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Abstract

An important problem in the practical implementation of optimal spectral methods in gravity field modelling is the
stationarity assumption for the input data noise and the underlying unknown signals. Such a restriction is required,
according to the standard Wiener-Kolmogorov linear estimation theory for random fields, in order to obtain signal
approximation algorithms of simple filtering (i.e. convolution) structure that can be evaluated very efficiently
through fast Fourier transform numerical techniques. Often, the observation errors in the input data have significant
spatial variations in their statistical behaviour, thus making the noise stationarity assumption unrealistic for many
practical situations. Additionally, a stochastic interpretation of the true values of the various gravity field signals as
random variables with similar statistical parameters is rather questionable, since they describe physical phenomena
that are not random (probabilistic) and certainly do not have a uniform (stationary) behaviour over their domain. The
aim of the paper is to present a spectral Wiener-type optimal noise filter that can be used in geodetic estimation
problems regardless of the spatio-statistical properties of the underlying signals and the measurement errors. Some
numerical examples have also been included to demonstrate the performance of the new filter under non-stationary
uncorrelated noise at different sampling resolution levels, using a synthetic two-dimensional grid of noisy gravity
anomaly data.

1.  Introduction

The use of spectral methods in gravity field approximation problems has reached a considerable level of
maturity over the past years, placing them among the standard tools of modern operational geodesy.
Particularly the optimal combination and processing of regional data grids (e.g., gravity anomalies,
altimetric data, digital elevation models, deflections of the vertical, etc.), for either land or marine geoid
modelling, can be very efficiently implemented with frequency-domain techniques, resulting to what is
commonly known in the geodetic literature as an input-output (I/O) linear estimation system. In SIDERIS

[1996] a general description of such optimal spectral methods for solving physical geodesy estimation
problems was given, which closely adheres to the mathematical formalism and terminology found in the
textbooks by BENDAT AND PIERSOL [1986, 1993]; see also SCHWARZ ET AL. [1990]. The comparison of
the I/O systems theory with other linear approximation techniques traditionally used in geodesy (i.e.
least-squares collocation) was discussed in detail by SANSO AND SIDERIS [1997] within the unifying
framework of the Wiener-Kolmogorov (W-K) optimal prediction theory for random fields. Many
numerical studies in gravity field modelling have been performed over the last years using the versatility
of optimal spectral methods, including: Wiener filtering of gravity anomaly data prior to gravimetric
geoid computations [LI AND SIDERIS, 1994], optimal separation of the gravity anomaly signal from
external noise (and other residual) effects for the identification of certain crustal geological features



[PAWLOWSKI AND HANSEN, 1990], optimal combination of shipborne gravity and altimetric data for
marine geoid modelling [LI, 1996; TZIAVOS ET AL., 1996, 1998], simultaneous optimal noise filtering of
airborne gravity vector data [WU AND SIDERIS, 1995], and optimal estimation of the anomalous potential
from airborne gradiometry data [VASSILIOU, 1986], among numerous other publications.

A crucial point in the practical implementation of a frequency-domain I/O estimation system for geoid
computations has always been the assumption that the measurement noise in the various data sets follows
a stationary probabilistic model. Such a hypothesis, in conjunction with: (i) an additional stationarity
assumption for the underlying (true) gravity field signals, (ii) a mean square error (MSE) optimal
criterion, and (iii) the fact that the unknown fields involved in geodetic problems are related through
convolution operators*, lead to simple signal estimation equations of filtering type which can be
evaluated very efficiently using fast Fourier transform (FFT) numerical techniques. This provides a
definite computational advantage over the equivalent space-domain algorithm of least-squares
collocation, especially for large data grids with high sampling resolution. In the case of non-stationary
noise and/or signals, on the other hand, the W-K optimal estimation theory can no longer be expressed in
terms of straightforward linear filtering (i.e. convolution) operations, thus making the spectral algorithms
of I/O systems theory quite complex and unsuitable for efficient evaluation via FFT routines; for more
details, see SANSO AND SIDERIS [1997].

