1o the form 0 - e, which is equal to zero
(Halmos, 1991). This simply means that the multiresolution subspace sequence {V}
will be finally «shrinked» to the zero space in the L*(H) sense, i.e.

lim V; = {0}. (48)

Lastly, we have to check il the family of translates {¢(x/h; - n, h;) |ne Z} of the
optimal approximation kernel forms a Riesz basis for every element V; that is
spanned by this family. This final MRA property (see, eq. (1.e), section 2.1) is
especially important, since it will ensure stable signal reconstruction schemes from
their discrete samples within every multiresolution subspace V;. A necessary and
sufficient condition for this last property is (see section 2.1, and Unser and
Daubechies, 1997)

O<A£2‘(l)((;)+2nk,11j)‘255<+oo, Voel, h;>0 (49
I

where A and B arc some strictly positive constants, and ®(w, #,) is the Fourier
transform of the optimal approximation kernel ¢(x, /) at data resolution level A;. If
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we take into account eq. (31.a), the above inequality can be casily expressed as a
function of the signal power spectrum C(w) in the following way:

2
i) o 2nk
|
% [ h; [/’1; 4 h; ]] ,,,,,
N M

0<A< = sn(®)SB<teo, Yoei, h>0 (50)
1 o 2nk
—C L ——
(12 h [hi I, N
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where I’FIZH((:)) is the same 2n-periodic auxiliary function that was defined and used
previously in eq. (34.a). Al the beginning of this section we had already established
that (under conditions 1, 2 and 3) the term M, (w) will always converge 1o a well
defined, finite (bounded), strictly-positive, continuous, and 2r-periodic function of
, lor every value of the data resolution level /. In this way, the existence of both the
lower bound A and the upper bound B in the double inequality (50) is always
guaranteed. Hence, the set of integer translates of the optimal approximation ker-
nel {p(x/h; — n, hj)|neZ} will provide a Riesz basis for every corresponding
multiresolution subspace V; associated with the scaling parameter /;. Note that the
actual numerical values of the two bounds, A and B, will change as f1; changes,
which basically means that the level of stability of the individual Riesz bases formed
by the optimal approximation kernel will not be the same for each V.

5.2. - REMARKS

We have established the fundamental result that: the solution of the linear ap-
proximation problem for an unknown deterministic field from its discrete and
regularly gridded samples, under the condition of translation-invariance and the
spatio-statistical MMSE optimal principle (21), gives rise to a generalized MRA-
type structure {Vi} in the Hilbert space L*(M). The main difference between this
multiresolution subspace structure {V} and the classic MRAs according to Mallat
(1989a, b) is that its basic scaling kernel does not have a fixed form, but it varies for
every different scale level /1; associated with the corresponding subspace V.. In this
case, the power spectrum of the unknown signal under consideration provides the
«gencrator» of the scaling kernel o(x, 7;) at each resolution level /z;, according to the
frequency domain form given in eq. (31.a). Certain conditions have also to be sat-
islied by the spatial CV function and the power spectrum of the unknown signal,
which were discussed in detail in the previous section.

The only classic MRA property that will not necessarily be satisfied by the
subspace sequence {V}, which is generated through the optimal approximation
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kernel ¢(x, /1;) of statistical collocation is the «self-similar» dyadic scaling condition
between the individual subspaces (see eq.(1b), section 2.1), i.e.

f(x)eV, o [(2x)eV,,. (51)

In a way, the above property has now been replaced by the freedom to use a
much more flexible rule according to which the scaling parameter (data resolution
level) A; decreases from one nested subspace V; to the next V,,,, based on the general
formula (43). Note that the optimal kernel ¢(x, /1;) essentially generates not just a
single nested sequence {Vj} of dense multiresolution subspaces in L*(91), but an
infinite number of such subspace sequences. Each of these sequences will depend on
a specific formula that we choose to generate the various scale levels /1; (based on the
two gencral conditions of egs. (41) and (43) in section 5.1), as well as on the specific
value of a reference scale level h,. A list of such different alternatives is given in the
following table. The classic case where the nested subspace sequence {V}} is
associated with a dyadic scale parameter /; is shown in the last two columns of
table 1, for some selected reference scale values. Even for such dyadic scaling
schemes, however, the self-similar property of eqg. (51) will not necessarily be sat-
isfied by the generalized MRA sequence associated with the optimal approxi-
mation kernel, unless we impose some further conditions on the signal power spec-
trum C(w).

