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Abstract 

An important problem in the practical use of optimal spectral methods in gravity field modelling is the stationarity 

assumption for the data noise and the underlying unknown signals. Such a restriction is required, according to the 

standard Wiener-Kolmogorov estimation theory, in order to obtain signal approximation algorithms of simple 

convolution structure that can be evaluated very efficiently through fast Fourier transform (FFT) techniques. Often, the 

observation errors in the input data have significant spatial variations in their statistical behaviour, thus making the noise 

stationarity assumption unrealistic for many practical situations. Also, a stochastic interpretation of the true values of the 

various gravity field signals as random variables with similar statistical parameters is rather questionable, since they 

describe physical phenomena that are not random (probabilistic) and certainly do not have a uniform (stationary) 

behaviour over their domain. The aim of this paper is to present a spectral Wiener-type optimal filter which can be used 

in geodetic estimation problems with arbitrary deterministic signals that are masked by non-stationary observation 

errors. 

 

  

1.  Introduction 

The method of Wiener filtering is a well known and efficient spectral tool that can be used for geodetic data 

‘de-noising’ in the frequency domain. Its framework is based on the Wiener-Kolmogorov linear prediction 

theory for stationary random fields in the presence of stationary additive noise (KAILATH, 1974), and thus it is 

closely related to the method of least-squares collocation with random observation errors (MORITZ, 1980). The 

application of the Wiener filter in geodesy, either as an independent practical tool for data pre-processing or as 

an integral component of a more general linear estimation methodology (i.e. input-output systems theory), has 

primarily focused on problems related to optimal spectral gravity field modelling. For some practical 

applications, see SIDERIS (1996), PAWLOWSKI AND HANSEN (1990), TZIAVOS ET AL. (1996). A detailed 

discussion on the use of the Wiener-Kolmogorov filtering theory in gravity field estimation, and its 

relationship with other linear approximation techniques traditionally used in geodesy, can be found in SANSO 

AND SIDERIS (1997).  

In order to employ the classic Wiener filtering algorithm with noisy geodetic data, a stationarity assumption 

has to be made for both the true/unknown signal and the external random errors. Such restrictions become 

quite problematic for many gravity field applications, since (i) the underlying true signals cannot easily admit a 

stochastic interpretation (thus making the stationarity assumption meaningless) and, most importantly, (ii) the 

additive data noise does not usually follow a spatially uniform statistical behaviour; see KOTSAKIS AND 

SIDERIS (2001) for more discussion. In this paper we will outline a convolution-based algorithmic procedure 

that can be used in geodetic estimation problems regardless of the spatio-statistical properties of the underlying 

signals and the data noise. Our analysis will cover the simple case where an unknown deterministic field is 

observed under the masking of non-stationary random errors, and the desired output corresponds to an 

improved (‘de-noised’) linear interpolating model of the noisy input data. An important point in our approach 

is that the sampling resolution of the data will be taken into account within the optimization procedure, 

resulting in a resolution-dependent noise filter. A numerical example, using a synthetic two-dimensional 

gravity anomaly grid, has also been included to demonstrate the performance of our optimal noise filter under 

non-stationary additive noise, at different sampling resolution levels. 

 

 

 

2.  Methodology – Problem formulation 

The main problem that is studied in this paper is the frequency-domain estimation of an unknown deterministic 

field ),( yxg  using its noisy gridded samples Zmnyx mhnhd ,),(  according to the linear observation equation 
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where ),( yx mhnhg  are the true signal values, ),( yx mhnhv  is a non-stationary noise sequence, and yx hh     

corresponds to the sampling resolution level. The unknown signal will be assumed to have compact support 

over the real plane, and thus the integer sampling indices n and m in Eq. (1) can be practically restricted within 

a finite range )1(0  Nn  and ).1(0  Mm  The Gauss-Markov stochastic model for the observation 

errors is 
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The symbol )(2 v  denotes the noise variance at a single data point, whereas  )( )( v  corresponds to the 

noise covariance (CV) between two data points. The Fourier transform of the noiseless signal grid will be 

denoted by ),( yxG   and it is given by the summation formula (DUDGEON AND MERSEREAU, 1984) 
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where the overbar symbol will be used to indicate a periodic function. We will also use the notation 