The goal of this paper is to assemble a convolution-type algorithmic procedure (suitable for FFT-
based implementation) that can be used in geodetic estimation problems regardless of the statistical
properties of the underlying signals and the data noise. The true fields will not even be associated with
any probabilistic behaviour at all, but they will be treated as arbitrary deterministic signals. Our analysis
is going to be restricted for the simple case where an unknown deterministic field is observed under the
masking of non-stationary random observation errors, and the desired output corresponds to an improved
(‘de-noised’) linear interpolating model of the noisy input data. This will provide us with a modified
Wiener-type filter that can be used either as an independent practical tool for geodetic data pre-
processing, or as an integral component of a more general I/O linear estimation system (e.g., for optimal
spectral geoid determination from gravity anomaly grids). An important point in our approach is that the
sampling resolution of the input data will be explicitly taken into account within the optimization
procedure, resulting in a resolution-dependent noise filter. The interesting interplay that exists between
measurement noise and data resolution in linear signal estimation will thus become more apparent, since
in the relevant geodetic literature dealing with spectral gravity field approximation problems the roles of
these two important factors have not been clearly distinguished. A numerical example, using a synthetic
two-dimensional gravity anomaly grid, has also been included at the end of the paper to demonstrate the
performance of our optimal noise filter under non-stationary additive noise at different sampling
resolution levels.

                                                          
* This is actually not a strict requirement in order to have estimation algorithms of convolution structure. However, it allows the
efficient application of variance-covariance propagation in gravity field signals through simple filtering spectral relationships.



2.  Notation and other preliminary issues

The main assumptions and the basic mathematical notation that will be used throughout the rest of this
paper are presented in this section. We will follow a relatively simple approximation framework in a two-
dimensional (2D) planar setting which, nevertheless, can fit nicely to many spatial geodetic estimation
problems of local or regional scale. The unknown object of the estimation procedure will be modelled as
a 2D deterministic signal ),( yxg  with compact spatial support over the real plane .2ℜ  Its finite extent
along the two orthogonal axes x and y is denoted by X and Y, respectively. No specific smoothing
restrictions on the behaviour of the unknown field will be imposed, apart from the assumption that it
posses a well-defined 2D Fourier transform, i.e.
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The two parameters xω  and yω  are the spatial circular frequencies along the x and y axes, respectively.
A regular grid of true signal values will be denoted by ), ,( yx mhnhg  where the symbols xh  and yh
correspond to the orthogonal sampling intervals along the x and y directions. Without loss of generality,
we can assume that the compact support of the unknown field is enclosed by the region Xx ≤≤0  and

,0 Yy ≤≤  and thus the integer sampling indices can practically be restricted within the finite range
10 −≤≤ Nn  and ,10 −≤≤ Mm  where xhNX  )1( −=  and . )1( yhMY −=  The 2D Fourier transform

of such a noiseless signal grid will be denoted by ),( yxG ωω  and it is given by the summation formula
[DUDGEON AND MERSEREAU, 1984]

∑ ∑

∑ ∑

∑ ∑

∞+

∞−=

∞+

∞−=

−

=

−

=

+−

+∞

−∞=

+∞

−∞=

+−

++=

=

=

    

1

0

1

0

)  (

)  (

)2 ,2(  1  

 ) ,(     

 ) ,(      ),(

k l y
y

x
x

yx

N

n

M

m

mhnhi
yx

n m

mhnhi
yxyx

h
l

h
kGhh

emhnhg

emhnhgG

yyxx

yyxx

πωπω

ωω

ωω

ωω

                     (2)

where the last part in the above equation expresses the aliasing effect on the Fourier transform of the
original continuous signal. The overbar symbol will generally be used to indicate a periodic function, and
the lower case letters n, m, k, l are always reserved to denote integer numbers. The input data obtained
from the unknown field is given in a discrete gridded form according to the linear observation equation
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where ) ,( yx mhnhv  is a 2D random noise sequence that is generally assumed non-stationary. The
associated stochastic model used to describe the behaviour of the measurement noise, in terms of second-
order moment information, is defined by the following equations:

{ } 0   ) ,( =yx mhnhvE                             (4a)

{ } [ ]),( ),(     ) ,(    ) ,( 22 yxyxvyxvyx mhnhmhnhmhnhmhnhvE σσ ==       (4b)

