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Summary. - The option for dual modelling in optimal estimation problems, adopting cither a deterministic
or a probabilistic description for (some or all of) the unknown quantities involved, holds a special place in the
development of modern operational geodesy. In this paper one more paradigm ol the fruitful interaction hetween
deterministic and stochastic modelling is provided by looking into alternative schemes for the optimal analysis
of biased data with a linear Gauss-Markov model. The parallel study of these different schemes will hopefully
contribute to a stronger understanding on the ability to model unknown data biases within the least-squares
estimation framework.

MODELLIZZAZIONE STOCASTICA E MODELLIZZAZIONE DETERMINISTICA DI UN «BIAS» INCOGNITO NEI
MODELLI LINEARI DI GAUSS-MARKOWV.

Sommario. - Lopzione relativa alla duplice modellizzazione nei problemi di stima ottimale, adottando una
descrizione deterministica oppure probabilistica per tutte o parte delle quantitd incognite di interesse, occupa un
posto speciale nello sviluppo della geodesia operativa moderna. In questo lavoro viene presentato un ulteriore
paradigma della fruttuosa interazione tra modellizzazione deterministica e stocaslica, esaminando schemi alter-
nativi per Panalisi ottimale di dati deviati condotta per mezzo di un modello lincare di Gauss-Markov. Lo studio
parallelo di questi schemi diversi contribuira - ¢i si augura - ad una pin profonda comprensione della possibilita
di modellizzare dati deviati incogniti nell’ambito della stima ai minimi quadrati.

Keymords: hias, Gauss-Markoy, least-squarcs, stochastic regularization.
Parole Chiave: bias, Gauss-Markov, minimi quadrati, regolarizzazione stocastica.
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INTRODUCTION

The linear Gauss-Markowv (G-M) model is one of the most popular and widely
applied tools for the optimal processing of discrete noisy data. Its usefulness stems
from the fact that numerous applications in geodetic data analysis, as well as in other
branches of geosciences, are essentially reduced to an inversion problem for a system
of linear(-ized) equations

y=Ax+v (1)

where y is a known vector of observations, x is a vector of unknown parameters and
A is a full-column rank matrix of known coefficients. The residual vector » contains
unknown random errors (data noise) whose statistical characteristics are typically
given in terms of their first and second order moments, i.e.

El{v}=0, E{wo"'=C. (2)

The error covariance (CV) matrix C is often considered only partially known, Its
uncertainty is commonly controlled by one or more unknown scaling factors
(variance components) which can be estimated in practice from the available data.
The above classic model has been studied extensively in the context of linear
statistical inference (Rao, 1983) and it still provides a powerful framework for
optimal parameter estimation problems (Koch, 1987). The range of its geodetic
applications is very rich and the associated topics vary from network adjustment and
deformation analysis to satellite orbit determination and gravity field approximation,
and from digital terrain modelling to the harmonic analysis of geodetic time series;
for an in-depth discussion on the use of the G-M linear model in the geodetic
estimation process, see Dermanis and Rummel (2000).

Frequently, the data sets y that enter into eq. (1) are affected not only by random
noise, but also from other external disturbances that cause a systematic offset in the
observed values. Such biases are usually not included in the initial parameterization
(Ax) which is dictated by the theoretical laws that describe the physical system under
consideration. Given the importance and the wide applicability of the linear inverse
problem that corresponds to eq. (1), the aim of this paper is to study the
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modifications that need to be applied to the standard G-M model in the presence of
an unknown bias in the inpul data.

The frist plausible correction that we could intuitively apply to the standard G-
M model, when it is @ priori known that the observation vector is atfected by some
external bias, is to revise eq. (1) according to the form

y=Ax+b+vo {3)

where & denotes the unknown bias vector. However, this modelling choice does not
allow us to obtain a well defined and unique estimate for the unknown quantities x,
b and ». Indeed, if we attempt to solve eq. (3) using the least-squares oplimal
criterion

L (&,b) = min (2" P) = min [(y- Ax-b)" P (y- Ax - b) (4)

b xhb

then we obtain the following system of normal equations

{A"PA A"'P] m B A'{'Py} 5)
pA P ||b Py
which is always singular for any symmetric positive-definite weight matrix P (1).
The singularity of eq. (5) significs the need to model further the unknown bias
vector, if a meaningful LS solution is to be obtained from the given data. In principle,
the situation is similar to the rank-delicient inversion problems that arise in geodetic
network adjustments. In such cases the reference system is not fully defined by the
actual geometrical observations and some external constraints are generally required
for the estimation of the coordinates at the network points. Similarly, the observation
vector y in the linear model of eq. (3) is not able to distinguish between data noise
(7) and data bias (b), unless some additional modelling step takes place before the
LS adjustment is performed.