),( yxV   for the Fourier transform of the input data noise, which is defined as follows: 
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Two special properties will be imposed a-priori in the estimation procedure, namely linearity and translation-

invariance. The reason for introducing the second property is to obtain a signal estimate that is independent of 

the reference system used to describe the position of the data points. Note that the shift-invariance condition 

has often been applied in the theoretical formulation of optimal estimation methods using errorless data 

(SANSO, 1980; KOTSAKIS, 2000a), although its justification is not altered by the noise presence in the 

observations. Taking into account these two assumptions, the signal estimation formula will have the general 

convolution-type expression 
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where ),( yxh  is a filtering kernel that needs to be determined in some optimal sense. The subscript h is used 

to indicate that the estimation kernel will generally depend on the data resolution level .  yx hh   

The signal error produced by the filtering formula in Eq. (5) can be decomposed into two components, i.e. 
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where ),( yxeh  is the part of the total estimation error caused from the use of discrete data with finite 

resolution (aliasing error), and ),( yxev  is the additional part due to the noise presence in the signal samples. In 

the absence of noise from the input data, the best we can obtain is just an interpolated model ),(~ yxg  for the 

unknown field that will depend on the true signal values at the given spatial resolution. We will assume that 

such a noiseless signal model is given in terms of a linear and translation-invariant formula, as follows: 
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where ),( yxh  is some interpolating kernel that generally depends on the data resolution. The noise-

dependent estimation error will be measured with respect to such a linear interpolating model for the unknown 

field, i.e. 

 

),(ˆ    ),(~    ),( yxgyxgyxev                                                                (8a) 

 

whereas the (pure) aliasing error is 
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The actual choice of the interpolating kernel ),( yxh  is irrelevant for the purpose of this paper, and it can be 

optimized by minimizing a suitable functional of the aliasing error component );,( yxeh  see KOTSAKIS (2000a, 

b). The unknown filtering kernel in Eq. (5) will be determined through the familiar Wiener-Kolmogorov mean-

square-error (MSE) criterion 
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where ),( yxvE   is the Fourier transform of the noise-dependent error term ).,( yxev  It is easy to show that 

the corresponding optimal estimation filter will finally be given by the formula 
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where ),( yxh   and ),( yxh   are the Fourier transforms of the filtering kernel ),( yxh  and the 

‘reference’ interpolating kernel ),,( yxh  respectively. The auxiliary term ),( yxvP   shown in the last 

equation corresponds to the ‘power spectral density (PSD)’ noise quantity 
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where E denotes the usual expectation operator. The result in Eq. (10) indicates that the estimation procedure 

can be decomposed into two individual steps which are connected in a linear cascading manner (see Figure 1). 

The first step, expressed by the filter component ),,( yxW   has the role of ‘de-noising’ the discrete data 

using information on the average behaviour of the input noise and the unknown field at the given resolution 

level. The second filter component ),( yxh   is solely used to obtain a continuous representation for the 

output signal ),(ˆ yxg  based on an a-priori selected interpolating/modelling kernel ).,( yxh  For more 

mathematical details and derivations, see KOTSAKIS AND SIDERIS (2001).  

 

 

 

 

 

  

 

 

 
 

 

 

 

 

 

Figure 1.  The cascading structure of the optimal linear estimation filter.  
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3.  The Wiener-like structure of the optimal estimation filter 

The structure of the optimal estimation filter in Eq. (10) is very similar to the classic Wiener filter, since they 

are both defined in terms of a certain signal-to-noise ratio (SNR) expression. However, there do exist 

conceptual differences between the two filtering schemes because in our formulation: (i) the unknown field has 

been modelled as a deterministic (instead of stochastic) signal, and (ii) the additive data noise has not been 

restricted to being stationary. Thus, it is important to clarify what is the exact meaning of the two frequency-

domain terms that appear in the expression of our SNR-type optimal noise filter ).,( yxW   From Eq. (10), 

we have that 
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where NΜ is the total number of points in the input data grid. The two auxiliary functions ),( yxA   and 

