Connectivity networks and applications

Dimitris Kugiumtzis
e-mail: dkugiu@gen.auth.gr http:
users.auth.gr\dkugiu
November 13, 2019

Financial World Markets

Electroencephalogram (EEG)

http://en.wikipedia.org/wiki/File:EEG_cap.jpg

[^0]

Complex networks from multivariate time series

Complex networks from multivariate time series

Multivariate time series

Multivariate time series

产

Whl whard

Complex networks from

multivariate time series

(auto)correlation $r\left(X_{t} ; X_{t-\tau}\right)$
Are X_{t} and X_{t-1} linearly correlated? $r\left(X_{t} ; X_{t-1}\right) \neq 0$?
Are X_{t} and X_{t-2} linearly correlated? $r\left(X_{t} ; X_{t-2}\right) \neq 0$?

(auto)correlation $r\left(X_{t} ; X_{t-\tau}\right)$
Are X_{t} and X_{t-1} linearly correlated? $r\left(X_{t} ; X_{t-1}\right) \neq 0$? Yes Are X_{t} and X_{t-2} linearly correlated? $r\left(X_{t} ; X_{t-2}\right) \neq 0$? Yes
autocorrelation

Are X_{t} and X_{t-2} directly linearly correlated?

Are X_{t} and X_{t-2} directly linearly correlated?
Are X_{t} and X_{t-2} linearly correlated given X_{t-1} ?

$$
r\left(X_{t} ; X_{t-2} \mid X_{t-1}\right) \neq 0 ?
$$

autocorrelation

Are X_{t} and X_{t-2} directly linearly correlated?
Are X_{t} and X_{t-2} linearly correlated given X_{t-1} ?

$$
r\left(X_{t} ; X_{t-2} \mid X_{t-1}\right) \neq 0 ? \quad \text { No }
$$

Are X_{t} and X_{t-2} directly linearly correlated?
Are X_{t} and X_{t-2} linearly correlated given X_{t-1} ?

$$
r\left(X_{t} ; X_{t-2} \mid X_{t-1}\right) \neq 0 ? \quad \text { No }
$$

Are X_{t} and X_{t-2} linearly or/and nonlinearly correlated given X_{t-1} ?

$$
I\left(X_{t} ; X_{t-2} \mid X_{t-1}\right) \neq 0 ?
$$

Correlation measures

$$
X \sim Y \quad X \sim Y \mid Z
$$

Linear	- Cross-Correlation	- Partial Correlation
	- Coherence	- Partial Coherence

Nonlinear - Phase Synchronization ?

- Cross Mutual Information ?

Granger Causality measures

$$
X \rightarrow Y \quad X \rightarrow Y \mid Z
$$

Linear	$-\quad$ Granger Causality Index	- Conditional (Partial) GCI	
	(GCI)	(CGCI)	
	- Directed Coherence (DC)	- Partial DC (PDC)	
	- Directed Transfer Function	- direct DTF (dDTF)	
	$(D T F)$		

Nonlinear - Directionality Index ?

- Mean Conditional Recurrence ?
- Transfer entropy (TE) - Partial TE (PTE)
- Mutual Information from - Partial MIME (PMIME)
Mixed Embedding (MIME)

Correlation measures

Bivariate time series $\left\{x_{t}, y_{t}\right\}_{t=1}^{n}$
Linear correlation measures:
Estimate of cross-covariance

$$
c_{X Y}(\tau)=\hat{\gamma}_{X Y}(\tau)=\frac{1}{n-\tau} \sum_{t=1}^{n-\tau}\left(x_{t}-\bar{x}\right)\left(y_{t+\tau}-\bar{y}\right)
$$

\bar{x} and \bar{y} are sample means.
Estimate of cross-correlation:

$$
r_{X Y}(\tau)=r\left(X_{t}, Y_{t+\tau}\right)=\hat{\rho}_{X Y}(\tau)=\frac{c_{X Y}(\tau)}{c_{X Y}(0)}=\frac{c_{X Y}(\tau)}{s_{X} s_{Y}}
$$

s_{X} and s_{Y} are sample standard deviations.

