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Summary. — An alternative route for developing the logic of least-squares estimation is presented in this
paper. In particular, the standard property of unbiasedness for the least-squares estimators is replaced with a
different, yet equivalent, constraint, It is shown that the exact same optimal results are obtained when we switch
the a priori requirement of having unbiased estimates with a condition which implies that the numerical range
ol the unknown parameters is unbounded. The theoretical and practical consequences of this strange dualism

are discussed and some critique on the logical foundations of the classic least-squares method is also made.

STIMA NON DEVIATA E STIMA NON LIMITATA: UN PUNTO DI VISTA ALTERNATIVO SUL PRINCIPIO DELLA
STIMA Al MINIMI QUADRATIL

Sommario. — Larticolo presenta una strada alternativa di sviluppo della logica della stima ai minimi qua-
drati. Si dimostra che si ottengono gli stessi esatii risultati ottimali quando si sostituisce il requisito a priori di
stime non deviate con una condizione che implica la non limitatezza dell'escursione numerica dei parametri
incogniti. Vengono discusse le conseguenze teoriche e pratiche di questo singolare dualismo ¢ vengono inoltre
esaminate da un punto di vista critico i fondamenti logici del metodo classico ai minimi quadrati.

Keywords: Least-squares, unbiased estimation, unbounded parameters
Parole Chigve: minimi quadrati, parametri non limitati, stima non deviata.
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1. - INTRODUCTION

The method of least-squares (1.S) has a history that spans almost two centuries
of human intellectual work. Having been conceived in the nineteenth century when
new and revolutionary ideas were systematically emerging, least-squares theory
marks the starting point of modern data analysis for the applied sciences. Over the
years, LS methods managed to acquire a status of scientific universality and they still
provide the first tool that comes to mind when one deals with optimal prediction or
estimation problems (this is particularly true in the geodetic world). Unfortunately,
the prevailing use of LS methods has not been complemented by a widespread
common understanding of their rudiments. Although there is complete agreement on
how to form the ‘normal equations’ from the ‘observation equations’ and everyone
can obtain the very same values for their solution, the reasons for employing LS-
based estimation techniques, the perception of their objectives and the conditions
under which these are achieved, as well as the interpretation of their final results,
may be quite different among researchers. This somewhat controversial situation is
probably due to the fact that the LS method was originally developed from three
distinctively separate viewpoints: (i) least sum of squared residuals (Legendre,
1805), (ii) maximum probability of zero error of estimation (Gauss, 1809), and (iii)
least mean squared error of estimation (Gauss, 1821, 1823, 1826); see also Plackett
(1972). The previous realization, however, seems to be of little concern in today’s
pragmatic world where often practical results overshadow theoretical questions.
Nevertheless, the aim of this paper is to present an alternative view of the basic
theoretical principles hidden behind LS estimation. As the title of the paper unveils,
the focus is put on switching the well known property of unbiasedness for the LS
estimators with a different, yet equivalent, constraint. In particular, it will be shown
that the same LS-type estimators can be obtained if we replace the a priori
requirement of unbiasedness with a condition which implies that the numerical
range of the unknown parameters is unbounded. It is hoped that such an alternative
formulation can contribute to a stronger comprehension of the LS estimation
process and its possible weaknesses.
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2.-BEST LINEAR UNBIASED ESTIMATION (BLUE) - THE USUAL
APPROACH FOR LEAST-SQUARES PROBLEMS

In the contexl ol optimal statistical estimation, the LS methodology provides a
linear and uniformly unbiased estimator that has minimum mean squared error among
any other linear unbiased estimator. This is the standard perspective that is typically
followed to describe LS estimation techniques, and it has been the basis upon which
their choice for the solution of practical problems is usually justified. In a historical
context, this probabilistic viewpoint is due to Gauss’s second formulation for the LS
method. The rigorous link between this approach, which will be identified thereafter
by the acronym BLUE, and Legendre’s (1805) original deterministic conception is
provided by the well known Gauss-Markov theorem (see, e.g., Dermanis and
Rummel, 2000, pp. 48-49). In this section, a short exposition of the BLUE version for
the LS estimation procedure is given. Although our presentation does not follow the
most general setting, it is nevertheless sulficient for the purpose of this paper.

A system of linear(-ized) observation equations is given as follows:

y=Ax+v (1)

where y is a known observation vector, & is an unknown parameter vector and A is
a design maltrix of known coefficients with full column rank, The residual vector
contains unknown random errors (data noise) whose statistical characteristics are
typically given in terms of their [irst and second order moments, i.e.

E{}=0, Elve)'=C (2)

In practice, the error covariance (CV) matrix C is often considered partially
known and its uncertainty is controlled by one or more unknown scaling factors
(variance components). Since the knowledge of the error CV matrix does not play a
crucial role in the rest of this paper, we assume that C is a lully known symmetric
and positive-definite matrix.

