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I

Weighted and Multi-Valued
Automata

⋄ Weights and Truth values ⋄
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Weighted automaton model

⋆ weighted automata – classical nondeterministic automata in
which the transitions carry weights

⋆ weights are also assigned to states – initial and final
weights

⋆ formallyA = (A, σ, τ, {δx}x∈X)

A – set of states with |A| = n

X – fixed input alphabet

σ, τ : A→ K – initial and final vectors with entries in K

δx : A × A→ K – transition matrices with entries in K

⋆ δx(a, b) – weight of a transition from a to b imposed by x

σ(a) / τ(a) – measure how much a is an initial / final state
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Weights

⋆ model certain quantitative properties

⋆ amount of resources needed for the execution of a transition

⋆ time needed for the execution

⋆ cost of the execution

⋆ probability of successful execution of a transition

⋆ reliability of successful execution . . .

⋆ operations on weights: multiplication and addition –
accumulation of weights

⋆ structures of weights: semirings, bimonoids (distributivity
is not neccessary), . . .
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Truth values

⋆ ordered algebraic structures – truth values

⋆ multi-valued logic – graded truth or intermediate truth

⋆ subtle nuances in reasoning – modeling of uncertainty

⋆ representation of imprecise aspects of human knowledge

⋆ ordering is essential – comparison of truth values

⋆ operations on truth values – logic conjectives

⋆ [0, 1] (real unit interval), max, min – Gödel structure

⋆ [0, 1], t-norm, t-conorm – Łukasiewicz and product structure

⋆ linearity of the ordering is not essential

⋆ truth values – lattices, ordered algebraic structures

5 Miroslav Ćirić Weighted Automata and Networks



Multi-valued logics

Classical Multi-valued logics with Multi-valued logics

Boolean logic linearly ordered with general structures

structures of truth values

of truth values (not necessarily linearly

ordered)

two-element structures on [0, 1] lattices, residuated

Boolean algebra determined by t-norms latices, etc.
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Structures of truth values (cont.)

⋆ lattices: finite infimum and supremum –

conjunction and disjunction (intersection and union)

⋆ complete lattices: infinite infimum and supremum –

universal and existential quantifiers

⋆ infimum does not necessarily distribute over supremum

(except in distributive lattices)

⋆ new operation: multiplication ⊗ – distributes over suprema

strong conjunction

⋆ lattice ordered monoid

monoid + partial order (compatible w.r.t. multiplication ⊗)

lattice w.r.t. this partial order

⊗ distributes over (finite) suprema

(∨,⊗)-reduct – semiring reduct
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Residuation. Residuated functions

⋆ How to model the implication?

⋆ Residuated function

⋆ (P,6), (Q,6) – partially ordered sets, f : P→ Q

⋆ f is residuated if there is g : Q→ P satisfying

f (x) 6 y ⇔ x 6 g(y)

⋆ residuation property

⋆ if exists, such g is unique

⋆ it is called the residual of f and denoted by f ♯
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Theorem on residuated functions

Theorem on residuated functions

The following conditions for f : P→ Q are equivalent:

(i) f is residuated;

(ii) f is isotone and there is an isotone g : Q→ P such that

IP 6 f ◦ g, g ◦ f 6 IQ;

(iii) the inverse image under f of every principal down-set of Q is a
principal down-set of P;

(iv) f is isotone and the set {x ∈ P | f (x) 6 y} has the greatest element,
for every y ∈ Q.

⋆ principal down-set: a ↓= {x ∈ P | x 6 a}

⋆ lattice-theoretical counterpart of a continuous function

⋆ f ♯(y) = ⊤{x ∈ P | f (x) 6 y} (⊤H – greatest element of H)
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Residuated algebraic structures. Residuated semigroups

⋆ (S,⊗,6) – ordered semigroup

⋆ 6 is compatible w.r.t. ⊗

⋆ for a ∈ S, functions λa, ̺a : S→ S are defined by

λa(x) = a ⊗ x, ̺a(x) = x ⊗ a

⋆ λa – inner left translation w.r.t. a

̺a – inner right translation w.r.t. a

⋆ residuated semigroup – λa and ̺a are residuated functions

⋆ a\b = λ♯a(b) = ⊤{x ∈ S | a ⊗ x 6 b} – right residual of b by a

⋆ b/a = ̺♯a(b) = ⊤{x ∈ S | x ⊗ a 6 b} – left residual of b by a

⋆ residuation property

a ⊗ b 6 c ⇔ b 6 a\c ⇔ a 6 c/b
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Quantales

⋆ Quantale

ordered semigroup (S,⊗,6)

complete lattice w.r.t. 6

⊗ distributes over arbitrary suprema (finite and infinite)