- $\left|r_{X Y}(\tau)\right| \leq 1$
- $r_{X Y}(\tau)=r_{Y X}(-\tau)$ but $r_{X Y}(\tau) \neq r_{X Y}(-\tau)$

Noninear correlation measures:
Entropy: information from each sample of X (assume proper discretization of X)

$$
H(X)=\sum_{x} p_{X}(x) \log p_{X}(x)
$$

Mutual information: information for Y knowing X and vice versa
$I(X, Y)=H(X)+H(Y)-H(X, Y)=\sum_{x, y} p_{X Y}(x, y) \log \frac{p_{X Y}(x, y)}{p_{X}(x) p_{Y}(y)}$
For $X \rightarrow X_{t}$ and $Y \rightarrow Y_{t+\tau}$,
cross-delayed mutual information:
$I_{X Y}(\tau)=I\left(X_{t}, Y_{t+\tau}\right)=\sum_{X_{t}, y_{t+\tau}} p_{X_{t} Y_{t+\tau}}\left(x_{t}, y_{t+\tau}\right) \log \frac{p_{X_{t} Y_{t+\tau}}\left(x_{t}, y_{t+\tau}\right)}{p_{X_{t}}\left(x_{t}\right) p_{Y_{t+\tau}}\left(y_{t+\tau}\right)}$
To compute $I_{X Y}(\tau)$ make a partition of $\left\{x_{t}\right\}_{t=1}^{n}$, a partition of $\left\{y_{t}\right\}_{t=1}^{n}$ and compute probabilities for each cell from the relative frequency.
$r_{X Y}(0) \neq 0:$
\Longrightarrow (linear) correlation of x_{t} and y_{t}
\Longrightarrow systems X and Y are correlated, $X \sim Y$
$r_{X Y}(0) \neq 0:$
\Longrightarrow (linear) correlation of x_{t} and y_{t}
\Longrightarrow systems X and Y are correlated, $X \sim Y$
$r_{X Y}(\tau) \neq 0:$
\Longrightarrow (linear) correlation of x_{t} and $y_{t+\tau}$
$\Longrightarrow X$ effects the future of Y
$\Longrightarrow X \rightarrow Y$
$r_{X Y}(-\tau) \neq 0 \quad \Longrightarrow \quad Y \rightarrow X$
$r_{X Y}(0) \neq 0:$
\Longrightarrow (linear) correlation of x_{t} and y_{t}
\Longrightarrow systems X and Y are correlated, $X \sim Y$
$r_{X Y}(\tau) \neq 0:$
\Longrightarrow (linear) correlation of x_{t} and $y_{t+\tau}$
$\Longrightarrow X$ effects the future of Y
$\Longrightarrow X \rightarrow Y$
$r_{X Y}(-\tau) \neq 0 \quad \Longrightarrow \quad Y \rightarrow X$
Thus $r_{X Y}(\tau)=r\left(X_{t}, Y_{t+\tau}\right)$ and $I_{X Y}(\tau)=I\left(X_{t}, Y_{t+\tau}\right)$ indicate the direction of interaction.
$r_{X Y}(0) \neq 0:$
\Longrightarrow (linear) correlation of x_{t} and y_{t}
\Longrightarrow systems X and Y are correlated, $X \sim Y$
$r_{X Y}(\tau) \neq 0:$
\Longrightarrow (linear) correlation of x_{t} and $y_{t+\tau}$
$\Longrightarrow X$ effects the future of Y
$\Longrightarrow X \rightarrow Y$
$r_{X Y}(-\tau) \neq 0 \quad \Longrightarrow \quad Y \rightarrow X$
Thus $r_{X Y}(\tau)=r\left(X_{t}, Y_{t+\tau}\right)$ and $I_{X Y}(\tau)=I\left(X_{t}, Y_{t+\tau}\right)$ indicate the direction of interaction.

Can they also be used as causality measures?
$r_{X Y}(0) \neq 0:$
\Longrightarrow (linear) correlation of x_{t} and y_{t}
\Longrightarrow systems X and Y are correlated, $X \sim Y$
$r_{X Y}(\tau) \neq 0:$
\Longrightarrow (linear) correlation of x_{t} and $y_{t+\tau}$
$\Longrightarrow X$ effects the future of Y
$\Longrightarrow X \rightarrow Y$
$r_{X Y}(-\tau) \neq 0 \quad \Longrightarrow \quad Y \rightarrow X$
Thus $r_{X Y}(\tau)=r\left(X_{t}, Y_{t+\tau}\right)$ and $I_{X Y}(\tau)=I\left(X_{t}, Y_{t+\tau}\right)$ indicate the direction of interaction.

