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Abstract 
It is well known that traditional spirit levelling, as a 
method for precise vertical positioning, suffers from 
a number of practical limitations caused by terrain 
roughness, harsh environmental conditions and 
restricted line-of-sight. In Canada, this is most 
evident when we look at the spatial distribution of 
vertical control stations, since the remote northern 
parts of the country are very poorly surveyed. A 
method that has been proven to be a useful and 
efficient alternative for vertical positioning in such 
environments is GPS-based levelling. A major 
advantage of GPS observations is that they are not 
affected (as much) by the practical limitations of 
spirit levelling. The achievable accuracy of this 
method, however, is still under question mainly 
because of datum inconsistencies and systematic 
errors inherent in the data. In this paper, a number 
of investigations are conducted to estimate the 
achievable accuracy of orthometric height 
determination in the northwestern parts of Canada, 
using GPS and geoid information in conjunction 
with various auxiliary parametric models (corrector 
surfaces) for describing datum offsets and 
systematic distortions. Specifically, the covariance 
(CV) matrix of the estimated parameters in the 
corrector surface model, and the combined relative 
accuracy of GPS and geoid data, are used to infer 
the accuracy of the orthometric height differences 
of newly established baselines in remote northern 
parts of Canada. A large test network consisting of 
the GPS benchmarks in western Canada is used for 
the computation of the covariance matrix of the 
estimated parameters in the corrector surface 
models, through a combined least-squares 
adjustment of GPS, levelling and geoid data. The 
results provide valuable insight into the role of the 
accuracy for the parameters in the corrector surface 
model for precise vertical positioning via 
GPS/geoid levelling.  

1 Introduction  
The purpose of this paper is to investigate the 
achievable accuracy of GPS/geoid levelling in 
northern Canada. There are several reasons for 
focusing our studies in northern Canada, including 
the numerous practical limitations that are involved 
in establishing vertical control and obtaining 
orthometric heights via differential spirit levelling, 
in such remote and largely unsurveyed territories. In 
an effort to obtain orthometric heights with respect 
to an established vertical datum, the concept of 
GPS-based levelling has been applied, which is 
based on the combination of three height types 
geometrically related by the following equation 
(Heiskanen and Moritz, 1967):  

iNihiH −=               (1) 

where ih  is the ellipsoidal height computed from 
GPS measurements, iN  is the geoidal undulation 
obtained from a gravimetric geoid model, and iH  
refers to the Helmert orthometric height. In practice, 
the theoretical relationship given in Eq. (1) is not 
fulfilled, due to datum inconsistencies, data noise, 
and systematic biases inherent among the three 
height types. The major part of these discrepancies 
is usually attributed to the systematic effects and 
datum inconsistencies, which can be described by a 
corrector surface model such that 

xaT
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where the bilinear term xaT
i  describes the corrector 

surface. 
The general idea described herein is to use the 

accuracy information of the different height types 
that is available from existing vertical control in 
densely surveyed areas (such as southwestern 
Canada) and propagate that information for 



determining the accuracy of the orthometric height 
difference for a newly established baseline in an 
area with no (or very limited) vertical control, such 
as northern Canada. The discussion begins with an 
overview of the formulations required for 
determining the accuracy of GPS/geoid levelling. 
This is followed by a description of how we 
simulate the accuracy for the different height data 
types. Finally, a number of numerical tests are 
performed, which provide interesting insight into 
the role of the corrector surface model accuracy for 
GPS/geoid levelling. Based on these results some 
conclusions are drawn and a brief mention for 
future work on this topic is provided. 
 
2 GPS/Geoid Levelling Accuracy 
For the purposes of this paper, we will focus on the 
relative model, where height differences are taken 
into account. Given the theoretical relationship 
among the three types of height data and the 
incorporation of an appropriate corrector surface 
model as shown in Eq. (2), the orthometric height 
difference klH∆  for a new baseline ( lk, ) as 
obtained from relative GPS/geoid levelling is given 
by 
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where x̂  is a vector containing the estimated 
parameters of the corrector surface model obtained 
through a combined adjustment of 
GPS/levelling/geoid data in a common control 
network, klh∆  is the observed GPS height 
difference of the points ( lk, ), klN∆  is the geoid 
undulation difference, and la , ka  correspond to 
the vectors of known coefficients of the selected 
parametric model (see below). 