The model of eq. (1) is suitable for the study of a variety of physical systems,
including most areas of modern geodetic research. In principle, in all such cases we
generally seek to estimate an unknown quantity © which depends, directly or
indirectly, on the parameter vector x. For convenience, we consider only the case
where 0 is a linear function of the unknown parameters

0=q'x (3)
with g being an arbitrary known vector. A general linear estimator of 8 will have the

form

0=b"y+c “4)
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where the vector & and the scalar ¢ need to be determined according to some
optimality criteria.

The classic statistical formulation of LS estimation is based on two [undamental
propertics that should be satisfied simultancously by the linear estimator of eq. (4),
namely
(i) Uniform unbiasedness — E {6} =0 = q'x, for any parameter vector x
and

2y

(ii) Minimum mean squared error — E {(0 — )’} = minimum

It is easily shown that the first property leads to the following constraints for b
and ¢

b'A=q" (5)
e=10 (6)
Using eqs. (3) and (4) we can also establish that the mean squared error (MSE)
of the linear estimator 0 has the general form

E{6-02)=b0"Cb+[(b"A-q" )x+c]%. (7)

The minimization of the above quantity, in conjunction with the linear
constraints of eqgs. (5) and (6), lead to a unique optimal solution for & through the
method of Lagrange multipliers. The result is given by the following equation

b=C'A(A'C'A) g (8)

Bascd on egs. (4), (6) and (8), the LS estimate of 8 = ¢"x is thus given by the well
known expression

b=g" (A"C'A)'ATC 'y (9)

which, in turn, implies the following LS estimate for the parameter vector x
x=(A"CTA)TATC Yy (10)
Remark. Normally, the statistical optimality of the LS method is attributed to the fact
that it provides minimum error variance among all other linear unbiased estimation

algorithms. However, since LS estimators are unbiased, the variance and the mean
squared value of their estimation error are exactly equal. Therefore, the BLUE
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formulation can be equivalently based cither on the minimization of the error
variance or on the minimization of the mean squared error ol a linear unbiased
estimator. Here we have chosen to follow the latter approach since it provides a more
direct connection with the discussion given in the following section.

3. - LINEAR ESTIMATION WITH MINIMUM MEAN SQUARED ERROR FOR
UNBOUNDED PARAMETERS — AN EQUIVALENT VIEW OF THE LEAST-
SQUARES PRINCIPLE

The LS estimators given in eqs. (9) and (10) of the previous section can be
obtained through a different formulation, without departing from the broad context
of optimal statistical estimation. The alternative approach that is presented here
represents only an attempt to explain the logic of the unbiasedness condition which
is associated with LS estimators.

Keeping on the same setting of the last section and starting again from a typical
linear estimator © = by + ¢ for an unknown scalar quantity 0 = g, we seek optimal
values for b and c¢. As it was mentioned already, the mean squared estimation error
in such a case has the general form

E{0-0721=b"Ch+|[(b"A-g")x+cl.

Let us point out the fact that the MSE of 0 depends, in general, on the vector of
the original unknown parameters. Now, if the range of x is unbounded, the second
term in the above expression becomes also unbounded. In order to ensure that the
MSE of the linear estimate 6 remains always finite, regardless of the numerical range
of the unknown parameters, the following condition should be satisfied

b"A-q' =0" (11)

where 07 corresponds to a row vector of zeros. Subject to this condition and given
the fact that ¢ is only a constant scalar, the MSE minimization for the linear
estimator 6 yiclds the result

b=C'AA'C'A)'q and ¢=0 (12)

which, in turn, gives rise to the same LS estimates for 0 and x that were derived in
the previous section.

It is thus seen that we are able to obtain the same optimal estimators as in the
BLUE case, without invoking a priori the requirement of unbiased estimates for the
unknown parameters. Hence, an equivalent formulation of the LS estimation
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process can emerge which is articulated in the following words: in the class of all
linear estimators with finite mean squared error for a set of unknown parameters
with unbounded range, least-squares estimators provide results with minimum
mean squared error.

Under the preceding perspective it may appear that we have removed the
requirement of unbiasedness at the expense of a more «restricted» version for the LS
method. Obviously, the property of unbiasedness for the optimal estimators has not
been lost in this case since it will now be a direct consequence of eq. (12). On the
other hand, the resulting estimators are not restrictive in any way because they can
always be implemented, regardless of the actual range of the parameter vector x
and/or the values of the data vector y. In fact, what the previous alternative
formulation should make us skeptical about is the following question: will LS
estimation give optimal results, in the MSE sense, when x is a vector of bounded
parameters?