{ } [ ]) ,( ) ,(     ) ,( ) ,( yxyxvyxyx lhkhmhnhlhkhvmhnhvE σ=                    (4c)

where E is the probabilistic expectation operator. The symbol )  (2 ⋅vσ  denotes the noise variance at a
specific data point on the real plane, whereas [ ])  ( )  ( ⋅⋅vσ  corresponds to the noise covariance (CV)
between two data points. We will also use the symbol ),( yxV ωω  for the 2D Fourier transform of the
random observation errors, which is defined as
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Similarly, the 2D Fourier transform of the gridded data is given by the equation
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Note that the noise signal is zero outside the input data grid (NM points), since the unknown field
),( yxg  has been assumed to have finite spatial support and thus no measurements are performed outside

this region.



3.  Problem formulation

Two basic properties will be imposed a-priori in the estimation algorithm, namely linearity and
translation-invariance. The reason for introducing the second property is to obtain a signal estimate

),(ˆ yxg  that is independent of the reference system used to describe the position of the data points.
Stated in a simplified way, if we change the origin of the 2D reference system xy on the real plane by
arbitrary translations (without ‘moving’ the unknown field or the associated data grid), we want the new
signal approximation to be just a translated version of the initial estimate that was obtained in the original
reference system.

The justification of such a modelling choice relies basically on simple logic and mathematical
intuition, and it is not affected by the spatio-statistical properties of the true signal and noise involved in
the specific approximation problem. If one chooses to follow a non translation-invariant methodology
(e.g., Tikhonov regularization in a Hilbert space with a non-homogeneous reproducing kernel), he should
at least be able to explain physically the dependence of the output signal estimate on the origin of the
coordinate system used to reference the unknown field and its discrete input data. Note that the
translation-invariance condition has often been applied in the theoretical formulation of optimal
estimation methods using errorless discrete data [SANSO, 1980; KOTSAKIS, 2000a], although its
justification is not altered by the presence of noise in the input observations.

Based on the two assumptions of linearity and translation-invariance, the signal estimation formula
will have the general convolution-type expression
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where ),( yxhξ  is a 2D filtering kernel that needs to be determined in some optimal sense. The subscript
h is used to indicate that the estimation kernel will generally depend on the data resolution levels, xh  and

.yh  The above equation can be illustrated through the linear I/O system shown in Figure 1.

Figure 1.  Linear and translation-invariant signal estimation from discrete noisy data.
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4.  Minimization of the noise-dependent signal estimation error

The output signal error produced by the filtering formula in Eq. (7) can generally be decomposed into
two components
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where ),( yxeh  is the part of the total estimation error caused from the use of discrete data with finite
sampling resolution (aliasing error), and ),( yxev  is the additional part due to the noise presence in the
signal samples. In the absence of any noise from the discrete input data, the best we could do is to obtain
just an interpolated model ),(~ yxg  for the unknown field that will depend on the true signal values at the
given spatial resolution. It will be assumed that such a noiseless signal model is given in terms of a linear
and translation-invariant formula, as follows:
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where ),( yxhϕ  is some basic interpolating kernel that generally depends on the sampling intervals xh
and .yh  The noise-dependent estimation error will be measured with respect to such a linear
interpolating model for the unknown field, i.e.

),(ˆ    ),(~    ),( yxgyxgyxev −=           (10a)

whereas the (pure) aliasing error is

),(~    ),(    ),( yxgyxgyxeh −=                  (10b)