Table 1 - Sample of scale level values /j associated with different
generalized MRA sequences {Vj}

Scale level generator (see eq. (43))
hi :2]’2+3 jl :2f+'l h
j+1 h]‘+| hi+1

Reference scale value
hg = ]’l(; =03 h() =1 hg =0.3 h() =1 h() =03

5 1/165 1/550 1/64 3/640 1/8 0.0375
i 1/15 0.02 1/8 0.0375 1/4 0.075
hy 1/3 0.1 0.5 0.15 1/2 0.15
hy 5 1.5 4 1.2 2 0.6
ho 55 16.5 32 9.6 24 1.2
hs 1155 346.5 512 153.6 8 2.4

It is worth mentioning that all the derivations in section 5.1 are valid even if the
frequency domain function C(w) in the basic eq. (31.a) does not correspond to the
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true signal power spectrum. This means that we arc allowed to use a certain model
for the signal power spectrum in the construction of the approximation kernel ¢(x, /),
without destroying its cardinal and MRA properties (as long as this model is
compatible with the basic conditions given previously, or any other conditions that
may be equivalently derived for the same purpose). More importantly, the signal
approximation obtained by the statistical collocation algorithm will still converge to
the true field in the L?()) sense, as the data resolution increases (f; — 0). However,
the optimal MMSE principle of eq.(21) will not be rigorously satisfied in such cases.
Nevertheless, the frequency domain structure of eq. (31.a) provides a useful general
recipe for building generalized MRAs, based on appropriately selected functions
C(o) that satisfy the mild conditions given in the previous section.

The preceding developments open a new interesting viewpoint for the result of
the statistical collocation algorithm in eq. (28). Under certain conditions, the
approximated field g(x) will always belong in some multiresolution Hilbert subspace
V; < L*(M) of a generalized MRA sequence, the scale level A; of which is dictated
from the sampling resolution of the available discrete data. ThL actual collocation
approximation algorithm can be considered as the application of a sampling
theorem associated with the specific subspace Vj, since the set of translates of the
approximation kernel will always constitute a sampling Riesz basis for V;. This result
is in very close connection with similar mathematical studies, where it was shown
that for (almost) every classic dyadic MRA there exists a unique sampling Riesz basis
in each of its nested subspaces (sce, e.g., Walter, 1992; Xia and Zhang, 1993). The
idea of using sampling expansions for representing gravity field signals is certainly
not new, and it has already been discussed by many authors in the context of optimal
linear approximation (see, e.g., Schmidt, 1981; Moritz, 1976).

It is also interesting to mention the essential difference between the original
approximation concept of classic dyadic MRAs according to Mallat (1989a, b), and
the present collocation-based multiresolution approximation scenario. Mallat’s initial
idea was based on the orthogonal projection of the unknown signal g(x) onto a
dyadic MRA subspace V; (see section 2.2). Under this approach, the approximation
#(x) and the original 51gnal g(x) will not necessarily agree at the data points x, = 72 A,
which is not a desirable property within a noiseless data setting, Mallat’s procedure
could be thought like starting from the top of a pyramid (i.e. MRA) and by successive
orthogonal projections onto more and more detailed resolution subspaces we finally
return to the top. In the statistical collocation approach, on the other hand, we start
from the «bottom» of a generalized MRA structure, and by obtaining denser and
denser sampled values of the unknown field (and correspondingly applying the
sampling theorem associated with the «pyramid») we finally reach the top. It can
actually be shown that this «bottom-to-top» multiresolution approximation,
through the use of a scaled cardinal kernel o(x, 7;), corresponds to a certain
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oblique projection scheme within the subspace sequence {V,}; see Blu and Unser
(1999).

The previous extensions of the classic MRA concept suggest that we may be able
to achieve a similar extension of the classic wavelel bases associated with Mallat’s
dyadic MRAs. For example, the orthogonal complements W, of the various sub-
spaces in the generalized MRA structure {V}, which is constructed by the optimal
approximation kernel ¢(x, /), will most likely admit a Riesz basis gencrated from the
translates of a «wavelet» kernel y(x, /) much similar to the scaling kernel given in
eq. (31.a). If such a step becomes successful, we could essentially generate a «non-
stationary» system ol base functions in L*()) that will be directly associated with the
actual statistical collocation formula (28); i.e. the approximation of the unknown
signal will give rise to a certain type of wavelet-like basis. The potential of such a
connection is quite remarkable, in both theoretical and practical terms, and it will
presented in fulure publications.