2. - TWO DIFFERENT SCHEMES FOR BIAS MODELLING

Two different approaches for representing the data bias effect in linear G-M
models will be investigated in this paper. The first option, which will be identified as
the type I model, assumes that the bias vector can be expressed in the product form
b = Bs, where B denotes a scalar parameter and s is a vector of ones. This scheme

(") The solution of Eq. (5) requires the inversion of the projection matrix [I- A (A" PA) A" P ] which is
always singular for any full column-rank matrix A (Harville, 1997)
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implies that all observations are affected by a common systematic offset which is
modelled deterministically in terms of a single unknown parameter.
The general form of the type 1 model is shown in Box 1.

Box 1 - Type I modelling scheme for data bias in G-M models

y: vector ol biased data
y=Ax+ s+ v x: vector of unknown parameters
A: full-column rank design matrix
Elvi=0 s=[1..1]"

fB: unknown bias parameter (scalar)
E{ve") = C v data noise vector

C: known CV matrix lor the data noise

The second alternative does not use any specific parameterization scheme for
the bias vector b. Instead, the effect of the data bias is now modelled stochastically
through a modification of the initial error CV matrix that appears in the G-M model
of egs. (1)-(2). The general form of this approach, which will be referred as the type
I model, is given in Box 2. Note that the observation vector y, the vector of the
unknown parameters x, the design matrix A, and the noise CV matrix € are the same
in both modelling schemes (type I and type II).

Box 2 — Type 11 modelling scheme for data bias in G-M models

v: vector of biased data
y=Ax+79 x: vector of unknown parameters
A: full-column rank design matrix
E{@=0 7= residual vector (includes both noise and bias)
C: known CV matrix for the data noise
E{éd"t = C+8C 8C: modifying term to account for

a common data bias

The common analysis of the models of type I and type 11 is the focal point of this
paper. It is important to understand that although no bias parameter per se has been
included in the formulation of the type 11 model, the effect of a systematic offset on
the observation vector y is still «<emulated» by modifying its associated CV matrix
E{(y - Ax) (y - Ax)"}. Tt will actually be shown that, for a certain simple form of the
additive term 8C, the LS solutions obtained from the two different models become
identical.
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3. - LEAST-SQUARES ADJUSTMENT OF THE TYPE I MODEL

A LS inversion analysis for the model ol (ype I is presented in this section. Let
us repeal here that the fype I model is simply a modilication of the standard G-M
model using a single deterministic parameter  to describe any common biases in the
input data. The following equations give the functional and the stochastic
components, respectively, of this model

y=Ax+fBs+o (6.a)
E{e}=0, Elwe'}=C (6.b)

where s is a vector of ones, and Cis the CV matrix of the actual data noise.

In order to avoid any rank deficiency problems the design matrix A should not
conlain any columns that can be expressed as multiples ol the constant vector s.
Thus, if the physical system under consideration contains a «useful» parameter that
affects equally every observable in the data vector y (e.g., zero degree term in
polynomial surface [itting), then the term (s absorbs both the effect of this parameter
and any external common bias in the input data.

Using the LS optimal principle for the inversion of the {ype I model

L (%)= min (@C 'z) = miﬁn [(y— Ax—Bs) C'(y — Ax —fs)] (7)

B

the [ollowing system of normal equations is obtained

ATC'A A'Ccls||x| [A'Cy (®)
s'c'a s'Cls||B| |s'CTy |
Assuming that the matrix A has full-column rank, the unique solution of the
above system will be expressed with the help of the ancillary quantities

Ny,=A'C'A (9.a)
AP —(Nj1AC Yy (9.b)
E=(N;,'A'C"ys. (9¢)

Note that ™ is the LS-based solution that we would obtain by ignoring the bias
presence in the input data. It corresponds (o a biased estimate of the true unknown
parameters, since

E{&™} = x+BE = x. (10)
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The vector & identifies a characteristic quantity for the fype I model and it can
be directly computed from the known matrices A and C, without the knowledge of
the data values. In fact, the vector & can be viewed as a measure of the relative
distortion that a common data bias would cause on the LS solution, if p was left out
of the type I model.