The specific form of the modelling kernel in Eq. (9) is irrelevant for the purpose of this paper. A very
popular choice that covers many different linear interpolating schemes, including band-limited (Shannon)
interpolation, spline-based interpolation and also more general wavelet approximation models, is based
on the use of certain scaling functions ),( yxϕ  which adapt to the data grid resolution through a dilation
operation [UNSER, 2000], i.e.
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The optimal determination of such interpolating scaling kernels, and their connection with the statistical
collocation and wavelet theory, were discussed in KOTSAKIS [2000a, b]. The behaviour of the aliasing
error term ),( yxeh  for different choices of the scaling function ),( yxϕ  and the data resolution level was
also studied in KOTSAKIS [2000b] and KOTSAKIS AND SIDERIS [2000]. For the purpose of this paper, it is
sufficient to consider ),( yxhϕ  in Eq. (9) as an arbitrarily chosen interpolating kernel with a well-defined
Fourier transform ),,( yxh ωωΦ  which is used to obtain a continuous signal approximation in the absence
of any noise from the discrete input data. In addition, it can be assumed that ),( yxhϕ  is such that: (i) the
signal expansion in Eq. (9) is always stable, and (ii) the aliasing error component ),( yxeh  vanishes as
the data resolution increases; for more details, see KOTSAKIS [2000b] and BLU AND UNSER [1999].

The filtering kernel in Eq. (7) will be determined by minimizing the noise-dependent part of the total
signal error. In this way, the signal estimation problem is essentially reduced to a problem of finding an
optimal modification for the interpolating kernel ),( yxhϕ  that minimizes the effect of the propagated
data noise in the final output field ).,(ˆ yxg  The optimization procedure will be carried out in the
frequency domain using the familiar MSE criterion
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where ),( yxvE ωω  is the 2D Fourier transform of ),,( yxev  and ),( yxveP ωω  is the (noise-dependent)
mean error power spectrum of the estimated output signal. From Eqs. (7), (9) and (10a), we have that
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where ),( yxh ωωΞ  is the Fourier transform of the unknown filtering kernel ).,( yxhξ  Using the
shorthand notation according to Eqs. (2) and (6), the last equation takes the form

 ),( ),(  ),( ),(  ),( ),(    ),( yxyxhyxyxhyxyxhyxv VGGE ωωωωΞωωωωΞωωωωΦωω −−=     (13b)

By multiplying the above expression with its complex conjugate and taking the expected value, we can
finally obtain the (noise-dependent) mean error power spectrum of the output signal, as follows:
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where * denotes complex conjugation, and the auxiliary term ),( yxvP ωω  corresponds to the noise
‘power spectral density (PSD)’ function
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For the derivation of the result in Eq. (14) we have used the fact that { } ,0),( =yxVE ωω  in accordance
with the zero-mean stochastic model introduced for the data noise in Eq. (4a). It can easily be verified
that the optimal estimation filter will be finally given by the following formula:
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5.  The separable structure of the optimal estimation filter

The final result in Eq. (16) indicates that the optimal estimation procedure can be decomposed into two
individual steps which are connected in a linear cascading manner. The first step, expressed by the
periodic filter component ),,( yxW ωω  has the role of ‘de-noising’ the discrete input data using
information about the average behaviour of the input noise and the unknown field at the given resolution
level. The second filter component ),,( yxh ωωΦ  on the other hand, is solely used to obtain a continuous
representation for the output signal based on an a-priori selected interpolating/modelling kernel ).,( yxhϕ
These two basic steps of the optimal estimation procedure are illustrated in the linear I/O system of
Figure 2.



Figure 2.  The cascading structure of the optimal linear estimation filter.

As it can be seen from the above figure, it is not really necessary to ‘modify’ the interpolating kernel
),( yxhϕ  of the reference signal model in Eq. (9) when dealing with noisy input data. The optimization of

the noise-dependent output error adds only an intermediate periodic filter that is applied to the original
data grid, and it produces a new estimated signal sequence ) ,(ˆ yx mhnhg  from which the effect of the
random observational errors has been minimized in a certain translation-invariant MSE sense. We can
then use this new sequence as input to the basic interpolating model of Eq. (9), in order to get a
continuous (also linear and translation-invariant) approximation of the unknown field at the given
resolution level. It should be noted that the interpolation filter in Figure 2 can be also optimized by
following a separate MSE approach that takes into account only the noise-free error component ),,( yxeh
as it is described in KOTSAKIS [2000a, b].