6. - CONCLUSIONS AND FUTURE WORK

The central idea of the present study was to demonstrate that the concept of
multiresolution/wavelet theory lies at the very core of some of the approximation
principles involved in physical geodesy problems. The method of spatio-statistical
collocation, as expressed by the optimal estimation criterion in eq. (21) and the
classic translation-invariance condition, leads to signal approximation models
similar to the ones encountered in Mallat’s MRA theory. It is the opinion of the
author that Sanso’s formulation for the collocation problem (Sansd, 1980) should
not be viewed only as a «supplement» to Wiener’s stochastic prediction theory for
geodetic approximation problems. It actually constitutes a very powerful and auton-
omous modelling tool, with remarkable connections to multiresolution approxi-
mation theory. The importance of this link is that it provides basically the means to
develop a useful generalization of Mallal’s classic MRA approximation theory,
where the data resolution level is not restricted only to dyadic values. Of course,
much more theoretical work is needed to establish the existence of wavelet-like
bases within the generalized MRA structure that was developed in this paper.

Other additional theoretical extensions of the issues discussed herein are also
needed in order to cover the spectrum of possible applications in gravity field
modelling. First, and most important, is the inclusion of the observational (non-
stationary in general) noise in the multiresolution approximation framework, and
the development of optlimal noise filtering methods in multiresolution approxi-
mation models. In the noiseless case, efficient algorithms for studying the
behavior of the signal approximation error caused by the basic formula (28), as a
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function of the data resolution level & and the used kernel o(x), will be quite
useful especially for simulation studies with synthetic unknown fields. The case
where the available data grids include not only sampled values of the unknown
field, but other linear functionals as well, should be also carefully treated. Finally,
the extension of all the above in two and three dimensions (including compact
spherical domains) should be made in order to be realizable for actual gravity field
applications.

One of the advantages of the present multiresolution formulation for statistical
collocation is the casiness with which the «non-stationarity problem» can be
overcome. Having its roots in the very much debated stochastic/non-stochastic
interpretation of the gravity field, this problem has been «amplified» over the years
by the domination of the classic Fourier-based spectral techniques in gravity field
modeling. Although stationarity is a stochastic term that cannot be theoretically
justified in the present purely deterministic approximation setting, 1 personally
perceive this problem (in the context of optimal lincar estimation in deterministic
ficlds) as the ability to reconstruct and to study locally the unknown field in a rig-
orous and consistent manner with the approximation principles. With such an under-
standing of the problem, MRA and wavelet theory can definitely provide valuable
tools without deviating from the universally acceptable collocation spirit (i.e. MMSE
principle).

Practical and computational issues have not been discussed in this paper. Of
special importance for our purposes would be the development of efficient (fre-
quency domain) algorithms for the computation of the optimal scaling kernel in eq.
(31.a) from the signal power spectrum, at various data resolution levels A;. Also, the
possibility to model empirically not the CV function (or the power spectrum) of the
unknown field, but rather the optimal approximation kernel itself should be
explored. In the same line of thought, a reverse approach which would compute the
«induced» signal power spectrum from the analytical expression of already available
scaling kernels (i.e. inversion ol eq. (31.a) might help to identify which types of
kernels seem more realistic for approximating the actual behavior of the gravity field.
All these practical algorithmic issues are extremely important and rather complicated
(especially for higher dimensions). It is interesting, finally, to note the computational
efficiency that is achieved by using eq. (28) over the classic matrix formula of
collocation; see also Svensson (1983). Once the approximation kernel has been
selected, eq. (28) basically corresponds to a single multiplication between two
n-dimensional vectors, whereas the matrix equation that utilizes the spatial CV
function of the unknown field would require 72 + 1 multiplications of n-dimensional
vectors plus an # X n matrix inversion, where 1 is the number of the available data
points.
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APPENDIX A
In this appendix we will prove the following equation

h/2
[ | E(,%)["dxy = hC(w) - ®} (0) C(w) -

-h/2
~ By (0) C(0) + Dy, () @, (0) Cyy (),
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(A1)

Taking into account eq. (20.b), the error power spectrum at an arbitrary value of

the sampling phase parameter x, has the form:

E(w, xn)\2 =G(w) G () - Dy, (0) G(w) S (w)
~D, (0) G () S(m) + Dy, (w) @y, () S(w) S (w)
where the auxiliary function S(w) is given by

2nk ) -ity
S(w) z G[ ] ho

Ik

Integrating equation (A.2) over x,,, we get analytically for every term

h/2
| G(w)G (w)dx, = G(w) G (w) h = hC(w)
h/ 2
h/2 . r . h/ 2 Ik ; 2nk %0
J' Dy () G(w) § (o) dx, = Dy () Glw) J b Z G [ ) e " Vdx,
~h/2 h/2 k

2nk
2nk he2 i P X0
j e " Tdx,

1
= — (1) G
h ) E [ h ) e

2nk]“

- @ (w) Glo 2 elkige
r D, (o) ZG[ f o e ">dE

—-T

h
} sinkn

=, (0) G(ow) ¥ (
kn

=, (0) G(m} G ((1)) =d; () C(w).
Following similar derivations as in eq. (A.5), we obtain
h/2