Taking into account egs. (9.a), (9.b), (9.c), it is easily shown that the LS solution
of the type I model can be expressed by the equations

#=x" _ksTC! (y- AXM)E (11)
B=ks"C " (y- AZ®) (12)

where k is used to denote the scalar quantity

k = T | 1 ¢Tnr & ° (]3)
$ Cs-& Nt
The estimated parameters x can also be expressed as a function of the estimated
data bias 3 using the equation

= 2™ e (14)

or equivalently
x=N;'A"C ' (y-Ps). (15)

According to the last two equations, the LS estimate for the unknown
parameters x can be computed by applying appropriate corrections either to the
initial biased estimate ™ obtained by eq. (9b), or to the original data vector y that
has been alfected by the unknown bias P.

Remark. The scalar quantity & given by eq. (13) always has a positive value.
This is an important result that will be used in the following sections of this paper.
In order to establish the positivity of &, it is sufficient to show that it corresponds to
the value of a positive-definite quadratic form. This can ecasily be verified by
analyzing the denominator of eq. (13) as follows:

e - €q.(28) » .
s'C's-E'NE = s"C's—(s"CTAN,') N, (N,'A"Cs)
=s'Cls—s'C'AN,'ATC's
=s'C'[I-AN;'A"C"]s
=s'C'[C-AN;'A"] C"s

=50 [C~-A{ATCT ‘AT ATC s
=a'Ra.

(16)
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Since Cis a symmetric positive-definite matrix, the term R= C— A (A"C '4) ' A"
will also correspond to a positive-definite symmetric matrix for any full-column rank
matrix A; see, e.g., Harville (1997). As a result, the quadratic form a'Ra always
attains positive values for any vector a, including the case of a= C's.

4. — ACCURACY EVALUATION IN THE TYPE I MODEL

The LS solution given by eqs. (11) and (12) provides the best linear unbiased
estimators for the unknown parameters of the type I model. Their optimality stems
from the well known Gauss-Markow theorem and it relies on the fact that they yield
the minimum mean squared estimation error among any other linear unbiased
estimator within the same model. Furthermore, if the data noise follows a Gaussian
probability distribution, the LS estimators will offer the best mean squared error
performance among every other unbiased estimator within the same model (both
linear and nonlinear).

Since the previous LS estimates are unbiased, the assessment of their accuracy
can be solely based on their variances and co-variances. In particular, the CV matrix
of the estimated parameters x is given by the formula

C; =E{(#-x)(%-x)"} = Np' + kgL' (17)
whereas the variance of the bias estimate Bis
i =E{B-By}=Fk. (18)

Note that k& is the same positive quantity that was previously defined in eq. (13).
Finally, the cross-CV vector between & and pwill be given by the expression

C.; = EA(F-x) (B-B)’} = -kE. (19)

The last three equations can be derived in a straightforward way by simply
applying the variance/co-variance propagation law to egs. (11) and (12).

The previous results show that the presence of the bias parameter f in the fype
I model will always degrade the estimation accuracy of the rest of the parameters.
This is easy to realize from eq. (17), since k is a positive scalar and N,' corresponds
to the CV matrix of the LS estimate for x in the absence of j from the type I model.
Hence, an interesting conclusion that can be drawn is the following: despite the
inclusion of the data bias in the mathematical model of the adjustment (which
prevents the LS-based solution for x from being biased) the estimation accuracy of X
will still become worse than in the case of unbiased data since the CV matrix C;
«increases» in this case by the amount of kEE".
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5. - LEAST-SQUARES ADJUSTMENT OF THE TYPE Il MODEL

A LS inversion analysis for the model of type I is performed in this section.
Note that the type II model corresponds to the following stochastically modified
version ol the standard G-M model

y=Ax+0 (20.a)
E{@}=0, E{o9'}=C+38C (20.b)

where C is the same CV matrix that was employed by the type T model, and §C
denotes a corrective term that can generate a bias-like behaviour in the associated
random error vector @,

In contrast to the type I model which used a single deterministic parameter (J3)
to describe «zero-order effects» in the inputl dala, the previous model absorbs such
effects into the stochastic description ol the residual vector via the inclusion of an
additive component §C in its CV matrix. For the purpose of this paper, we will adopt
the following form for the term 8C

8C =v°ss" (21)

where y* denotes some positive constant whose actual value is left unspecified for
now. Since s is a vector of ones, 6C then becomes a square matrix whose elements
are all equal to the same positive value.