 As it was mentioned previously, we are 
interested in the achievable accuracy of the 
orthometric height difference. By simply applying 
variance-covariance propagation to Eq. (3), the 
accuracy of GPS/geoid levelling for a new baseline 
can be obtained according to the following formula: 
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where 2
klh∆σ  and 2

klN∆σ  represent the relative 

accuracy of the ellipsoidal and geoidal heights of 

the baseline, and xC ˆ  is the a-posteriori CV matrix 
of the estimated parameters in the corrector surface 
model. This CV matrix is obtained from a multi-
data adjustment of relative GPS/geoid/levelling 
heights. Details of such combined adjustment 
problems are given in Kotsakis and Sideris (1999).  
The final form of xC ˆ  is given by 
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where, h∆C , H∆C , and N∆C  denote the CV 
matrices for the relative GPS ellipsoidal heights, 
orthometric height differences and relative geoid 
heights in the control network, respectively. The 
design matrix A  corresponds to the pre-selected 
parametric model. Its type varies in form and 
complexity depending on a number of factors. In 
this paper, three models have been tested ranging 
from a simple 3-parameter trigonometric model (its 
pointwise formulation is given in Heiskanen and 
Moritz, 1967, sec. 5-9) to a more complicated 6-
parameter differential similarity transformation 
model (see Kotsakis et al., 2001). The general form 
of the corrector surface model for the relative case 
can be represented by 
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where ij aa ,  are vectors of known coefficients that 
depend on the horizontal location of the points 
( ji, ) and x  is a vector of unknown parameters. 
The three parametric models tested in this paper are 

(a)  3-parameter model 

















=
















−
−
−

=

3

2

1

sinsin
sincossincos
coscoscoscos

x
x
x

ij

iijj

iijj

ij xa
ϕϕ

λϕλϕ
λϕλϕ

 

 
(b)  4-parameter model 



















=





















−

−
−
−

=

4

3

2

1

22 sinsin

sinsin
sincossincos
coscoscoscos

x
x
x
x

ij

ij

iijj

iijj

ij xa

ϕϕ
ϕϕ

λϕλϕ
λϕλϕ

 

   



(c)  6-parameter model 
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where, ϕ  and λ  are the horizontal geodetic 
coordinates of the network or baseline points, e  is 
the eccentricity of a common datum ellipsoid and 

)()( sin ⋅⋅ −= ϕ22e1W . In the following three 

sub-sections, a description of how to compute the 
relative accuracy of the three height types, required 
as input for Eq. (5), is given. 
 
2.1 Accuracy of the Levelling Data 
The full covariance matrix for the orthometric 
height differences H∆C  in the multi-data 
adjustment of the control network, was computed 
the following formula: 

T
netHnetH ACAC =∆           (7) 

where netA  is a design-type matrix (composed of –
1, 1 and 0) corresponding to the baseline 
configuration of the multi-data network adjustment 
(see Fig. 2), and HC  is the covariance matrix for 
the absolute orthometric heights at all points in the 
test network. The latter quantity was simulated 
through a separate minimally constrained least-
squares adjustment of the levelling part of the 
control network, as follows:  

( ) 1−
= levlev

T
levH APAC           (8) 

where levA  is a design matrix (composed of –1, 1 
and 0) corresponding to the baseline configuration 
of the levelling network adjustment (see Fig. 1), and 

levP  is a diagonal weight matrix that takes into 
account the measuring accuracy of each levelling 
baseline in the test network. In this case, three 
different orders of accuracy were used for assigning 
the a-priori values H∆σ  for each levelling baseline 

in the weight matrix levP , namely )(. kmdmm70 , 

)(. kmdmm31  and )(kmdmm2 , referring to first, 
second and third order respectively. National 
standards for the accuracy of vertical control vary 
depending on the country. In our case, the U.S. 
standards were implemented, as they were readily 
available (NGS, 1994). For the case of levelling, 
larger baselines ( km80d > ) usually constitute part 
of a national levelling campaign and adhere to first 
order levelling standards, followed by denser 
regional levelling campaigns ( km80dkm30 ≤< ) of 
second order, and finally local levelling lines 
( km30d ≤ ) which are of third order accuracy.  
 
2.2 Accuracy of the GPS Data 
A similar procedure to the one described in the 
previous section was followed in order to obtain the 
relative accuracy of the ellipsoidal heights h∆C  in 
the control test network used for the multi-data 
adjustment (see Eq. (5)).  The final formulation for 

h∆C  is given by 

T
nethneth ACAC =∆           (9) 

where netA  is the same design matrix that was used 
in Eq. (7) and it corresponds to the baseline 
configuration of the multi-data network adjustment, 
and hC  is the covariance matrix for the ellipsoidal 
heights at all points of the test network. The latter 
was obtained through a separate minimally 
constrained least-squares adjustment for the GPS 
part of the control network, according to the 
formula: 