Can they also be used as causality measures?
How can we approximate: $r\left(X_{t} ; Y_{t+1} \mid Y_{t}\right), r\left(X_{t} ; Y_{t+1} \mid Y_{t}\right)$?
$r_{X Y}(0) \neq 0:$
\Longrightarrow (linear) correlation of x_{t} and y_{t}
\Longrightarrow systems X and Y are correlated, $X \sim Y$
$r_{X Y}(\tau) \neq 0:$
\Longrightarrow (linear) correlation of x_{t} and $y_{t+\tau}$
$\Longrightarrow X$ effects the future of Y
$\Longrightarrow X \rightarrow Y$
$r_{X Y}(-\tau) \neq 0 \quad \Longrightarrow \quad Y \rightarrow X$
Thus $r_{X Y}(\tau)=r\left(X_{t}, Y_{t+\tau}\right)$ and $I_{X Y}(\tau)=I\left(X_{t}, Y_{t+\tau}\right)$ indicate the direction of interaction.

Can they also be used as causality measures?
How can we approximate: $r\left(X_{t} ; Y_{t+1} \mid Y_{t}\right), r\left(X_{t} ; Y_{t+1} \mid Y_{t}\right)$?
...or even $r\left(X_{t} ; Y_{t+1} \mid Y_{t}, Z_{t}\right), r\left(X_{t} ; Y_{t+1} \mid Y_{t}, Z_{t}\right)$?

Example: Returns for USA, UnitedKingdom, Greece and Australia. X :AUS, Y :GRE

returns:
$x_{t}=\log \left(y_{t}\right)-\log \left(y_{t-1}\right)$
USA returns

Is the measure significant?
Can I draw a link? (directed / undirected)

Significance test for a correlation / causality measure q, $\mathrm{H}_{0}: q=0 \quad \mathrm{H}_{1}: q \neq 0$

Randomization test

(1) Generate M resampled (surrogate) time series, each by shifting the original observations with a random time step w : original time series: $\left\{x_{t}\right\}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
i-th surrogate time series:
$\left\{x_{t}^{* i}\right\}=\left\{x_{w+1}, x_{w+2}, \ldots, x_{n}, x_{1}, \ldots, x_{w-1}, x_{w}\right\}$
(2) Compute the statistic q on the original pair, q_{0}, and on the M surrogate pairs, q_{1}, \ldots, q_{M},
e.g. $q_{0} \equiv r_{X Y}(\tau)=\operatorname{Corr}\left(x_{t}, y_{t+\tau}\right)$ and $q_{i} \equiv \operatorname{Corr}\left(x_{t}^{* i}, y_{t+\tau}^{* i}\right)$
(3) If q_{0} is at the tails of the empirical null distribution formed by q_{1}, \ldots, q_{M}, reject H_{0}.
We use rank ordering: for a two-sided test, the p-value of the test is [Yu and Huang, 2001]

$$
\begin{array}{lll}
2 \frac{r_{q_{0}}-0.326}{M+1+0.348} & \text { if } & r_{q_{0}}<\frac{M+1}{2} \\
2\left(1-\frac{r_{q_{0}}-0.326}{M+1+0.348}\right) & \text { if } & r_{q_{0}} \geq \frac{M+1}{2}
\end{array}
$$

Example: Returns for USA, UnitedKingdom, Greece and Australia. Correlation matrix for delay $1, r_{X Y}(1)$

$$
R(1)=\left[\begin{array}{cccc}
& 0.382 & 0.333 & 0.596 \\
0.049 & & 0.039 & 0.303 \\
0.096 & 0.001 & & 0.190 \\
0.031 & -0.001 & -0.021 &
\end{array}\right]
$$

Randomization significance test for $r_{X Y}(1)(M=1000)$
Matrix of p-values
Adjacency matrix
$P(R(1))=\left[\begin{array}{llll} & 0.0013 & 0.0013 & 0.0033 \\ 0.0732 & & 0.1991 & 0.0013 \\ 0.0073 & 0.8901 & & 0.0033 \\ 0.2450 & 0.9760 & 0.4028 & \end{array}\right] A=\left[\begin{array}{llll} & 1 & 1 & 1 \\ 0 & & 0 & 1 \\ 1 & 0 & & 1 \\ 0 & 0 & 0 & \end{array}\right]$
For significance level, say $\alpha=0.05$, there may be $p<\alpha$ more often than it should be due to multiple testing.
Correction with e.g. False Discovery Rate

