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Computability vs Complexity

Computability

What can be computed and what
can not be computed?

Complexity

What can be computed fast and
what can not be computed?

Figure: Comparison of sorting algorithms
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Time Complexity of DTM

Definition

Let t: N Ð� N increasing function. The time complexity of
DTIME[t(n)] is the collection of all languages that are decidable by
an O�t�n�� time DTM.
DTIME[t(n)] � � P: P is solved in O(t(n)) time �

Definition

Complexity class P is the set of decision problems that can be
solved by a DTM in a polynomial time of steps.
P � �kC0DTIME �nk�
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Cook - Karp Thesis

The Cook - Karp Thesis states that decision problems that are
”tractably computable” can be computed by a DTM in polynomial
time, i.e., are in P.
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Time Complexity of NTM

Definition

Let t: N Ð� N increasing function. The time complexity of
NTIME[t(n)] is the collection of all languages that are decidable by
an O�t�n�� time NTM.
NTIME[t(n)] � � P: P is solved in non deterministic time O(t(n)) �

Definition

Complexity class NP is the set of decision problems that can be
solved by a NTM in a polynomial time of steps or is the set of
decision problems for which there exists a poly time certifier.
NP � �kC0NTIME �nk�
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P vs NP

How much easier is to find a solution than to confirm it?

99799811 = ? � ?

997 � 10007 � 99799811

Theorem

P b NP

Open Problem: P c
??? NP
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TSP > NP

Travelling Salesman Problem (TSP): Given a set of distances
on n cities and a bound D, is there a tour of length at most D?

Figure: TSP

Certificate: A tour of given
graph.
Certifier:
1. Check that each city appears
once.
2. Check that the length of tour
is at most D.
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Polynomial time reduction

Figure: The casting process
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Polynomial time reduction

Figure: The casting process

reduction
ÐÐÐÐ�

Figure: Half plane
intersection
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Polynomial time reduction

If a problem X reduces to a problem Y , then a solution to Y can
be used to solve X . (Y is at least as hard as X )

Definition

X > NP-complete if:

Y X > NP

Y ¦ Y > NP, Y BP X

Hamiltonian Cycle Problem reduction
ÐÐÐÐ� Travelling Salesman Problem
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Hamiltonian Cycle Problem

Hamiltonian Cycle Problem

Let G = �V ,E� a graph.
Find whether G contains a cycle
that passes through all vertices of
the graph exactly once.

Travelling Salesman Problem

Let G
�

= �V
�

,E
�

� a weighted graph with non negative weights and
k

�

> Z.
Find whether G

�

contains a cycle that passes through all vertices
of the graph exactly once and has length B k

�

.
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Goal of the study of NP - completeness

If some NP - complete problem P is in P, then P = NP.

Figure: Scott Aaronson
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Definition

Let s: N Ð� N increasing function. The space complexity of
DSPACE[t(n)] is the collection of all languages that are decidable
by an O�s�n�� space DTM.
NSPACE[s(n)] � � P: P is solved in O(s(n)) space�

Definition

Complexity class PSPACE is the set of decision problems that
can be solved by a (multitape) DTM in a polynomial number of
SPACEs on the tape.
PSPACE � �kC0DSPACE �nk�
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Theorem

P b PSPACE

Open Problem:
P c

??? NP c
??? PSPACE
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PSPACE-complete

Definition

X > PSPACE -complete if:

Y X > PSPACE

Y ¦ Y > PSPACE , Y BP X
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GAMES

Figure: PSPACE-complete problems
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