The structure of the optimal noise filter in Eq. (16) is very similar to the classic Wiener estimation
filter, since they are both defined in terms of a signal-to-noise ratio (SNR) expression. However, there do
exist conceptual differences between the two filtering schemes because in our formulation: (i) the
unknown field has been modelled as a deterministic (instead of stochastic) signal, and (ii) the additive
data noise has not been restricted to being stationary. Therefore, it is important to clarify what is the
exact meaning of the two frequency-domain terms that appear in the SNR expression of our noise filter

).,( yxW ωω  From Eq. (16), we have that
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where NM is the total number of points in the input data grid. The two auxiliary functions, ),( yxA ωω
and ),,( yxB ωω  in the last equation correspond to the Fourier transforms of two associated sequences
which have the CV-like expressions
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respectively. The first sequence in Eq. (18a) can easily be identified as the discrete spatial CV function
of the true deterministic signal at the given data resolution level, and thus the term ),( yxA ωω  in Eq.
(17) corresponds to the power spectrum of the true signal values ). ,( yx mhnhg  Note that ) ,( yx mhnha
contains less spatio-statistical information than the continuous signal CV function, since it takes into
account only the discrete values of the unknown field at a certain resolution.

The second sequence in Eq. (18b), on the other hand, does not exactly correspond to the discrete noise
CV function and, as a result, the frequency-domain quantity ),( yxB ωω  in Eq. (17) should not generally
be viewed as the PSD of the data noise. Such an interpretation is possible only in the special case where
the input noise is stationary. Indeed, in such situation the noise covariance vσ  between two arbitrary data
points with coordinates ( )yx lhkh  ,  and ( )yx hmlhnk )( ,)( ++  becomes a function of their coordinate
differences only, which are obviously equal to ). ,( yx mhnh  Therefore, vσ  can be taken outside of the
summation operator in Eq. (18b), leaving the summation result equal to NM.

In the more general case of non-stationary noise, the sequence ) ,( yx mhnhb  can be interpreted as a
‘mean’ CV function of the random observation errors. Its value at the origin gives an average indication
of the noise level at every point of the input data grid, i.e.
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whereas its values ) ,( yx mhnhb  at other points correspond to ‘averages’ of the noise covariance over
pairs of data points with coordinate differences ). ,( yx mhnh  Note that both sequences in Eqs. (18a) and
(18b) are always symmetric, and they take zero values outside the range )1()1( −≤≤−− NnN  and

)1()1( −≤≤−− MmM  due to the finite spatial support of the input signal ).,( yxg  Also, in practice the
computation of the optimal noise filter ),( yxW ωω  can take place only at a discrete finite set of
frequency values by using the FFTs of the two sequences given in Eqs. (18a) and (18b).

6.  Additional remarks

A key point in our estimation procedure was the decomposition of the output signal error into an aliasing
part ),( yxeh  and a noise-dependent part ).,( yxev  The advantage of such a partition is that it allows us to
study and optimize individually the effects of the finite data resolution and the input noise on the final
signal estimate ),,(ˆ yxg  using appropriate error measures and criteria for each case. It should be kept in
mind that the error component ),( yxeh  is a purely deterministic signal whose average behaviour (at a
given data resolution level) can only be modelled in a spatio-statistical sense through the concept of
different ‘sampling phases’ [KOTSAKIS, 2000b; KOTSAKIS AND SIDERIS, 2000], whereas the noise-
dependent error term ),( yxev  is a random signal whose average behaviour is described probabilistically
with the notion of different ‘experiment repetitions’ (expectation operator E).

An important aspect for geodetic applications is also the numerical evaluation of the optimal noise
filter ),( yxW ωω  given in Eq. (17). Although the noise PSD-like term ),( yxvP ωω  can always be

determined from the known noise variances and covariances using FFT techniques, the signal ‘PSD’ term
2),( yxG ωω  is generally unknown in practice. In order to overcome this difficulty, we can use the

power spectrum of the available noisy data ),( yx nhnhd  to infer the behaviour of the signal ‘PSD’

function that is needed in the computation of the SNR-type noise filter. From Eq. (6), we can express the
power spectrum of the data values as follows:
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and by applying the expectation operator to the above formula, we finally get
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The unknown signal term 2),( yxG ωω  can now be determined empirically through Eq. (20b) by taking

the available realization 2),( yxD ωω  of the data power spectrum as an estimate of its expected value.