Network for World Financial Markets

index	market
1	Austria
2	Belgium
3	Denmark
4	Finland
5	France
6	Germany
7	Greece
8	Ireland
9	Italy
10	Netherlands
11	Norway
12	Portugal
13	Spain
14	Sweden
15	Switzerland
16	UnitedKingdom
17	USA
18	Canada
19	Australia
20	HongKong
21	Japan
22	NewZealand
23	Singapore

$r_{X Y}(0) \quad$ Adjacency matrix $\quad r_{X Y}(1)$

$I_{X Y}(0) \quad$ Adjacency matrix $\quad I_{X Y}(1)$

Correlation network, nodes: 23 financial markets, directed links: $r_{X Y}(1)$

$r_{X Y}(0) \neq 0:$
\Longrightarrow (linear) correlation of x_{t} and y_{t}
\Longrightarrow systems X and Y are correlated, $X \sim Y$
$r_{X Y}(0) \neq 0:$
\Longrightarrow (linear) correlation of x_{t} and y_{t}
\Longrightarrow systems X and Y are correlated, $X \sim Y$
$r_{X Y}(\tau) \neq 0:$
\Longrightarrow (linear) correlation of x_{t} and $y_{t+\tau}$
$\Longrightarrow X$ effects the future of Y
$\Longrightarrow X \rightarrow Y$
$r_{X Y}(-\tau) \neq 0 \quad \Longrightarrow \quad Y \rightarrow X$
$r_{X Y}(0) \neq 0:$
\Longrightarrow (linear) correlation of x_{t} and y_{t}
\Longrightarrow systems X and Y are correlated, $X \sim Y$
$r_{X Y}(\tau) \neq 0:$
\Longrightarrow (linear) correlation of x_{t} and $y_{t+\tau}$
$\Longrightarrow X$ effects the future of Y
$\Longrightarrow X \rightarrow Y$
$r_{X Y}(-\tau) \neq 0 \quad \Longrightarrow \quad Y \rightarrow X$
Thus $r_{X Y}(\tau)=r\left(X_{t}, Y_{t+\tau}\right)$ and $I_{X Y}(\tau)=I\left(X_{t}, Y_{t+\tau}\right)$ indicate the direction of interaction.
$r_{X Y}(0) \neq 0:$
\Longrightarrow (linear) correlation of x_{t} and y_{t}
\Longrightarrow systems X and Y are correlated, $X \sim Y$
$r_{X Y}(\tau) \neq 0:$
\Longrightarrow (linear) correlation of x_{t} and $y_{t+\tau}$
$\Longrightarrow X$ effects the future of Y
$\Longrightarrow X \rightarrow Y$
$r_{X Y}(-\tau) \neq 0 \quad \Longrightarrow \quad Y \rightarrow X$
Thus $r_{X Y}(\tau)=r\left(X_{t}, Y_{t+\tau}\right)$ and $I_{X Y}(\tau)=I\left(X_{t}, Y_{t+\tau}\right)$ indicate the direction of interaction.

Can they also be used as causality measures?
$r_{X Y}(0) \neq 0:$
\Longrightarrow (linear) correlation of x_{t} and y_{t}
\Longrightarrow systems X and Y are correlated, $X \sim Y$
$r_{X Y}(\tau) \neq 0:$
\Longrightarrow (linear) correlation of x_{t} and $y_{t+\tau}$
$\Longrightarrow X$ effects the future of Y
$\Longrightarrow X \rightarrow Y$
$r_{X Y}(-\tau) \neq 0 \quad \Longrightarrow \quad Y \rightarrow X$
Thus $r_{X Y}(\tau)=r\left(X_{t}, Y_{t+\tau}\right)$ and $I_{X Y}(\tau)=I\left(X_{t}, Y_{t+\tau}\right)$ indicate the direction of interaction.