( ) 1−
= GPSGPS

T
GPSh APAC        (10) 

where GPSA  is a design matrix (composed only of 
–1, 1 and 0) corresponding to the baseline 
configuration of the GPS network adjustment (see 
Fig. 1).  The stronger overall geometry used in the 
GPS-based network as compared to a levelling 
network is evident from Fig. 1, as the GPS network 
is composed of all of the baselines in the levelling 
network as well as additional baselines (dashed 



lines). The weaker geometrical configuration of the 
levelling network is due to the stringent line-of-
sight restrictions of spirit levelling (Ollikainen, 
1997). Here we see the advantages of using GPS 
from a network point of view, especially in rough 
terrain areas such as western Canada, where 
traditional spirit levelling is a difficult and laborious 
task, to say the least. Finally, GPSP  is a diagonal 
weight matrix that takes into account the measuring 
accuracy of the vertical component for each GPS 
baseline in the test network. In our analysis, ten 
different orders for the relative ellipsoidal height 
accuracy are used as defined by the U.S. standards 
(NGS, 1994). The a-priori values h∆σ  in the 
weight matrix GPSP  were assigned based on the 
length of each GPS baseline in the test network, 
such that the accuracy of the baseline degrades as 
the baseline length increases (due to the spatial 
decorrelation of GPS errors, see Fotopoulos et al., 
2001).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1  Levelling (solid lines) and GPS (solid and dashed 
lines) network configurations 
 
2.3 Accuracy of the Geoid Heights 
Following the separate simulative adjustments of 
the levelling and GPS parts of the control network, 
full CV matrices h∆C  and H∆C  for the adjusted 
height differences were obtained. As stated 
previously, these CV matrices were used as input to 
a final integrated multi-data adjustment in order to 
obtain xC ˆ  (see Eq. (5)). The input accuracy for the 
geoid undulation differences N∆C  in the multi-data 
test network was approximated in a slightly 
different manner. A 1°×1° world-wide grid of the 

commission errors of the global geopotential model, 
EGM96 (Lemoine et al., 1998), as computed from 
the accuracy of the spherical harmonic coefficients 
up to degree and order 70 was used to interpolate 
the Nσ  of each benchmark in the control test 
network. For our test network area (southwestern 
Canada), the 1°×1° grid resolution of the geoidal 
undulation errors was sufficient as the gravity 
coverage employed for this area in the computation 
of EGM96 was reasonably dense and 
homogeneously spaced (ibid.). It should be noted 
that, although a higher degree of expansion (i.e. 180 
or 360) may theoretically recover higher frequency 
information (thus reducing the aliasing error), the 
noise is also increased as the number of coefficients 
increases. By using this global geoid error model 
and bilinearly interpolating the grid of commission 
errors for the points in the test network, a diagonal 
error CV matrix of the absolute geoid height errors 

NC  was obtained. The computation of the relative 
geoid height accuracy N∆C , required as input into 
Eq. (5), was obtained by propagating the absolute 
height accuracy as follows:  

T
netNnetN ACAC =∆         (11) 

where netA  is the same design matrix that was used 
in Eqs. (7) and (9), corresponding to the baseline 
configuration of the multi-data network adjustment. 
This results in a fully populated form of N∆C .  
 
3 Description of the Numerical Tests 
Although this study is based on the accuracy 
information of the different height data types and 
therefore does not make use of actual height data 
values, the tests were designed to mirror realistic 
conditions. The test network area used for the multi-
data adjustment contains a subset of the GPS 
benchmarks in the southwestern part of Canada 
spanning parts of British Columbia and Alberta 
(275 points in total, see boxed network in Fig. 2). 
This area has a fairly good distribution of GPS 

benchmarks covering �� 5549 ≤≤ ϕ  and 
�� 110120 −≤≤− λ .  

Several test scenarios were conducted to 
determine the achievable accuracy of orthometric 
height differences via GPS/geoid levelling by 
varying the basic simulation parameters, such as:  
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•  new baseline length 
•  location of new baseline with respect to 

original test network 
•  type of parametric model (see Sec. 2)  
•  form of the CV matrices h∆C , H∆C , and 

N∆C  required as input into Eq. (5) 

It should be noted that sometimes, the estimation of 
the fully populated CV matrices may not be feasible 
or computationally efficient (due to the required 
inversion). In these cases, approximations of the CV 
matrices may be made in a diagonal form where 
only the variances of the baselines are included and 
the covariances between baselines are set to zero. In 
the following section, some of the key findings 
from the test scenarios mentioned above will be 
discussed. 
 
4 Analysis of Results 
Numerous tests were conducted by varying the new 
baseline length from a minimum of 10 km to a 
maximum of 100 km. As expected, it was found 
that the longer the length of the new baseline, the 
poorer the achievable H∆  accuracy from 
GPS/geoid levelling. This is partly due to the spatial 
decorrelation of GPS errors. The contribution of the 
corrector surface model error also increases as the 
baseline length increases due to its dependence with 
the horizontal locations of the points. 