⋆ ⊗ is not necessarily commutative

⋆ inifinite distributivity⇒ existence of residuals

a\b =
∨

{x ∈ S | a ⊗ x 6 b} = ⊤{x ∈ S | a ⊗ x 6 b}

b/a =
∨

{x ∈ S | x ⊗ a 6 b} = ⊤{x ∈ S | x ⊗ a 6 b}

⋆ unital quantale – with a multiplicative unit e

⋆ (S,∨,⊗, 0, e) – semiring (semiring reduct)

⋆ integral quantale – e is the greatest element (e = 1)
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Residuated lattices

⋆ general meaning: lattice-ordered residuated semigroup

⋆ not necessarily commutative (left and right residuals)

⋆ not necessarily complete, not necessarily bounded

⋆ multi-valued logic – requires commutativity and completeness

⋆ Residuated lattice – algebra L = (L,∨,∧,⊗,→, 0, 1)

(L,∨,∧, 0, 1) – bounded lattice with the least element 0

and the greatest element 1

(L,⊗, 1) – commutative monoid with the unit 1

⊗ and→ satisfy the residuation property

x ⊗ y 6 z ⇔ x 6 y→ z

⋆ Complete residuated lattice – the lattice reduct is complete

commutative integral quantale
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Residuated lattices (cont.)

⋆ only one residual (left and right residuals coincide)

⋆ operation→ : residuum or residual implication

models the implication

⋆ residuation property x ⊗ y 6 z ⇔ x 6 y→ z

modus ponens rule

deduction theorem

⋆ biresiduum or residual equivalence:

x↔ y = (x→ y) ∧ (y→ x)

models the equivalence

⋆ negation: ¬x = x→ 0
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Special residuated structures

on [0, 1] with x ∧ y = min(x, y) and x ∨ y = max(x, y)

⋆ Göedel structure

x ⊗ y = min(x, y), x→ y =

{

1 if x 6 y

y otherwise

⋆ Product structure or Goguen structure

x ⊗ y = x · y, x→ y =

{

1 if x 6 y
y

x
otherwise

⋆ Łukasiewicz structure

x ⊗ y = max(x + y − 1, 0), x→ y = min(1 − x + y, 1)

⋆ Göedel and Łukasiewicz structure on finite chains in [0, 1]

⋆ Heyting algebra: Lwith ⊗ = ∧ (bounded Brouwer lattice)
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Multi-valued structures and logics
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Residuation: some historical notes

⋆ Dedekind (1894) – quantales of ideals of rings

⋆ Schröder, Algebra und Logik der Relative (Leipzig, 1895)

quantales of binary relations

⋆ Brouwer (1920s) – relative pseudo complementation

⋆ Heyting (1930) – Heyting algebras

⋆ Ward, Dilworth (1930s) – (noncommutative) residuated
lattices, arithmetical applications

⋆ Mulvey (1986) – quantale of closed linear subspaces of a
non-commutative C⋆-algebra

applications in functional analysis, topology

Gelfand, von Neumann, and Hilbert quantales
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II

Weighted Automata

⋄ State Reduction ⋄
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Back to automata: Behaviour and Equivalence

⋆ behaviour of a WFAA or language recognized byA

[[A]] : X∗ → S given by [[A]](u) = σ · δu · τ

δu = δx1
· . . . · δxs , if u = x1 · · · xs, x1, . . . , xs ∈ X

⋆ A = (A,X, σA, τA, {δA
x }x∈X) and B = (B,X, σB, τB, {δB

x }x∈X) are
equivalent WFAs if [[A]] = [[B]]

⋆ State Reduction Problem:

Provide efficient methods for constructing a reasonably small WFA
equivalent toA (not necessarily minimal)

⋆ Equivalence Problem:

Provide efficient methods for testing whether two WFAsA and B
are equivalent
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State reduction

⋆ Mimimization of NFA – computationally hard problem

⋆ the same goes for weighted and multi-valued automata

⋆ more practical – state reduction problem

give an efficient construction of a reasonably small automaton

(not necessarily minimal) equivalent to the given automaton

⋆ How to make a state reduction?

⋆ our main ideas came from algebra – quotient algebra

⋆ congruences – compatible equivalence relations

⋆ elements of the quotient algebra – equivalence classes

⋆ rows or columns in the correspodning Boolean matrix
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Row automata

⋆ (S,+, ·, 0, e) – semiring with the unit e

⋆ A = (A, σ, τ, {δx}x∈X) – weighted finite automaton over S

⋆ π ∈ SA×A – given matrix

⋆ Our idea: Construct an WFA whose states would be rows of π

⋆ aπ – a-row of π – π(a, ·), πb – b-column of π – π(·, b)

⋆ A – the set of all different rows of π

⋆ define σ, τ : A→ S, δx : A × A→ S, x ∈ X by

σ(aπ) = (σ · π)(a) = σ · (πa)

τ(aπ) = (π · τ)(a) = (aπ) · τ

δx(aπ, bπ) = (π · δx · π)(a, b) = (aπ) · δx · (πb)
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Quasi-order matrices

⋆ Question: Are these definitions good?