Can they also be used as causality measures?
How can we approximate: $r\left(X_{t} ; Y_{t+1} \mid Y_{t}\right), r\left(X_{t} ; Y_{t+1} \mid Y_{t}\right)$?
$r_{X Y}(0) \neq 0:$
\Longrightarrow (linear) correlation of x_{t} and y_{t}
\Longrightarrow systems X and Y are correlated, $X \sim Y$
$r_{X Y}(\tau) \neq 0:$
\Longrightarrow (linear) correlation of x_{t} and $y_{t+\tau}$
$\Longrightarrow X$ effects the future of Y
$\Longrightarrow X \rightarrow Y$
$r_{X Y}(-\tau) \neq 0 \quad \Longrightarrow \quad Y \rightarrow X$
Thus $r_{X Y}(\tau)=r\left(X_{t}, Y_{t+\tau}\right)$ and $I_{X Y}(\tau)=I\left(X_{t}, Y_{t+\tau}\right)$ indicate the direction of interaction.

Can they also be used as causality measures?
How can we approximate: $r\left(X_{t} ; Y_{t+1} \mid Y_{t}\right), r\left(X_{t} ; Y_{t+1} \mid Y_{t}\right)$?
...or even $r\left(X_{t} ; Y_{t+1} \mid Y_{t}, Z_{t}\right), r\left(X_{t} ; Y_{t+1} \mid Y_{t}, Z_{t}\right)$?

Linear causality measures (direct and indirect)

Idea of Granger causality $X \rightarrow Y$: [Brandt \& Williams, 2007, Chp 2] predict Y better when including X in the regression model.

Measure 1a: Granger Causality Index (GCI)

Bivariate time series $\left\{x_{t}, y_{t}\right\}_{t=1}^{n}$ driving system: X, response system: Y

Model 1 (restricted, R, X absent in the model):

$$
y_{t}=\sum_{i=1}^{p} a_{i} y_{t-i}+e_{R, t}
$$

Model 2 (unrestricted, U, X present in the model):

$$
\begin{gathered}
y_{t}=\sum_{i=1}^{p} a_{i} y_{t-i}+\sum_{i=1}^{p} b_{i} x_{t-i}+e_{U, t} \\
\mathrm{GCl}_{X \rightarrow Y}=\ln \frac{\operatorname{Var}\left(\hat{e}_{R, t}\right)}{\operatorname{Var}\left(\hat{e}_{U, t}\right)} \quad \mathrm{GCl}_{X \rightarrow Y}>0 \Rightarrow X \rightarrow Y \text { holds }
\end{gathered}
$$

$\mathrm{GCl}_{X \rightarrow Y}>0 \quad ? \quad \Rightarrow \quad$ Significance test
If X does not G ranger causes Y then the contribution of X-lags in the unrestricted model should be insignificant \Rightarrow the terms of X should be insignificant
$\mathrm{H}_{0}: b_{i}=0$, for all $i=1, \ldots, p$
$\mathrm{H}_{1}: b_{i} \neq 0$, for any of $i=1, \ldots, p$
Snedecor-Fisher test (F-test):

$$
F=\frac{\left(\mathrm{SSE}^{R}-\mathrm{SSE}^{U}\right) / p}{\mathrm{SSE}^{U} / \mathrm{ndf}}
$$

SSE: sum of squared errors
ndf: number of degrees of freedoms, $n d f=(n-p)-2 p$,
$n-p$: number of equations,
$2 p$: number of coefficients in the U-model.

Linear causality measures (direct and indirect)

Measure 1b: Conditional Granger Causality Index (CGCI)

K time series $\left\{x_{t}, y_{t}\right\}_{t=1}^{n}$ and $\left\{z_{t}\right\}_{t=1}^{n}=\left\{z_{1, t}, z_{2, t}, \ldots, z_{K-2, t}\right\}_{t=1}^{n}$ driving system: X, response system: Y, conditioning on system $Z, Z=\left\{Z_{1}, Z_{2}, \ldots, Z_{K-2}\right\}$

Model 1 (restricted, R, X absent in the model):

$$
y_{t}=\sum_{i=1}^{p} a_{i} y_{t-i}+\sum_{i=1}^{p} A_{i} z_{t-i}+e_{R, t}
$$

Model 2 (unrestricted, U, X present in the model):

$$
\begin{gathered}
y_{t}=\sum_{i=1}^{p} a_{i} y_{t-i}+\sum_{i=1}^{p} b_{i} x_{t-i}+\sum_{i=1}^{p} A_{i} z_{t-i}+e_{U, t} \\
\mathrm{CGCl}_{X \rightarrow Y \mid Z}=\ln \frac{\operatorname{Var}\left(\hat{e}_{R, t}\right)}{\operatorname{Var}\left(\hat{e}_{U, t}\right)}
\end{gathered}
$$

