Hopf Algebras and Quantum Groups C. Daskaloyannis, AUTH

Notions discussed:

- TENSOR PRODUCT of vector spaces $U \otimes_k V$, TENSOR ALGEBRA of $V: T(V) = k \oplus V \oplus (V \otimes V) \oplus \cdots$,
- LIE ALGEBRA g and UNIVERSAL ENVELOPING ALGEBRA of g: $U(g) \cong T(g)/I$ where $I = \langle [x, y] (x \otimes y y \otimes x) \rangle$
- Definition of an ALGEBRA USING COMMUTATIVE DIAGRAMS (A with product $m: A \otimes A \to A$ and unity $\eta: k \to A$)
- Definition of a CO-ALGEBRA USING DUAL DIAGRAMS (A with co-product $\Delta: A \to A \otimes A$ and co-unity $\epsilon A \to k$)
- BI-ALGEBRA = algebra+co-algebra, with co-product and co-unity, which are algebraic morphisms $\Delta(xy) = \Delta(x)\Delta(y)$, $\Delta(1) = 1 \otimes 1$, $\epsilon(xy) = \epsilon(x)\epsilon(y)$
- HOPF ALGEBRA $(A, m, \eta, \Delta, \epsilon, S)$ where $S : A \to A$ is the antipode(co-inverse)
- Examples of Hopf algebras:
 - U(g) is a Hopf algebra,
 - The group of transformations on the plane SL(2). The functions on SL(2), $O(SL(2)) \cong k[a, b, c, d]/(ab cd 1)$ is a Hopf algebra with

$$\Delta \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \otimes \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
$$\epsilon \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad S \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1}$$

- The QUANTIZATION of the plane and the $SL_q(2)$ The MANIN PLANE (noncommutative plane), $k_q\{x, y\} = k\{x, y\}/I$ where $I = \langle yx - qxy \rangle$.

The transformations on the Manin plane $SL_q(2) = k_q\{a, b, c, d\}/(ad - qbc - 1)$ where ab = qba, ac = qca, bd = qbd, cd = qdc, bc = cb and $ad - da = (q - q^{-1})c$ is a Hopf algebra. $SL_q(2)$ is a QUANTUM GROUP corresponding to SL(2).

- The QUANTIZATION OF THE LIE ALGEBRA sl(2): U(sl(2)) and the QUANTUM LIE ALGEBRA $U_q(sl(2))$. Finite dim representations of . - $U_q(g)$ DRINFELD-JIMBO QUANTIZATION of a Lie algebra g

Bibliography:

C. KASSEL, Quantum Groups, Springer 95

A. KLIMYK, K. SCHMÜGEN, QG and their representations, Springer 98

ROSS STREET, WEB Notes: http://www-texdev.mpce.mq.edu.au/Quantum/Quantum.html