Finally, let us briefly comment on the effect of the data sampling resolution on the noise-dependent
output signal error. The use of the optimal estimation filter according to Eq. (16) leads to the following
expression for the mean power spectrum of the signal error ),( yxev :
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The above formula can easily be derived by substituting the optimal result of Eq. (16) into Eq. (14). Note
that the noise-dependent error component ),( yxev  is not completely unaffected by the input data
resolution, but it actually depends on it. In order to see more clearly this important implicit relationship,
let us adopt a rather general model for the reference interpolating kernel ).,( yxhϕ  In particular, we shall
consider the case where the noiseless signal interpolating model has the scaling form

),(    ),(
yx

h h
y

h
xyx ϕϕ =                                                    (22)

where ),( yxϕ  is some basic scaling kernel (e.g., sinc function in the case of band-limited
approximation). Taking into account the fundamental scaling property of the 2D Fourier transform
[DUDGEON AND MERSEREAU, 1984], the frequency-domain expression in Eq. (21) can now be written as

22 ),( ),( ),( ) (    ),( yyxxyxvyxyxyxe hhPWhhP v ωωΦωωωωωω =                                              (23)

where ),( yx ωωΦ  is the Fourier transform of the scaling function ).,( yxϕ  Avoiding further
mathematical details, it can be seen from the last equation that the noise-dependent estimation error will
decrease as the resolution level of the input data increases (i.e. smaller sampling intervals xh  and yh ).
Such a result is not surprising and it just confirms the (well-known from signal analysis theory) fact that
oversampling leads to noise reduction in the final signal estimate (see, e.g., CVETKOVIĆ AND VETTERLI,
1998). An additional indication of this interesting behaviour is also given in the next section using
simulated numerical data.



7.  Numerical simulations

In this section we will test numerically the noise filtering component of the optimal estimation kernel that
was derived in Sect. 4; see Eq. (16). Hence, we shall not implement the whole I/O linear estimation
system shown in Figure 2, but we will restrict our attention only on its first ‘de-noising’ part that
transforms the original input data into an improved filtered signal sequence. The second interpolatory
step through the use of a reference modelling kernel ),( yxhϕ  will be omitted.

A two-dimensional deterministic signal ),,( yxg  assumed to represent some local gravity anomaly
field, was initially synthesized using a truncated Fourier series expansion with a record length of 200 ×
200 km (see Figures 3 and 4). The continuous signal was sampled at various uniform resolution levels

yx hh   ×  to obtain noiseless gridded values ).,( yx mhnhg  Four different sampling resolutions were
selected, namely 0.5 × 0.5, 1.0 × 1.0, 2.5 × 2.5 and 5.0 × 5.0 km. The sample statistics of the true signal
values are given in Table 1. All the signal grids at each resolution level were partitioned into four equal
blocks-quadrants, labeled as northwest (NW), northeast (NE), southwest (SW) and southeast (SE). The
simulated data noise, which is going to be added to the true signal values, will have a different stochastic
behaviour in each of the four grid quadrants.

Figure 3.  The original (simulated) gravity anomaly field shown as a 3D surface plot.
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Figure 4.  The simulated gravity anomaly field shown as a black and white image plot.

Table 1.  Statistics of the true signal values at various sampling resolution levels (in mGals).

Data resolution
(in Km) 0.5 × 0.5 1.0 × 1.0 2.5 × 2.5 5.0 × 5.0

Max 206.64 206.55 206.30 206.30
Mean 62.33 62.39 62.56 62.84
Min -75.49 -75.36 -75.02 -74.50
Std 52.12 52.07 51.92 51.67
RMS 81.26 81.26 81.29 81.36

