On the enumeration of lattice points in polytopes

Winfried Bruns, Universität Osnabrück

Let $P \subset \mathbb{R}^{n}$ be a lattice polytope, i. e.the convex hull of finitely many points of the integral lattice \mathbb{Z}^{n}. A classical object of enumerative combinatorics is the function

$$
E(P, k)=\#\left(k P \cap \mathbb{Z}^{n}\right)
$$

whose study was pioneered by the French mathematician Ehrhart. The generating function

$$
E_{P}(t)=\sum_{k=0}^{\infty} E(P, k) t^{k}
$$

turns out to be (the power series expansion of) a rational function of negative degree:

$$
E_{P}(t)=\frac{1+h_{1} t+\cdots+h_{d} t^{d}}{(1-t)^{\operatorname{dim}(P)+1}}, \quad d \leq \operatorname{dim}(P)
$$

This equivalent to the fact that $E(P, k)$ is given by a polynomial for all $k \geq 0$, the Ehrhart polynomial of P. We are interested in the so-called h-vector $\left(h_{0}=1, h_{1}, \ldots, h_{d}\right), h_{d} \neq 0$; it reflects several properties of P.

$$
E_{P}(t)=\frac{1+7 t+4 t^{2}}{(1-t)^{3}}
$$

A class of special interest is the one in which h is palindromic, i. e. $h_{i}=h_{d-i}$ for all i. This is the case when a multiple $k P$ contains a lattice point x that has lattice distance 1 to all facets of $k P$. For a certain polytope P in this class Stanley conjectured that the h-vector of P is unimodal, i. e. satisfies the inequalities $h_{0} \leq h_{1} \leq \cdots \leq h_{[d / 2]}$. Stanley's conjecture was recently proved by Athanasiadis. We extend his theorem to the class of all polytopes (with palindromic h-vector) that have a regular unimodular triangulation, i.e. a triangulation into lattice simplices of smallest possible volume that can be realized as the subdivision of P into the domains of linearity of a piecewise affine, concave function on P. The proof is reduction to the g theorem, conjectured by McMullen and proved by Stanley. (Joint work with Tim Römer.)