⋆ Answer: Not necessarily.

If aπ = a′π and bπ = b′π, it does not have to be

σ · (πa) = σ · (πa′) or (aπ) · δx · (πb) = (a′π) · δx · (πb′)

⋆ Question: Under what conditions the definitions are good?

⋆ we need a partial order 6 on S (not necessarily compatible)

⋆ a square matrix π : A × A→ S is

reflexive if e 6 π(a, a), for all a ∈ A

transitive if π(a, b) · π(b, c) 6 π(a, c), for all a, b, c ∈ A

⋆ Quasi-order matrix – reflexive and transitive matrix
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Quasi-order matrices (cont.)

Theorem 1

Let π ∈ SA×A be a quasi-order matrix and a, b ∈ A. Then the following
conditions are equivalent:

(i) π(a, b) = π(b, a) = e

(ii) aπ = bπ

(iii) πa = πb

Theorem 2

Let π ∈ SA×A be a quasi-order matrix.

Then σ, τ and δx are well-defined andA = (A, σ, τ, {δx}x∈X) is an WFA

satisfying |A| 6 |A|.

A – row automaton – isomorphic to column automaton
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Notes on quasi-order matrices

⋆ S – semiring with unit e, 6 – partial order on S

⋆ partial order on SA×A is defined entrywise

µ 6 η ⇔ µ(a, b) 6 η(a, b), for all a, b ∈ S

⋆ if the ordering on S is compatible, then the ordering of matrices is
also compatible

⋆ for a matrix πwith entries in a lattice-ordered monoid

π is reflexive ⇔ ∆ 6 π ⇒ π 6 π2

π is transitive ⇔ π2
6 π

π is a quasi-order matrix ⇒ π2 = π

⋆ ∆(a, a) = e (the unit), ∆(a, b) = 0, for a , b – unit matrix

⋆ Question: Under what conditions this holds for matrices with
entries in a semiring?
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Notes on quasi-order matrices (cont.)

⋆ S – positively ordered semiring – compatible partial order 6
and 0 is the least element

π is reflexive ⇒ ∆ 6 π ⇒ π 6 π2

⋆ to prove

π is transitive ⇒ π2
6 π

we need something like

a1, . . . , as 6 a ⇒ a1 + . . . + as 6 a

the addition behaves somehow like supremum

⋆ Question: In which class of semirings all of this is true?

⋆ Answer: Additively idempotent semirings
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Additively idempotent semirings

⋆ a + a = a, for every a ∈ S (equivalently 1 + 1 = 1)

⋆ positively partially ordered

⋆ partial ordering: a 6 b ⇔ a + b = b

⋆ supremum coincides with addition

⋆ every quasi-order matrix π satisfies π2 = π

⋆ Question: Why π2 = π is so important?

⋆ behaviour of the row automatonA (the general case)

[[A]](ε) = σ · π2 · τ

[[A]](x1x2 · · · xk) = σ · π2 · δx1
· π2 · δx2

· π2 · . . . · π2 · δxk
· π2 · τ

⋆ with π2 = πwe avoid squares
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Additively idempotent semirings – importance

⋆ the basic concept of idempotent analysis

the usual arithmetic operations (+, ·) are replaced by a new set of
basic operations – semiring operations (max,+), (min,+), etc.

some problems that are non-linear in the traditional analysis turn
out to be linear over a suitable semiring

tropical mathematics, tropical geometry ... (tropical semiring)

⋆ algebraic path problems (generalization of the shortest path
problem in graphs)

⋆ optimization problems (including dynamic programming)

⋆ discrete-event systems

⋆ automata and formal language theory
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Equivalence ofA andA (additively idempotent case)

⋆ Question: IsA equivalent toA? Answer: Not necessarily.

⋆ Question: Under what conditions they are equivalent?

[[A]](ε) = σ · τ

[[A]](x1x2 · · · xk) = σ · δx1
· δx2
· . . . · δxk

· τ

[[A]](ε) = σ · π · τ

[[A]](x1x2 · · · xk) = σ · π · δx1
· π · δx2

· π · . . . · π · δxk
· π · τ

⋆ π has to be a solution of the general system

σ · τ = σ · π · τ

σ · δx1
· δx2
· . . . · δxk

· τ = σ · π · δx1
· π · δx2

· π · . . . · π · δxk
· π · τ
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Notes on the general system

⋆ it may consist of infinitely many equations

⋆ can not be solved efficiently

⋆ we have to find as possible greater solutions (greater
solutions provide better reductions)

⋆ in the general case, there is no the greatest solution

⋆ instances of the general system

⋆ systems whose any solution is a solution to the general
system

⋆ we need instances with finitely many equations or inequations
which have the greatest solution and can be solved efficiently
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III