4. — DISCUSSION - CONCLUSIONS

An instructive way to look at LS estimation is to recognize the fact that its
statistical optimality is associated with the inherent assumption that the range of the
unknown parameter vector x is unbounded. Clearly, in all application arcas where
LS techniques are used the values of the parameters that need to be estimated always
lic within a [inite range. Nevertheless, what should be acknowledged here is that this
important picce of information (or even a fact for most physical systems under
study) is not integrated at all in the ordinary LS estimation process. The logic of the
LS principle, which we routinely use in almost every geodetic estimation or
adjustment problem, ignores the fact that the unknown parameters (c.g., network
coordinates, harmonic potential coefficients, orbital parameters, etc.) have always
finite magnitude. That is probably the reason why LS solutions tend to give
numerical answers that are usually «longer» (when measured by some Euclidean-
type norm) than the actual true parameter vector.

An interesting conclusion that can be drawn from this paper is that the property
of unbiasedness is responsible for causing the classic LS (or equivalently BLUE)
estimators to be blind on the bounded nature of the unknown parameters. This
rather strange dualism brings up a fairly strong argument in favor of biased
estimation methods (Mayer and Willke, 1973). In fact, it is well known that if we
assume an upper bound for the Euclidean length of the unknown parameter vector
and then seek the LS estimator & (in the Legendre’s sense - (y — Ax)T C! (y— Ax) =
minimum) subject to this restriction, the final result will be similar to a ridge
regression solution (Draper and Smith, 1998; Bjorck, 1996). Such a solution
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corresponds Lo a popular biased estimation technique which is known to outperform
LS estimators, in the MSE sense, when a'x is bounded; see theorem 7 in Marquardt
(1970) and Hoerl and Kennard (1970). When viewed in this manner it is difficult to
argue against the use of ridge regression or other biased estimation methods that
confine reasonably the size of the unknown parameters, although in reality x is
always unknown,

As a final remark, it should be noted that in geodesy we have often been guided
by a non-enthusiastic (if not negative) atlitude towards the use of optimal biased
estimation techniques. Without trying to diminish the value of LS methods, and
keeping also in mind the practical difficulties that are often associated with the
implementation of biased estimation algorithms, what is claimed in this paper is that
the basic statistical principles associated with LS estimation should receive a more
objective and careful treatment than is usually given to them.



190 CHRISTOPHER KOTSAKIS

REFERENCES

A. BJOrRck (1996), Numerical methods for least squares problems. Society for
industrial and applied mathematics (SIAM), Philadelphia.

A. DeErMANIS, R. Rummeil (2000), Data analysis methods in geodesy. In: A.
Dermanis, A. Gruen and F. Sanso (cds.) Geomatic Methods for the Analysis of
Data in Earth Sciences. Lecture Notes in Earth Sciences Series, vol. 95, pp. 17-
92, Springer Verlag, Berlin Heidelberg.

N.R. DRAPER, H. SmiTii (1981), Applied regression analysis. 2nd edition, Wiley, New
York.

C.F. Gauss (1809), Theoria motus corporum coelestium in sectionibus conicis
solem ambientium. Perthes and Besser, Hamburg. English translation
(originally in 1857 by C.I. Davis) reprinted as Theory of the Motions of the
Heavenly Bodies Moving about the Sun in Conic Sections, Dover, New York,
1963.

C.E Gauss (1821) Theoria combinationis observationum erroribus minimis
obnoxiae: Pars prior. Gotlingische gelehrie Anzeigen, no. 33, pp. 321-327.

C.E Gauss (1823) Theoria combinationis observationum erroribus minimis
obnoxiae: Pars posterior. Gottingische gelehrte Anzeigen, no. 52, pp. 313-318.

C.F. Gauss (1826) Supplementum theoriae combinationis observationum
erroribus minimis obnoxiae. Gottingische gelehrte Anzeigen, no. 153, pp.
1521-1527.

A.E. HOERL, R.W. KENNARD (1970), Ridge regression: biased estimation for
nonorthogonal problems. Technometrics, no. 12 (1), pp. 55-67.

A.M. LEGENDRE (1805), Nouwvelles méthodes pour la détermination des orbites des
coméles (appendix: sur la méthode des moindres quarrés). Courcier, Paris.
Ciled in Stigler (1986) where the appendix on least squares is reproduced.

D.W. MARQUARDT (1970), Generalized inverses, ridge regression, biased linear
estimation and non-linear estimation. Technometrics, no. 12 (3), pp. 591-612.

L.S. Mayer, T.A. WiLLkE (1973) Omn biased estimation in linear models.
Technometrics, no. 15 (3), pp. 497-508.

R.L. PLACKETT (1972), The discovery of the method of least squares. Biometrika,
no. 59 (3), pp. 239-251.

S.M. StiGLER (1986), The history of statistics. Belknap Press, Cambridge,
Massachusetts.