Overall, it was found that the major error 
contributor of the three height types to the final 
result was N∆C . As only a global geoid model was 
used to obtain the aforementioned CV matrix, the 
accuracy was significantly poorer than those 
selected for precise levelling and GPS heights. The 
error CV matrix for N∆C  may also be 
approximated by employing the internal precision 
of a local/regional geoid solution which is 
supported with very dense local gravity, height and 
density data. In such cases, the variances and 
covariances of the geoid height differences are 
usually smaller than those obtained from a global 
geoid error model. However, such a reliable model 
may not always be readily available, especially in 
remote areas. 

By varying the type of corrector surface model 
used in the adjustment, the achievable accuracy also 
changed. For instance, for a 50 km baseline located 
in the north (ϕ = 60°N, λ= 116°W) with input 
accuracies of )(. kmd60 ⋅  and 23 cm for GPS and  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  Test network coverage area and locations of newly 
established baselines in the north 

 
geoid height differences, respectively, the resultant 
relative orthometric height accuracy was 48.3 cm 
with the 3-parameter model and 52.4 cm with the 6-
parameter model. Similarly, for a 100 km baseline 
the achievable accuracy degraded by ~ 13 cm with 
the 6-parameter model as compared to the 3 or even 
4-parameter models. It is evident from these results 
that the more parameters in the model, the more 
amplified its error contribution is (see Table 1). 
This is interesting, as we are not evaluating the 
performance/fitting of different parametric models 
(no actual height data used), rather we focus on how 
the random errors flow through our model and 
affect the accuracy of the final value.     

Table 1 provides a summary of some of the 
numerical results.  The first column refers to the 
approximate latitude of a 40 km baseline (λ ~ 
112°W). The latitude varies as the newly established 
baseline is moved northward with respect to the test 
network area (see Fig. 2).  The column labeled 3rd 
term refers to the accuracy contribution of the 
corrector surface model (3rd term in Eq. (4)).  There 
are three main groups of results, where Full CVs 
refers to fully populated covariance matrices for the 
three height types, Diag. CVs refers to diagonal 
covariance matrices for the three height types, and 
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Full & Diag. refers to fully populated CV matrices 
for levelling and GPS heights and a diagonal 
covariance matrix for the geoid heights.  All results 
are based on input accuracies of 15N =∆σ  cm and  

)(. kmd150h ⋅=∆σ  cm for Eq. (4).     
 

Table 1. Results of Baselines Moving Northward from the 
Test Network Area (all values in cm) 

3 - Parameter Corrector Surface Model 
Full CVs Diag. CVs Full & Diag. ϕ 

σ∆H 3rd term σ∆H 3rd term σ∆H 3rd term 
49° 17.8 0.1 18.0 2.7 18.0 2.7 
53° 17.8 0.6 18.0 3.6 18.1 3.6 
56° 17.8 1.1 18.8 6.0 18.8 6.0 
60° 17.8 1.8 20.2 9.6 20.2 9.6 
64° 17.9 2.5 22.2 13.3 22.2 13.3 

6 - Parameter Corrector Surface Model 
49° 17.8 1.4 18.3 4.6 18.3 4.6 
53° 17.8 0.8 18.3 4.5 18.3 4.5 
56° 18.5 5.1 24.4 16.8 24.4 16.8 
60° 24.2 16.4 54.5 51.6 54.6 51.6 
64° 36.9 32.4 102.2 100.6 102.3 100.8 

 

The results show that the achievable H∆σ  for the 
new baseline was worse as it moved farther north 
from the control test network. This was mainly due 
to the increased error contribution of the corrector 
surface model parameters.  Perhaps the most 
interesting result was the difference between using 
fully populated and (approximate) diagonal CV 
matrices for h∆ , H∆ , and N∆  as input into Eq. 
(5). In studies where the newly established baseline 
was located within the test network coverage area, it 
was found that there was no difference between 
using fully populated versus (more approximate) 
diagonal CV matrices. However, in cases where the 
baseline is moved farther north (away from) the test 
network area, differences up to several tens of 
centimeters resulted. This result is quite significant 
as it indicates that approximate versions of the CV 
matrices should not be used, for new baselines 
situated away from the test network, in order to take 
advantage of the highest accuracy that GPS-based 
levelling provides.  
 
5 Conclusions and Future Work 
A method for evaluating the accuracy of relative 
GPS/geoid levelling was presented. Specifically, the 
achievable accuracy for tests in northern Canada 
was evaluated. The overall accuracy was affected 

by the relatively poor accuracy of the global geoid 
model (as compared to GPS and levelling 
accuracies). Of significance for future studies was 
the increased error contribution of the corrector 
surface based on the number of model parameters.  
Also, as the baseline was moved farther north, the 
significance of using fully populated versus 
diagonal CV matrices for the three height types 
became evident.  In these cases, the achievable 
accuracy for ∆H varied as much as several tens of 
centimeters. 
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