Weakly linear systems

⋄ The General Results ⋄
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Weakly linear systems (The general form)

⋆ I = I1 ∪ I2 ∪ I3 ∪ I4 – nonempty set

⋆ A, B – nonempty sets

⋆ {αi}i∈I ∈ SA×A, {βi}i∈I ∈ SB×B – given families of matrices

⋆ µ – unknown taking values in SA×B

⋆ weakly linear system

αi · µ 6 µ · βi, i ∈ I1,

µ · βi 6 αi · µ, i ∈ I2,

µ⊤ · αi 6 βi · µ
⊤, i ∈ I3,

βi · µ
⊤
6 µ⊤ · αi, i ∈ I4,

⋆ homogeneous system – A = B and αi = βi, for all i ∈ I

⋆ otherwise – heterogeneous system
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The greatest solutions

Theorem 1

For an arbitrary γ0 ∈ SA×B the exists the greatest solution of the WLS
which is less than or equal to γ0.

⋆ in the case of an homogeneeous WLS we have

Theorem 2

Let γ0 be a quasi-order matrix, and γ the greatest solution of the WLS
such that γ 6 γ0. Then γ is also a quasi-order matrix.

⋆ How to compute the greatest solutions?
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The function φ

αi · µ 6 µ · βi, i ∈ I1,

µ · βi 6 αi · µ, i ∈ I2,

µ⊤ · αi 6 βi · µ
⊤, i ∈ I3,

βi · µ
⊤
6 µ⊤ · αi, i ∈ I4,

Definition

A function φ : SA×B → SA×B is defined as follows

φ(γ) =
(

∧

i∈I1

αi\(γ · βi)
)

∧

(

∧

i∈I2

(αi · γ)/βi)
)

∧

(

∧

i∈I3

[

(βi · γ
⊤)/αi)

]⊤
)

∧

(

∧

i∈I4

[

βi\(γ
⊤ · αi)

]⊤
)

,
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The function φ (cont.)

Theorem 3

⋆ φ is an isotone function on the complete lattice SA×B

⋆ the considered WLS is equivalent to the inequation

µ 6 φ(µ)

⋆ γ 6 φ(γ) – γ is a post-fixed point of φ

⋆ γ = φ(γ) – γ is a fixed point of φ

⋆ solving the WLS ≡ computing post-fixed points of φ
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Knaster-Tarski Fixed Point Theorem

Knaster-Tarski Fixed Point Theorem

Let L be a complete lattice, φ : L→ L an isotone function, and a0 ∈ L

⋆ there exists the greatest post-fixed point a of φ satisfying a 6 a0

⋆ a is also the greatest fixed point of φ satisfying a 6 a0

⋆ Knaster-Tarski theorem provides the existence of the greatest
solution of WLS which is less or equal to a given γ0 ∈ SA×B

⋆ it does not provide a way to compute this solution

⋆ Problem: How to compute the greatest solutions?
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Kleene Fixed Point Theorem

Kleene Fixed Point Theorem

Let L be a complete lattice, φ : L→ L an isotone function, and a0 ∈ L

Define Kleene’s descending chain {ak}k∈N of φ by

a1 = a0, ak+1 = ak ∧ φ(ak)

⋆ If the chain stabilizes at some ak (i.e. ak+1 = ak), then ak is the
greatest fixed point of φ less than or equal to a0

⋆ if φ is Scott-continuous (i.e., it preserves lower-directed infima),
then the greatest fixed point of φ less than or equal to a0 is

a =
∧

k∈N

ak
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The greatest solutions of WLS

⋆ for γ0 ∈ SA×B we consider Kleene’s descending chain {γk}k∈N
given by

γ1 = γ0, γk+1 = γk ∧ φ(γk)

⋆ if the subalgebra of S generated by all entries of matrices αi,
βi and γ0 satisfies DCC, the chain stabilizes at some γk

⋆ then γk is the greatest solution of the WLS

⋆ special cases: S satisfies DCC or is locally finite

⋆ special case: S is the max-plus quantale

– φ is Scott-continuous (i.e., ω-continuous)

– the greatest solution which is less than or equal to γ0 is

γ =
∧

k∈N

γk
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Max-plus quantale

⋆ R∞ = R ∪ {−∞,+∞}

⋆ usual ordering

⋆ multiplication

a ⊗ b =























a + b if a, b ∈ R,

−∞ if a = −∞ or b = −∞,

+∞ if a = +∞, b , −∞ or a , −∞, b = +∞,

⋆ commutative unital quantale

⋆ residuation

a→ b =























b − a if a, b ∈ R,

−∞ if b = −∞, a , −∞,

+∞ if b = +∞ or a = b = −∞.
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Related quantales

⋆ Q∞ = Q ∪ {−∞,+∞}, Z∞ = Z ∪ {−∞,+∞}

⋆ subquantales of R∞

⋆ R>0 ∪ {+∞}, with multiplication and residuation

a ⊗ b =

{

a + b if a, b ∈ R>0,

+∞ if a = +∞ or b = +∞,

a→ b =























b − a if a, b ∈ R>0 and a 6 b,

0 if b ∈ R>0 and a > b,

+∞ if b = +∞.