),,( yxB   in the last equation, correspond to the Fourier transforms of two associated sequences which have 

the CV-like expressions (for a proof see KOTSAKIS AND SIDERIS, 2001)  
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The sequence in Eq. (13a) is the discrete (spatio-statistical) CV function of the true deterministic signal at the 

given data resolution level, and thus the term ),( yxA   in Eq. (12) is just the power spectrum of the true 

signal values ).,( yx mhnhg  The sequence in Eq. (13b), on the other hand, does not exactly correspond to the 

noise CV function and, as a result, the quantity ),( yxB   in Eq. (12) should not in general be viewed as the 

data noise PSD (such an interpretation is possible only when the data noise is stationary). The sequence 

) ,( yx mhnhb  can be perceived as a ‘mean’ CV function of the random observation errors. Its value at the 

origin gives an average indication of the noise level at every data point of the input grid, i.e. 
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whereas its values at the other points correspond to ‘averages’ of the noise covariance over pairs of data points 

with coordinate difference equal to ).,( yx mhnh  The numerical evaluation of the optimal noise filter 

),( yxW   in practice can take place only at discrete frequency values using the discrete Fourier transforms 

(DFTs) of the two CV-type sequences ) ,( yx mhnha  and ); ,( yx mhnhb  more details on the properties and 

practical implementation of the optimal noise filter can be found in KOTSAKIS AND SIDERIS (2001). 

 

 

 

4.  Numerical experiment 

A numerical experiment was performed to test the noise filtering component of the optimal estimation kernel 

that was previously derived. A deterministic signal ),,( yxg  assumed to represent some local gravity anomaly 

field, was initially synthesized using a truncated Fourier series expansion with a record length of 200 × 200 

km. The continuous signal was sampled at various resolution levels to obtain noiseless gridded values 
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).,( yx mhnhg  Four different sampling resolutions were selected, namely 0.5 × 0.5, 1 × 1, 2.5 × 2.5 and 5 × 5 

km. All signal grids at each resolution level were partitioned into four equal blocks/quadrants, labeled as 

northwest (NW), northeast (NE), southwest (SW) and southeast (SE). The simulated data noise, which is going 

to be added to the true signal values, will have different statistical behaviour in each of the four grid quadrants.  

A zero-mean noise sequence was added to the samples of the true signal in order to create the input data 

),( yx mhnhd  at every resolution level. The noise values originated from a non-stationary and uncorrelated 

Gaussian stochastic process, using the routines for random number generation of the MATLAB software 

package. The noise variance was constant within each quadrant (NW, NE, SW and SE) of the data grids, with 

its values set to 144 mGals
2
, 9 mGals

2
, 144 mGals

2
 and 49 mGals

2
, respectively. The sample statistics of the 

simulated noise values in the four different quadrants of the data grids are shown in Table 1, for some selective 

resolution levels. 

 

 
Table 1.  Statistics of the simulated noise values in the four quadrants of the data grids (in mGals). 

Data resolution 

(in Km) 0.5  0.5 1.0  1.0 

Grid quadrants NW SW NE SE NW SW NE SE 

Max 49.61 55.64 12.47 27.37 53.15 43.04 11.45 25.88 

Mean -0.04 0.02 0.02 -0.01 0.03 0.01 0.02 -0.08 

Min -52.61 -46.34 -12.14 -27.14 -52.71 -47.87 -10.24 -28.58 

Std 11.99 12.05 3.00 6.98 12.07 12.08 2.95 7.01 

 
  
 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Noisy gravity anomaly values (top plot) and estimated/filtered gravity anomaly values (bottom plot), for the data 

resolution level (1  1) km. Observe that the input noise is much stronger in the western parts of the data grids.   