[ ®,(0) G (@) S(w) dx, =y (0) C(w).

h/2

(A.2)

(A.3)
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Finally, the integration of the last term in eq. (A.2) yields

h/2
| @) @ (0) S(w) S (o) dx, =
-h/2
h/2 ? ; 2mn(m-n) .
=Dy (0) Oy (o) | 22 G[ JGz[UH = ]e h da,
h/2 nom ] h
W2 o 2n(men)
Dy (@) Dy (@) Y Y G[ ] [ 2nmj Fan gy,
n m -h/2
2 T
- 12 D, (o) (I)h ) ¥y Cr[ 2“”} [ i ] -[ ! e ™ sdE
h nom = 2n

_ 1 2nn 2nm | sinn(m - 1)
RCLIEPHE }G { h J (- )
2nk ] (

")

:% ©,0 0,03 [0+ 7T

1 2nk
7,; (D h(m Z C( h J
=Dy (0) @y, (0) Cp (w).

Combining together the results from equations (A.4) through (A.7), we get the

initially claimed statement (A.1).
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APPENDIX B

In this appendix we will prove that the multiresolution subspace sequence {Vi},
which is constructed through the optimal approximation kernel o(x, /;), possess the
basic «nesting» MRA property, i.e.

VeV, VjeZ. (B.1)

Each element V; c L*(N) of this subspace sequence is defined as the closed
linear span of the set {o (x/h; - n, k) |ne Z} , where the kernel ¢(x, 4;) is defined by
eq. (31.a), and the scaling parameter f1; associated with each subspace V; is assumed
to satisfy the two general conditions given in egs.(41) and (43). Furthermore, the
power spectrum and the CV function of the unknown signal are assumed to satisfy
all the mild conditions given in section 5.1 of the paper. Every signal f(x)e V; will
have the general form

f()=3 b, (p[-%—n,hi}, Vi(x)eV, (B.2)

where {b,} is a certain square-summable sequence of coefficients. Taking into
account eq. (31.b), the last equation can be equivalently expressed in the frequency
domain as follows:

Fi(m) = h,]. 2 bne- imnh;
2nk n
C -
% [ ! h; ] (B.3)
7hl __g(m) EZE/.&-((’U)} vf](X)EV!
Y Clw+ 2k ’

where EZH,M((Q) denotes a certain (2r/hj)-periodic function with finite L*(0, 2r//)
norm. In the same way, every signal f,,,(x) that belongs in the subspace V;,, will have
the following frequency domain form;

i _
(U))Z k BZMHM (o), vfi—#l (x) € Vi'*l (B.4)

Y C{(n-}- ]71: ]

k

1j-+- 1

Fj»l(m) :hjn

where /1, is the scaling parameter associated with V;,,, and Egn,hm(w) denotes a
certain (2r/h;,)-periodic function with finite L*(0, 2x/h;,)) norm. Tt is quite easy now
to transform eq. (B.3) in the form of eq. (B.4). Indeed, starting from eq. (B.3) we will
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have

F(w) =1 5 ]_'__ o Qn/ni(‘“)
> C[n+ fi] B, Y, Clao+ }TH
ke L 1 Liy
h> C iﬂk}
= Ih‘il-l (’(U)):Z_] g 2”1!2_ BZrL/hi(U‘))
ntk T
Clw+ h B fnld
% } ) I]"'% [m+ " | (B.5)
Clw =
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[
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Cl o+
% th

where the auxiliary function szhi”(m) is defined by the formula

hi% C{uw ink J

Azn/hi,|(m) = :

hi, Y, C[(.u+2nk J
k

j+1

(B.6)

f;

1

Obviously the above function will be (2n/h;,,)-periodic, since the two scaling
parameters (/1; and 1;,,) are assumed to be related through a positive integer number,
according to condition 6 in eq. (43). For the same reason, the product of the two
periodic functions /"\21[”,%_1((9) and E2m’hi((l)); which is denoted by Nz,t,hm(w) in eq.
(B.5), will also be a (2rn/h;,,)-periodic function.

Furthermore, under conditions 1 and 2 [see, eqs. (36) and (38)], both the
numerator and denominator in eq. (B.6) will converge uniformly to finite, strictly-
positive, continuous periodic functions, for any pair of values for the scaling par-
ameters /1, and /1;,,. Hence, the periodic function /_\ZH,hi,l(w) will certainly have a finite
L?(0, 2nt/hy,,) norm. As a result, the auxiliary periodic function Ny, (w) in eq. (B.5)
will also have a finite L*(0, 2n/h;,,) norm. In this way, the final frequency domain
form of eq. (B.5) corresponds exactly to the expression of a function belonging in the
higher resolution subspace V;,,, according to the general formula (B.4).