⋆ subquantales Q>0 ∪ {+∞} and Z>0 ∪ {+∞},
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Related quantales (cont.)

⋆ R>0 ∪ {+∞}, with

a ⊗ b =























a · b if a, b ∈ R>0,

0 if a = 0 or b = 0,

+∞ if a = +∞, b , 0, or b = +∞, a , 0

a→ b =























b/a if a ∈ R>0, b ∈ R>0,

0 if a = +∞, b ∈ R>0,

+∞ if a = 0 or b = +∞.

⋆ max-min quantale or fuzzy algebra – R ∪ {−∞,+∞}, with

a ⊗ b = a ∧ b, a→ b =

{

b if a > b,

+∞ if a 6 b.
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WFA over the max-plus semiring

⋆ Max-plus semiring – carrier Rmax = R ∪ {−∞}

⋆ Open problem: How to avoid +∞ as an entry in matrices γk?

⋆ if τ(a) = −∞, for some a ∈ A, then

γ0(a, a) = (τ/τ)(a, a) = τ(a)→ τ(a) = −∞ → −∞ = +∞

⋆ To replace +∞ on the diagonal od γ0 by an enough big real
number?

⋆ the final result should be a quasi-order matrix

⋆ the new starting matrix should also be quasi-order matrix
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IV

Weighted Automata

⋄ Back to State Reduction ⋄
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Right and left invariant matrices

⋆ A = (A, σ, τ, {δx}x∈X) – weighted automaton over a quantale S

⋆ right invariant matrices – solutions of

µ · δx 6 δx · µ, x ∈ X,

µ · τ 6 τ

⋆ left invariant matrices – solutions of

δx · µ 6 µ · δx, x ∈ X,

σ · µ 6 σ

⋆ µ · τ 6 τ ⇔ µ 6 τ/τ and σ · µ 6 σ ⇔ µ 6 σ\σ

⋆ τ/τ, σ\σ ∈ SA×A are quasi-order matrices given by

(τ/τ)(a, b) = τ(a)/τ(b), (σ\σ)(a, b) = σ(a)\σ(b)
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Computation of the greatest invariant matrices

⋆ How to compute the greatest right and left invariant matrices?

⋆ they can be computed as the greatest solutions of the
corresponding WLS that are less than or equal to τ/τ or σ\σ

⋆ Why we need right and left invariant matrices?

⋆ right and left invariant matrices are solutions of the general
system

⋆ right and left invariant matrices provide state reductions
that may be efficiently realised
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What else

⋆ A – WFA, π – the greatest left invariant q-o.m. onA

whenA is reduced by means of π, the resulting row autom-
atonA/π can not be reduced by means of right invariant q-o.m.

however, it could be reduced by means of left invariant q-o.m.

⋆ Alternate reductions

we alternately make a series of reductions by means of the greatest
right and left invariant q-o.m., or vice versa

this procedure will be interrupted when we get an automaton that
can not be reduced by means of alternate reductions
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V

Weighted Automata

⋄ Equivalence ⋄

⋄ Simulation and Bisimulation ⋄
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Equivalence of WFAs

⋆ Equivalence Problem: Provide efficient methods for testing
whether two WFAsA and B are equivalent

⋆ Equivalence Problem is computationally hard

⋆ equivalence of WFAs can not be expressed through matrices, as
some kind of relationship between states

⋆ simulation: A × B-matrix which provides that B simulatesA

⋆ bisimulation: A × B-matrix which, together with its transpose,
provides that B andA simulate each other

⋆ existence of a bisimulation implies equivalence ofA and B

bisimulations provide approximations of equivalence

⋆ simulations and bisimulations – defined as solutions of
particular systems of matrix inequations
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Simulations

⋆ S – unital quantale

⋆ WFAs A = (A,X, σA, τA, {δA
x }x∈X), B = (B,X, σB, τB, {δB

x }x∈X)

⋆ forward simulations – solutions of

µ⊤ · δA
x 6 δ

B
x · µ

⊤, x ∈ X,

µ⊤ · τA
6 τB (equivalently µ 6 γ0 = (τB/τA)⊤)

σA
6 σB · µ⊤

⋆ backward simulations – solutions of

δA
x · µ 6 µ · δ

B
x , x ∈ X,

σA · µ 6 σB (equivalently µ 6 γ0 = σA\σB)

τA
6 µ · τB
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Forward and backward simulations

nondeterministic automata

A B

σA σB

τA τB
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Forward and backward simulations

nondeterministic automata
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forward simulation – the sequence b0, . . . , bn is built starting from b0 and ending with bn

backward simulation – the sequence b0, . . . , bn is built starting from bn and ending with b0

