Graded Algebras

Abstract
Let  R  be a commutative ring with unit and  G  a multiplicative group. By  1  we denote both the unit of  R  and the identity of  G.

An R-algebra  A  is called G-graded if there exists a family {Aσ : σ ( G} of  R  submodules of  A  indexed by the elements of  G  such that

i)  A = 
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ii)  AσAτ ( Aστ  ,  for  σ,τ ( G  ,

where we denote by  AσAτ  the set of all finite sums of products  aσaτ  with     aσ ( Ας  and  aτ ( Aτ.  

Especially if the condition ii) is replaced by

AσAτ = Αστ  ,  for  σ,τ ( G  ,

then the R-algebra  A  is called strongly G-graded R-algebra.


The next two propositions give important properties of a G-graded R-algebra  A  and its subgroups  Aσ , σ ( G .


Proposition 1. Let  A  be a G-fraded R-algebra. Then

i)     A1  is a subalgebra of  A  and  1 ( A1 .

ii)  For each  σ ( G, Aσ  is an (A1,A1)-bimodule under the left and right multiplication by the elements of  A1.

iii)   If  aτ ( U(A) ( Aτ , for  τ ( G,  and  U(A)  the group of units of  A, then            
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iv)  The algebra  A  is strongly G-graded if and only if  1 ( Aσ
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, for all  σ(G.


A unit  u  of  a G-graded R-algebra  A  is called homogeneous if lies is  Aσ  for some  σ(G. We shall refer to  σ  as the degree of the unit  u, deg u. Let  hU(A)  be the set of homogeneous units of  A.


Proposition 2. With the above notation for a G-graded R-algebra  A  the next hold:

i)   hU(A)  is a subgroup of  U(A).

ii)  the sequence

εA : 1 ( U(A1) ( hU(A) 
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is exact at each place except possibly at  G.
iii)  the maps  A1 ( Aσ  ,  x 
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xuσ  and  A1 ( Aσ  ,  x 
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where  uσ ( U(A) ( Aσ  are isomorphisms of left and right A1-nmodules respectively.


Examples:  

1.   Let  S  be a ring  the polynomial ring  S[x]  is  „-graded.

2.   Let  K  be a field and  E = K(a)  where  mink(a) = xn-k ( k[x]. The extension  E/K  is a strongly  „n-graded  K-algebra.

3.   Let  S  be an R-algebra, the K-algebra  M3(S)  is strongly  „2-graded  R-algebra with
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A strongly G-graded  R-algebra  A  is called a crossed product of  G  under the ring  A1 , A = A1 ( G , if the sequence  εa  of Proposition 2 is exact. In particular if  εa  is splitting, then  A  is called a skew group ring.


Proposition 3.  Let  A = 
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Aσ  be a strongly G-graded  R-algebra. Then  A  is a crossed product if and only if:

i)    Ασ  = Α1uσ , for some  uσ ( U(A) ( Aσ , for all  σ ( G

ii)   the set  {uσ : σ ( G}  is an A1-basis of  A

iii)  there exist two maps

φ : G ( Aut(A1)  ,  φ(σ)(a) = σa

and

a : G ( G ( U(A1)

which satisfy the relations

                                 σx = uσ x 
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   ,   uσuτ = α(σ,τ)uστ
ρα(σ,τ)α(ρ,στ) = α(ρ,σ)α(ρσ,τ)       (factor set)

                                              σ(τx) = α(σ,τ) στx α(σ,τ)-1   ,

for  ρ,σ,τ ( G  ,  x ( A1.


Let us denote this crossed product by  (G,A1,φ,α).


Example.  Let  S  be a ring with unit, H  a group and  N  a normal subgroup of  H. Then the group ring  SH  becomes a crossed product  (SN) ( G, where  G = H/N.



Let  L/K  be a Galois field extension with Galois group  G, that is                   G = AutK(L). The crossed product  
A = 
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Luσ = (L,G,φ,α) ,
where  φ  is the identity, is called a classical crossed product.


The classical crossed products appeared firstly in the study of division algebras.


By the celebrated Albert-Brauer-Hasse-Noether Theorem, every division algebra over an algebraic number field is a crossed product (1932). In 1972  S.A.Amitsur discovered the first noncrossed product division algebra. His example, a universal division algebra, is built from a ring of generic matrices over a field.


In 1995 E.Brussel proved that there are division algebras over  K(x), where  K  is an algebraic number field which are non crossed products.
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Ισχυρά βαθμωτές ΄Αλγεβρες και Σταυρωτά γινόμενα


Περίληψη
Θα εξετασθούν

α)   Ο ρόλος των σταυρωτών γινομένων στην μελέτη των αλγεβρών με διαίρεση.

β)  Οι αναπαραστάσεις των ισχυρά βαθμωτών αλγεβρών και η σύνδεσή τους με τις αναπαραστάσεις των πεπερασμένων ομάδων.
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