A zero-mean noise sequence ),( yx mhnhv  was added to the samples of the true signal in order to create
the input data at every resolution level, according to the form ).,(),(),( yxyxyx mhnhvmhnhgmhnhd +=
The noise values originated from a non-stationary and uncorrelated Gaussian stochastic process, using
the routines for random number generation of the MATLAB software package. Note that the noise
values were generated separately at each resolution, instead of simply decimating the noise sequence
with the smaller sampling interval. The noise variance ),(2 yxv mhnhσ  was constant within each quadrant
(NW, NE, SW and SE) of the data grids, with its values set to 144 mGals2, 9 mGals2, 144 mGals2 and 49
mGals2, respectively (see Figure 5). The sample statistics of the total noise sequence ),( yx mhnhv  at
every resolution level are given in Table 2, whereas the individual sample statistics of the noise values in
the four different parts of the data grids are shown in Tables 3a and 3b.
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Figure 5.  Partition of the input data grid into four equal quadrants. The standard deviation of the
uncorrelated random noise that is added to the true signal samples varies spatially according to the

simulating values shown in the figure.

Table 2.  Statistics of the total additive noise at various sampling resolution levels (in mGals).

Data resolution
(in Km) 0.5 × 0.5 1.0 × 1.0 2.5 × 2.5 5.0 × 5.0

Max 55.64 53.15 43.24 35.46
Mean 0.00 -0.01 0.05 -0.10
Min -52.61 -52.71 -41.22 -38.84
Std 9.32 9.37 9.42 9.12
RMS 9.32 9.37 9.42 9.12

Table 3a.  Statistics of the additive noise at different sampling resolutions in the four quadrants of the
data grids (in mGals).

Data resolution
(in Km) 0.5 × 0.5 1.0 × 1.0

Grid quadrants NW SW NE SE NW SW NE SE

Max 49.61 55.64 12.47 27.37 53.15 43.04 11.45 25.88
Mean -0.04 0.02 0.02 -0.01 0.03 0.01 0.02 -0.08
Min -52.61 -46.34 -12.14 -27.14 -52.71 -47.87 -10.24 -28.58
Std 11.99 12.05 3.00 6.98 12.07 12.08 2.95 7.01
RMS 11.99 12.05 3.00 6.98 12.07 12.08 2.95 7.01
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Table 3b.  Statistics of the additive noise at different sampling resolution in the four quadrants of the
data grids (in mGals).

Data resolution
(in Km) 2.5 × 2.5 5.0 × 5.0

Grid quadrants NW SW NE SE NW SW NE SE

Max 41.39 43.24 10.97 23.92 35.46 32.49 9.57 18.04
Mean 0.45 -0.24 0.10 -0.10 -0.92 0.11 0.29 0.10
Min -40.49 -41.22 -11.15 -22.53 -34.00 -38.84 -9.81 -19.02
Std 11.94 12.19 3.07 7.12 11.86 11.36 3.07 6.84
RMS 11.95 12.20 3.07 7.12 11.90 11.36 3.08 6.84

The optimal noise filter ),( yxW ωω  was computed through an FFT algorithm at each resolution level
,  yx hh ×  according to the SNR expression given in Eq. (17). It was then multiplied by the FFT of the

noisy gridded data ),,( yx mhnhd  and the result was finally transformed back to the space domain as an
estimated (‘de-noised’) signal sequence ).,(ˆ yx mhnhg  The original noisy data grids are plotted in Figure
6 for some selective sampling resolution levels, whereas the corresponding filtered signal values are
shown in Figure 7. The differences between the true signal samples and the estimated signal values are
also shown in Figure 8, and their statistics are given in Table 4 below.

It is interesting to observe that the output estimation error of the filtered signal values ),(ˆ yx mhnhg  is
decreasing, as the data sampling intervals yx hh  ,  become smaller. This is evident from the comparison of
the three graphs shown in Figure 8, as well as from the error RMS values given in Table 4, and it
confirms our earlier theoretical remark at the end of Sect. 6. Note also that the parts of the input data grid
with the highest noise level (NW and SW quadrants) show larger estimation errors after the data filtering
than the other two grid quadrants, as it should be intuitively expected (see also the values given in Tables
5a and 5b).

Table 4.  Statistics of the differences between the true and the filtered signal values at various
sampling resolution levels (in mGals).