48 Miroslav Ćirić Weighted Automata and Networks



Bisimulations

type of bisimulations ̺ ̺⊤

forward forward forward

backward backward backward

forward-backward forward backward

backward-forward backward forward

⋆ there are also two-way simulations

B simulatesA andA simulates B, but two simulations are
independent
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Tests of existence

⋆ Forward bisimulation

µ⊤ · δA
x 6 δ

B
x · µ

⊤, µ · δB
x 6 δ

A
x · µ, x ∈ X

µ⊤ · τA
6 τB, µ · τB

6 τA

σA
6 σB · µ⊤, σB

6 σA · µ

⋆ first row – WLS with I1 = I4 = ∅, I = I2 ∪ I3

⋆ second row – equivalent to µ 6 γ0 = (τB/τA)⊤ ∧ (τA/τB)

Theorem (Test of existence for forward bisimulations)

Let γ be the greatest solution of the above WLS such that γ 6 γ0.

⋆ If σA
6 σB · γ⊤ and σB

6 σA · γ, then γ is the greatest forward
bisimulation betweenA and B.

⋆ If γ does not satisfy this condition, then there is no any forward
bisimulation betweenA and B.
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Back to additively idempotent semirings

⋆ S – additively idempotent semiring

⊲ 6 – natural partial ordering on S and its extension to matrices

⋆ we can define all types of simulations and bisimulations
for WFAs over S

⋆ Problem: How to test the existence and compute the
greatest ones?

⋆ in the general case, there is no residuation for matrices over S

⊲ for α ∈ SA×B and γ ∈ SA×C inequation α · µ 6 γ may not have
the greatest solution in SB×C (similarly for µ · β 6 γ)

⋆ Problem: Can this inequation have the greatest solution in
some M ⊆ SB×C?
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Relative residuals

⋆ α ∈ SA×B, β ∈ SB×C, γ ∈ SA×C

⋆ M ⊆ SB×C, N ⊆ SA×B

⋆ relative right residual of γ by α w.r.t. M – greatest solution
of α · µ 6 γ in M, if it exists

⋆ relative left residual of γ by βw.r.t. N – greatest solution of
µ · β 6 γ in N, if it exists

⋆ when (M,+, 0) and (N,+, 0) are finite submonoids of
(SB×C,+, 0) and (SA×B,+, 0), relative residuals always exist

⋆ Problem: How to compute them?

⋆ We solved the problem for M = 2B×C, N = 2A×B – Boolean matrices
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Boolean residuals

⋆ relative right residual of γ by α w.r.t. 2B×C exists

⊲ we call it the Boolean right residual, and denote it by α0γ

⋆ relative left residual of γ by β w.r.t. 2A×B exists

⊲ we call it the Boolean left residual, and denote it by γ1β

⋆ for any assertionΨ of a classical Boolean logic, ⌈Ψ⌉ denotes
its truth value

Theorem (Boolean residuals)

(α0γ)(b, c) = ⌈α(·, b) 6 γ(·, c)⌉, (γ1β)(a, b) = ⌈β(b, ·) 6 γ(a, ·)⌉

For all ξ ∈ 2B×C and η ∈ 2A×B we have

α · ξ 6 γ ⇔ ξ 6 α0γ, η · β 6 γ ⇔ η 6 γ1β
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Boolean simulations and bisimulations

⋆ Boolean sumulations and bisimulations
solutions of systems which define simulations and bisimulations
in the class of Boolean matrices

⋆ Test of existence: similar as for simulations and bisimulations for
automata over a unital quantale

⋆ Difference: we compute a sequence {γk}k∈N of Boolean matrices

⊲ since 2A×B is finite, the sequence stabilizes at some γk

� if γk passes the test, then there is a Boolean simulation
(bisimulation) and γk is the greatest one

� if γk does not pass the test, then there is no any Boolean simulation
(bisimulation)
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Past results and future work

⋆ Past results:

⋆ state reduction, simulation and bisimulation for

fuzzy automata over a complete residuated lattice

nondeterministic automata

weighted automata over an additively idempotent semiring

relative residuation – Boolean residuation

⋆ Further work:

weighted automata over a max-plus semiring
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V

Weighted Networks

⋄ Positional Analysis ⋄
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Social Network Analysis

⋆ mathematical methods for the study of social structures

⋆ they can also be applied to many other types of networks
that arise in computer science, physics, biology, etc.