  

The optimal noise filter ),( yxW   was computed through a fast Fourier transform (FFT) algorithm at each 

resolution level ,  yx hh   according to the SNR expression given in Eq. (12). It was then multiplied by the FFT 

of the noisy gridded data ),( yx mhnhd  and the result was finally transformed back to the space domain as an 

estimated (‘de-noised’) signal sequence ).,(ˆ yx mhnhg  An example of the original noisy data grid and the 

filtered signal values is given in Figure 2. The statistics of the differences between the true signal samples and 

the estimated signal values, for every resolution level used, are also given in Table 2 below.  

 

 
Table 2.  Statistics of the differences between the true and the filtered signal values (in mGals). 

Data resolution (in 

Km) 0.5  0.5 1.0  1.0 2.5  2.5 5.0  5.0 

Max 3.09 3.51 5.53 6.26 

Mean 0.00 0.01 -0.05 0.10 

Min -3.25 -4.00 -4.86 -8.01 

Std 0.66 0.91 1.43 2.26 

 

 

It is interesting to observe that the output estimation error of the filtered signal values is decreasing, as the data 

resolution increases. Such a result is not surprising and it just confirms the (already well-known from signal 

analysis theory) fact that oversampling leads to noise reduction in the final signal estimate. 

 

 

5.  Conclusions 

We have presented a modification of the classic Wiener filtering algorithm which allows us to work with 

deterministic fields that are masked by additive non-stationary noise. The informal similarities of our 

estimation framework with the Wiener filtering formalism stem from the initial assumption in Eq. (5) that the 

optimal signal estimate should be linear and translation-invariant. This led to a convolution SNR-type 

computational scheme that can always be implemented very efficiently using FFT techniques. Of special 

importance in our derivations was the decomposition of the total estimation error into an aliasing component 

and a noise-dependent component. A detailed discussion on this subject, along with some comments on the 

problems encountered when we attempt to apply a ‘one-step’ optimization of the total signal estimation error, 

can be found in KOTSAKIS AND SIDERIS (2001). The presented methodology can be proven a useful tool in 

various geodetic estimation problems of local and/or regional scale, such as the optimal spectral geoid 

determination from noisy gridded gravity data.  
 

 

References 

DUDGEON D.E., MERSEREAU R.M. (1984) Multidimensional digital signal processing. Prentice-Hall, Englewood Cliffs. 

KAILATH T. (1974) A view of three decades of linear filtering theory. IEEE Trans Info Theory, IT-20(2): 146-181. 

KOTSAKIS C. (2000a) The multiresolution character of collocation. J Geod, 74(3-4): 275-290. 

KOTSAKIS C. (2000b) Multiresolution aspects of linear approximation methods in Hilbert spaces using gridded data. PhD 

thesis, Dept. of Geomatics Engineering, University of Calgary, UCGE Report No. 20138, Calgary, Alberta. 

KOTSAKIS C., SIDERIS M.G. (2001) A modified Wiener-type filter for geodetic estimation problems with non-stationary 

noise. J Geod, 75(11-12) (to appear). 

MORITZ H. (1980) Advanced Physical Geodesy. Herbert Wichmann Verlag, Karlsruhe. 

PAWLOWSKI R.S., HANSEN R.O. (1990) Gravity anomaly separation by Wiener filtering. Geoph, 55(5): 539-548. 

SANSO F. (1980) The minimum mean square estimation error principle in physical geodesy (stochastic and non-stochastic 

interpretation). Boll Geod Sci Affi, 39(2): 112-129. 

SANSO F., SIDERIS M.G. (1997) On the similarities and differences between systems theory and least-squares collocation in 

physical geodesy. Boll Geod Sci Affi, 54(2): 173-206. 

SIDERIS M.G. (1996) On the use of heterogeneous noisy data in spectral gravity field modelling methods. J Geod, 70(8): 

470-479. 

TZIAVOS I.N., SIDERIS M.G., LI J. (1996) Optimal spectral combination of satellite altimetry and marine gravity data. 

Report of the Finnish Geodetic Institute, 96(2): 41-56, Presented at the XXI EGS General Assembly, Hague, May 6-10.

 