Data resolution
(in Km) 0.5 × 0.5 1.0 × 1.0 2.5 × 2.5 5.0 × 5.0

Max 3.09 3.51 5.53 6.26
Mean 0.00 0.01 -0.05 0.10
Min -3.25 -4.00 -4.86 -8.01
Std 0.66 0.91 1.43 2.26
RMS 0.66 0.91 1.43 2.26



Figure 6.  Noisy gravity anomaly values at various data resolution levels. The uniform gridding sampling
intervals are 2.5 × 2.5 km (top), 1.0 × 1.0 km (middle) and 0.5 × 0.5 km (bottom).
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Figure 7.  Estimated (‘de-noised’) gravity anomaly values at various data resolution levels. The uniform
gridding sampling intervals are 2.5 × 2.5 km (top), 1.0 × 1.0 km (middle) and 0.5 × 0.5 km (bottom).
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Figure 8.  Differences between the true and the estimated (filtered) gravity anomaly values, at various
data resolution levels. The uniform gridding sampling intervals are 2.5 × 2.5 km (top), 1.0 × 1.0 km

(middle) and 0.5 × 0.5 km (bottom).
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Table 5a.  Statistics of the differences between the true and the filtered signal values at various sampling
resolution levels in the four quadrants of the data grids (in mGals).

Data resolution
(in Km) 0.5 × 0.5 1.0 × 1.0

Grid quadrants NW SW NE SE NW SW NE SE

Max 2.75 3.09 1.97 2.30 3.51 3.38 2.63 2.50
Mean 0.02 0.00 0.00 -0.02 -0.05 0.01 0.00 0.06
Min -2.89 -3.25 -2.08 -2.44 -3.59 -4.00 -2.35 -2.75
Std 0.72 0.78 0.52 0.60 1.06 1.04 0.76 0.74
RMS 0.72 0.78 0.52 0.60 1.06 1.04 0.76 0.74

Table 5b.  Statistics of the differences between the true and the filtered signal values at various sampling
resolution levels in the four quadrants of the data grids (in mGals).

Data resolution
(in Km) 2.5 × 2.5 5.0 × 5.0

Grid quadrants NW SW NE SE NW SW NE SE

Max 4.27 5.53 3.17 4.43 5.40 6.26 3.83 4.69
Mean -0.33 0.12 -0.23 0.23 0.62 0.18 0.03 -0.41
Min -4.86 -4.62 -2.93 -2.70 -8.01 -7.36 -5.30 -4.65
Std 1.57 1.71 1.02 1.22 2.47 2.60 1.76 1.93
RMS 1.60 1.71 1.04 1.24 2.55 2.61 1.76 1.97

8.  Conclusions

A modification of the classic Wiener filtering method has been presented, which allows us to work with
deterministic (instead of stochastic) signals that are masked by additive non-stationary noise at different
sampling resolution levels. This provides a very useful estimation tool for many geodetic problems
related to optimal spectral gravity field modelling. It has been shown that non-stationary noise filtering of
geodetic data using fast spectral (i.e. FFT) techniques is possible, if we are willing to incorporate a
simple translation-invariance condition into our signal approximation framework. Note that the
traditional W-K linear prediction theory cannot lead to filtering (convolution) operations when the data
noise is non-stationary. In such cases the estimation algorithm is reduced to a Fredholm equation of the
first kind (Wiener-Hopf equation), whose solution determines the best linear (but not translation-
invariant) signal estimate in a probabilistic MSE sense. In our approach, on the other hand, the a-priori
imposed condition of translation-invariance allows us to treat both stationary and non-stationary noise
cases within a unified linear filtering setting, which can be very efficiently implemented in practice via
FFT numerical techniques.



Many important problems related to the work presented herein remain and require further research.
Future work should include the extension of the planar spectral filtering algorithms for non-Euclidean
domains of interest in geodesy, such as the sphere or the ellipsoid. Additional modifications are also
needed in order to handle signal estimation applications that involve more than one type of input data
(multiple-input/single-output systems), and not just the single-input/single-output case that was studied
here. Nevertheless, the presented methodology can be proven a useful tool in many existing geodetic
problems of regional or local scale, such as the optimal spectral geoid determination from noisy gridded
gravity data or the FFT computation of various terrain-dependent gravity field quantities (e.g., indirect
effect, terrain correction, isostatic potential, etc.) from noisy digital elevation models.
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