⋆ a social network is made up of

– a set of social actors (individuals or organizations)

– ties or social interactions between actors

⋆ most often, ties are modeled by Boolean-valued relations or
Boolean matrices

⋆ in many real-world networks, not all ties have the same
strength, intensity, duration, or some other quantitative property

⋆ in these cases, it is natural to assign weights to ties, to model
these quantitative properties
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Weighted networks

⋆ S – unital quantale

⋆ Weighted network (one-mode network): N = (A, {̺i}i∈I)

A – set of actors

{̺i}i∈I ⊆ SA×A – family of matrices

matrices represent social relations between actors

sometimes we considerN = (A, {̺i}i∈I, {σj}j∈J)

{σj}j∈J ⊆ SA – family of vectors

vectors represent certain individual properties of actors

⋆ most often, Boolean matrices have been taken in account

⋆ another name: valued networks (usually integer weights)
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Positional analysis

⋆ identify the position or role of actors in a network on the basis of
mutual relationships

⋆ example: terroristic group or criminal group - identify roles
(leaders, etc.) on the basis on communication between the group
members (without insight into the content of the conversation)

J. Brynielsson, L. Kaati, P. Svenson, Social positions and simulation
relations, Soc. Netw. Anal. Min. 2 (2012) 39–52
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Positional analysis (cont.)

⋆ closely related: blockmodeling – data reduction method

large and complex social networks are mapped into simpler
structures – blockmodel images

blockmodel image – structural summary of the original network

⋆ common idea

to cluster actors who have substantially similar patterns of
relationships with others

to interpret the pattern of relationships among the clusters

⋆ behavior of individuals is often determined by the affiliation of the
group

⋆ such influence of the group to the behavior of an individual can be
very important
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Structural and regular equivalences (Boolean case)

⋆ Structural equivalences (Lorrain and White, 1971)

two actors are considered to be structurally equivalent if they have
identical neighborhoods

in our terminology – greatest solutions of the system

µ · ̺i 6 ̺i, µ⊤ · ̺i 6 ̺i, ̺i · µ 6 ̺i, ̺i · µ
⊤
6 ̺i

this concept has shown oneself to be too strong

⋆ Regular equivalences (White and Reitz, 1983)

less restrictive than structural equivalences and more
appropriate for modeling social positions

two actors are considered to be regularly equivalent if they are
equally related to equivalent others
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Regular matrices

⋆ Regular matrix – solution of the system

̺i · µ = µ · ̺i, ̺i · µ
⊤ = µ⊤ · ̺i, i ∈ I

weakly linear system

greatest solution – regular equivalence matrix

it can be computed using the previously described method

⋆ we can also use any of the following three systems

̺i · µ = µ · ̺i, i ∈ I

̺i · µ 6 µ · ̺i, i ∈ I

µ · ̺i 6 ̺i · µ, i ∈ I

the greatest solutions – quasi-order matrices

if we need the greatest solutions which are equivalence
matrices – we have to add inequations with µ⊤
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Example (Brynielsson, Kaati, and Svenson)

⋆ regular equivalence classes – {1}, {2}, {3}, {4}, {5, 6}

⋆ simulation equivalence classes – {1, 2}, {3}, {4}, {5, 6}

simulation equivalence ≡ natural equivalence of simulation
quasi-order (its symmetric opening)

simulation quasi-orders – (greatest) solutions of µ · ̺i 6 ̺i · µ

⋆ regular equivalences can not identify group leaders – 1 and 2
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Bisimulations in SNA

⋆ identify similar positions in different networks

⋆ networks: N = (A, {̺i}i∈I, {σj}j∈J), N
′ = (A′, {̺′

i
}i∈I, {σ′j}j∈J)

⋆ regular bisimulations – solutions of the system

σj = µ · σ
′
j , j ∈ J

σ′j = µ
⊤ · σj, j ∈ J

̺i · µ = µ · ̺
′
i , i ∈ I

µ⊤ · ̺i = ̺
′
i · µ

⊤, i ∈ I

µ – unknown taking values in SA×B

⋆ algorithm for testing the existence of a regular bisimulation and
computing the greatest one

⋆ other types of simulations and bisimulations (unpublished)

64 Miroslav Ćirić Weighted Automata and Networks



Two-mode networks

⋆ Two-mode network – T = (A,B, {̺i}i∈I)

A, B – two sets of entities

{̺i}i∈I ⊆ SA×B – family of matrices (represent relationships)

affiliation or bipartite networks

⋆ examples: people attending events, organizations employing
people, authors and articles, etc.

