Lie and Super Lie Hopf algebras K. Kanakoglou, AUTH

Notions discussed:

- LIE ALGEBRAS: antisymmetry, Jacobi identity, Lie subalgebras, Lie ideals, Lie homomorphisms
- LIE FUNCTOR L: k-ALGEBRAS $\rightarrow k$ -LIE ALGEBRAS, $gl(V) := \mathbb{L}(End_k(V))$.
- U(g): THE UNIVERSAL ENVELOPING ALGEBRA OF g and the Poincaré -Birkhoff-Witt theorem for the monomial basis of U(g).
- THE FUNCTOR U: k-LIE ALGEBRAS $\rightarrow k$ -ALGEBRAS, and it's adjointness with the functor L.
- Representations of the Lie algebra g.
 - Each representation $T : g \to gl(V)$ gives a g-module structure to V (Due to the universality property of U(g), V becomes automatically a U(g)-module also).
 - If T_1 and T_2 are two representations of g with carrier space V, such that any two linear transformations $(T_1)(l)$, $(T_2)(m)$ mutually commute, then T_1+T_2 is also a representation (If l is an element of the Lie algebra g, the linear transformation $(T_1+T_2)(l)$ is defined to be the superposition of the (commuting) linear transformations $(T_1)(l)$, $(T_2)(l)$ i.e. $(T_1+T_2)(l) =$ $(T_1)(l) + (T_2)(l)$).
 - There is no analogue of the latter fact in the associative algebra case.
 - Any two representations $T_V : g \to gl(V)$ and $T_W : g \to gl(W)$ give rise to a new representation $g \to gl(V \otimes W)$ where $l \mapsto T_V(l) \otimes 1_w + 1_V \otimes T_W(l)$
- THE HOPF ALGEBRA STRUCTURE OF U(l) (comultiplication $\Delta(l) = l \otimes 1 + 1 \otimes l$ and antipode S(l) = -l.)
- Γ -GRADED STRUCTURES where $\Gamma = \mathbb{Z}$ or \mathbb{Z}_2 .

References

- [1] LIE ALGEBRAS, Nathan Jacobson, Dover publications 1979.
- [2] QUANTUM GROUPS, Christian Kassel, Springer-Verlag Graduate texts in mathematics, 155
 [3] HOPF ALGEBRAS an introduction, Dascalescu-Nastasescu-Raianu, Pure and Applied Math-
- ematics, 235
- [4] M.Scheunert, The theory of Lie superalgebras, Lect. Notes Math. (Springer, New York, 1978), vol. 716