Using the LS optimal principle for the inversion of the type I1 model

L (&)=min (@"C') =min [(y- Ax)"C (y - Ax)] (22)

the following system of normal equations is now obtained
(A"C'Ayx=A"Cy. (23)
Note that the error CV matrix C is now given by the expression
C=C+vy?ss". (24)

Assuming again that the design matrix A has full-column rank and using the well
known matrix identities (Harville 1997)

21 T -1
Ty a4 YyCssC
(C+YZSS[) ¢ limfb‘ (25)
- - -1 4Tp-1,.T -1 —1
(N, -AATC s Ay = N, AV A € ss C AN, 26)

1-As"C'AN,'A'C's



DETERMINISTIC VERSUS STOCHASTIC MODELLING OF, ETC. 53

with A being some arbitrary positive scalar, it is casily shown that the LS solution of
the type 11 model can be expressed in the form

R i _sTC (p- ARD)E 27)

where #® and & are the same quantities that were previously introduced in egs. (9.b)
and (9.c).

The above result is almost identical with the corresponding estimate that was
obtained from the LS solution of the type I model; see eq. (11). The only difference
is that a new multiplicative factor & is now used in place of k. In particular, the factor
k incorporates the variance factor y* as follows:

5 1
o T —; (28)
, +8'C's-ETNE

H

Taking into account eq. (13), we can obtain the following relationship

2 1 yz
k= =k 29
R (29)
2k
Y

Since k is always a positive scalar (see the remark in section 3), it is evident from
the last formula that & will also be a positive quantity which is always smaller than /.

6. - ACCURACY EVALUATION IN THE TYPE Il MODEL

As in the case of the type I model, the optimality of the LS estimator for the type
11 model follows from the Gauss-Markoo theorem and it relies on the fact that it
yields the minimum mean squared estimation error among any other lincar unbiased
estimator.

The CV matrix of the estimated parameters in the type I model can be easily
derived by applying the variance/co-variance propagation law to eq. (27). The final
result is given below

C.=E{&-x) (8-x)"} = N;' +kEE". (30)

The above matrix is similar to the corresponding CV matrix obtained from the
LS solution of the type I model, with the only difference being the presence of the
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multiplicative factor k instead of k. Note again the degradation in the accuracy of
the estimated parameters that is caused by the additive positive component kE&T.
Here, however, the reason for the accuracy degradation is not the inclusion of an
additional bias parameter in the mathematical model of the adjustment, but the
modification of the stochastic model for the input data by the amount y*ss'.

An interesting point is that the degrading term kEE' for the accuracy of the
estimated parameters & in the type I model does not depend at all on the bias
parameter B, whereas the degrading term kEET for the accuracy of the estimated
parameters & in the fype II model depends directly on the selected variance factor y°.

7. - EQUIVALENCE BETWEEN THE MODELS OF TYPE I AND TYPE I1

From the results of the previous sections, we see that a strong link exists between
the two modified versions (type I and type II) of the standard G-M model. The key
point of their inherent connection lies on the relationship between the scalar factors
k and k that appear in the LS solutions for the two model types. Using eq. (29), we
can verify that the value of k will continuously approach k as y* increases, i.e.

& a2
limk = lim |k— |=Fk. (31)
Poe  pPom .y +k

Hence, the linear models of type I and type II can be considered equivalent
when the variance factor y? in the data CV matrix C becomes infinite! Indeed, in this
case the corresponding LS estimates for the unknown parameters x, as well as their
associated CV matrices, become exactly equal.

Given the particular structure of the type I and type I models, such a result can
be summarized in the following words: a constant unknown bias that is modelled
deterministically through a single scalar parameter has the same effect in a LS
estimation problem as a fully-correlated random noise component whose CV
matrix has the form y*ss' and its corresponding variance factor y*> approaches
infinity.

The equivalence between the models of type I and type Il originates from the
fact that the latter is essentially a stochastically transformed version of the former. In
order to recognize this dualism, let us consider again the basic form of the type I
model

y=Ax+fs+o (32.a)

E{e}=0, E{w"}=C (32.b)
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and let us now associate the scalar parameter p with a zero-mean random variable
which is uncorrelated with the random observation errors. In statistical terms we
will have

E{B=0 (33.a)
E{p?} =0} (33.b)
E {po}=0. (33.c)

The preceding approach introduces a Bayesian-like viewpoint to our estimation
problem by assigning a stochastic interpretation to the bias effect in the input data.
Under this new setting, the linear model of eq. (32a) can take the equivalent form

y=Ax+70 (34)

where 7 contains the combined effect of the independent random components 2 and
fs. The first and second order moments of the random vector @ can be computed as
follows

E{o\=E{ps+v}=E{B}s+E{v}=0 (35.a)
E{99"}=E{ps+v)(Bs+v)'} =C+ojss' (35.b)

where C is the CV matrix of the noise vector .