⋆ Positional analysis – identify positions in both modes of the
network

⋆ Indirect approach – reduction to one-mode networks

single one-mode network on A ∪ B

two one-mode networks (A, {̺i · ̺⊤i }i∈I), (B, {̺⊤
i
· ̺i}i∈I)
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Our direct approach

⋆ Two-mode systems

α · ̺i = ̺i · β, i ∈ I

α · ̺i 6 ̺i · β, i ∈ I

̺i · β 6 α · ̺i, i ∈ I

α · ̺i = ̺i · β, α⊤ · ̺i = ̺i · β
⊤, i ∈ I

α · ̺i 6 ̺i · α, α⊤ · ̺i 6 ̺i · β
⊤ i ∈ I

̺i · β 6 α · ̺i, ̺i · β
⊤
6 α⊤ · ̺i i ∈ I

{̺i}i∈I ⊆ SA×B – given family of matrices

α and β – unknowns taking values in SA×A and SB×B

⋆ solutions – pairs of matrices (ordered coordinatewise)

⋆ algorithms for computing the greatest solutions for all
two-mode systems
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Multi-mode networks

⋆ Multi-mode network – T = (A1, . . . ,An,R)

⋆ A1, . . . ,An – multiple non-empty sets

⋆ R – system of Aj × Ak-matrices defined for some pairs (j, k)

⋆ formally: J ⊆ [1, n] × [1, n] satisfying

(∀j ∈ [1, n])(∃k ∈ [1, n]) (j, k) ∈ J or (k, j) ∈ J

{Ij,k}(j,k)∈J – collection of non-empty sets

R = {̺j,k
i
| (j, k) ∈ J, i ∈ Ij,k}, ̺j,k

i
∈ SAj×Ak , for all (j, k) ∈ J, i ∈ Ij,k

⋆ complex synthesis of one-mode and two-mode networks

⋆ Positional analysis – identify positions in all modes of the
network
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Multi-mode networks – examples

Simple organization network
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Multi-mode networks – examples

Researchers

Papers

Words
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uth
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Network of academic publications
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Multi-mode networks – examples

Genetic regulatory (interaction) network
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Multi-mode systems

αj · ̺
j,k
i
= ̺j,k

i
· αk, (j, k) ∈ J, i ∈ Ij,k,

αj · ̺
j,k
i
6 ̺j,k

i
· αk, (j, k) ∈ J, i ∈ Ij,k,

αj · ̺
j,k
i
> ̺j,k

i
· αk, (j, k) ∈ J, i ∈ Ij,k,

⋆ α1, . . . , αn – unknowns, αj takes values in SAj×Aj

⋆ solutions – n-tuples of matrices from SA1×A1 × · · · × SAn×An

⋆ n-tuples are ordered coordinatewise

⋆ greatest solutions – n-tuples of quasi-order matrices (to get
equivalence matrices we add (in)equations with α⊤

j
and α⊤

k
)

⋆ algorithms for computing the greatest solutions for all
multi-mode systems
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Example 1

Grouping employees and jobs

⋆ two-mode network T = (A,B, {̺i}i∈I)

⋆ A – the set of all employees of some company

⋆ B – the set of all jobs which this company performs for other companies

⋆ I set of these other companies

⋆ the jobs for the company i ∈ I are allotted to employees by a relation
̺i ⊆ A × B

⋆ Task: group employees into teams and jobs into groups of jobs so that

⊲ the teams and groups of jobs are as wide as possible
⊲ for any company, a group of jobs γ is assigned to a team θ if and only if

∗ for every employee from θ there is a job from γ which he has already
performed for that company

∗ for every job from γ there is an employee from θ who has already
preformed that job for that company

⋆ this can be done using the greatest solution of α · ̺i = ̺i · β, α⊤ · ̺i = ̺i · β⊤
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Example 2

The modified problem

⋆ the teams and the groups of jobs have wider and narrower parts

⋆ the narrower parts – the cores of the teams and groups of jobs

⋆ for any company, a group of jobs γ is assigned to a team θ if and only if

∗ for every employee from the core of θ there is a job from γ which he has
already performed for that company

∗ for every job from the core of γ there is an employee from θ who has already
preformed that job for that company

⋆ this can be done using the greatest solution of α · ̺i = ̺i · β
⋆ the wider teams and groups of jobs are the rows of α and the columns of β
⋆ the narrower teams and groups of jobs are equivalence classes of the natural

equivalences of α and β
⋆ the core of the team performs the main part of the assigned jobs, and the rest of

the team assists the core in the jobs that they have not previously performed and
in other cases when they need help

⋆ the core of the group of jobs assigned to the team are main jobs they have to
perform, while the rest of this group are those jobs for which the members of the
team could be engaged to assist
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Example 3

Adding a third mode

⋆ third mode: skills, e.g., knowledge of specific software packages, if the
considered company is a software company

⋆ groups of software packages assigned to teams

⋆ for any company, a group of software packages π is assigned to a team θ
if and only if

∗ for every employee from θ there is a software package from π for which the
employee is qualified

∗ for every software package from π there is an employee from θ who is
qualified for that software package

⋆ such grouping can be done using the triples of equivalences that are
solutions of our three-mode systems

⋆ version with cores – triples of quasi-orders that are solutions of our
three-mode systems

74 Miroslav Ćirić Weighted Automata and Networks



Thanks!

Thank you

for your attention!

75 Miroslav Ćirić Weighted Automata and Networks