Therefore, if we identify the parameter B in the type I model with a zero-mean
random variable whose variance is identical to the factor y?, then we arrive directly
at the formulation of the type I model. In the absence of any prior information on
B, its variance o should be set equal to infinity. This is not an absurd choice and it
just reflects the maximum level of uncertainty that we have regarding the magnitude
of the data bias effect. Such a choice has been also justified through the algorithmic
equivalence that was established between the LS solutions of the type [ and type Il
models, when y? = e,

8. — THE ROLE OF THE VARIANCE FACTOR y*

In the previous sections it was established that, if the variance factor y* in the
fype I model is set equal to an infinitely large value, then the results for ¥ and C; are
the same as the ones obtained by the type I model for the same data set. It was also
explained that such an outcome is totally reasonable and it complies with the lack of
any a priori information for the unknown bias parameter B in the type I model. In
this way, the factor y? that is employed in the type II model has the role of expressing
in statistical terms, the uncertainty level about any common bias in the input data.
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The choice of y? = e is merely related to a maximum level of uncertainty regarding the
magnitude of the bias parameter p.

One can reasonably claim that, in practice, the data bias B cannot exceed some
maximum limit and the range of its possible values is certainly bounded. Therefore, it
would seem logical to favor the use of the type 11 model (with a flinite variance factor
%) for the LS analysis of a biased data set, rather than following the deterministic
modelling choice of the fype I model. The value of ¥” in such cases should be tuned to
some level which will represent a «worst-case» bias effect in the input data.

Note that, if we use the bias modelling choice induced by the type I model, the
accuracy of the estimated parameters & improves since their CV matrix has smaller
diagonal elements than the corresponding CV matrix of the type I model. This is true
since we always have that k < k; see egs. (17) and (30). An open problem is of course
the actual determination of a proper finite value for v#, which nonetheless goes
beyond the scope of the present paper.

An alternative interpretation for the factor y® is that of an arbitrary
regularization parameter that leads to a family of biased estimators for the type I
model. In contrast to the preceding viewpoint, the value of ¥* does not reflect now
any prior statistical knowledge on the data bias. In this case, we simply replace the
cocfficient k with the coefficient % in the LS estimators of the type I model. The
resulting formulae, which now depend directly on y?, generally provide biased
estimates for the unknown quantities of the type I model. It can actually be shown
that these new estimators offer a guaranteed improvement in terms of mean squared
error (MSE) reduction over the standard LS estimators, with a minimal bias cost in
the solution for x and B; for more details, see Kotsakis (2005). As in the previous
viewpoint, a procedure for selecting a suitable value for y? is still needed, which is
not a trivial problem to solve.

A third alternative is finally to treat the factor Y* as an unknown variance
component in the type II model and apply some of the well known variance
component estimation (VCE) techniques for its optimal determination. In this case, if
the CV matrix C in eq. (20b) describes realistically the statistical behaviour of the
random errors in the observations, an exceptionally large value for the a posteriori
estimate of y* would indicate the existence of a possible common bias in the input data.

9. - CONCLUSIONS

The option of dual modelling in optimal estimation problems, adopting cither a
deterministic or a probabilistic description for (some or all of) the unknown
quantities, holds a special place in the development of modern operational geodesy;
see, e.g,, Dermanis (1976), Dermanis and Rummel (2000), Sanso (1980), Moritz
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(1980). The dilemma whether to use a purely algebraic or a purcly stochastic
representation for the geodetic parameters within the LS estimation framework has
always stimulated interesting theoretical arguments among scientists (Moritz and
Sanst, 1980: Dermanis and Sanso, 1993; Scales and Snieder, 1998), without
however seriously hampering the geodetic practice over the years. In this paper, one
more paradigm of the fruitful interaction between the two approaches has been
rovided through the joint study of the models of type I and fype I1. It has been shown
that these dual schemes for treating a common data bias in linear G-M models lead
to algorithmically similar results, whose differences are controlled by the value of a
single positive factor y?. The different interpretations of this factor have been
emphasized, and some open problems that require additional research have been
pointed out.
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