$\mathrm{CGCI}_{X \rightarrow Y \mid Z}>0 \quad$? $\quad \Rightarrow \quad$ Significance test as for GCI
$\mathrm{H}_{0}: b_{i}=0$, for all $i=1, \ldots, p$
$\mathrm{H}_{1}: b_{i} \neq 0$, for any of $i=1, \ldots, p$

$$
F=\frac{\left(\operatorname{SSE}^{R}-\operatorname{SSE}^{U}\right) / p}{\operatorname{SSE}^{U} / \mathrm{ndf}}
$$

$\mathrm{ndf}=(n-p)-K p$,
$n-p$: number of equations,
$K p$: number of coefficients in the U-model.

Model order and embedding parameters

VAR model for Y

$$
y_{t}=\sum_{i=1}^{p} a_{i} y_{t-i}+\sum_{i=1}^{p} b_{i} x_{t-i}+e_{U, t}
$$

Model order and embedding parameters

VAR model for Y

$$
\begin{gathered}
y_{t}=\sum_{i=1}^{p} a_{i} y_{t-i}+\sum_{i=1}^{p} b_{i} x_{t-i}+e_{U, t} \\
y_{t+1}=\sum_{i=1}^{p} a_{i} y_{t-i+1}+\sum_{i=1}^{p} b_{i} x_{t-i+1}+e_{U, t+1}
\end{gathered}
$$

y_{t+1} is given in terms of $\mathbf{y}_{t}=\left[y_{t}, y_{t-1}, \ldots, y_{t-p+1}\right]$ and
$\mathbf{x}_{t}=\left[x_{t}, x_{t-1}, \ldots, x_{t-p+1}\right], \quad y_{t+1}=\mathbf{F}\left(\mathbf{y}_{t}, \mathbf{x}_{t}\right)+e_{t+1}$

Model order and embedding parameters

VAR model for Y

$$
\begin{gathered}
y_{t}=\sum_{i=1}^{p} a_{i} y_{t-i}+\sum_{i=1}^{p} b_{i} x_{t-i}+e_{U, t} \\
y_{t+1}=\sum_{i=1}^{p} a_{i} y_{t-i+1}+\sum_{i=1}^{p} b_{i} x_{t-i+1}+e_{U, t+1}
\end{gathered}
$$

y_{t+1} is given in terms of $\mathbf{y}_{t}=\left[y_{t}, y_{t-1}, \ldots, y_{t-p+1}\right]$ and
$\mathbf{x}_{t}=\left[x_{t}, x_{t-1}, \ldots, x_{t-p+1}\right], \quad y_{t+1}=\mathbf{F}\left(\mathbf{y}_{t}, \mathbf{x}_{t}\right)+e_{t+1}$
Let the lag step be $\tau \geq 1 \Rightarrow \mathbf{y}_{t}=\left[y_{t}, y_{t-\tau}, \ldots, y_{t-(p-1) \tau}\right]$:
τ, p : embedding parameters (generally different for X and Y)

Model order and embedding parameters

VAR model for Y

$$
\begin{gathered}
y_{t}=\sum_{i=1}^{p} a_{i} y_{t-i}+\sum_{i=1}^{p} b_{i} x_{t-i}+e_{U, t} \\
y_{t+1}=\sum_{i=1}^{p} a_{i} y_{t-i+1}+\sum_{i=1}^{p} b_{i} x_{t-i+1}+e_{U, t+1}
\end{gathered}
$$

y_{t+1} is given in terms of $\mathbf{y}_{t}=\left[y_{t}, y_{t-1}, \ldots, y_{t-p+1}\right]$ and
$\mathbf{x}_{t}=\left[x_{t}, x_{t-1}, \ldots, x_{t-p+1}\right], \quad y_{t+1}=\mathbf{F}\left(\mathbf{y}_{t}, \mathbf{x}_{t}\right)+e_{t+1}$
Let the lag step be $\tau \geq 1 \Rightarrow \mathbf{y}_{t}=\left[y_{t}, y_{t-\tau}, \ldots, y_{t-(p-1) \tau}\right]$:
τ, p : embedding parameters (generally different for X and Y)
State space reconstruction:
$\mathbf{x}_{t}=\left[x_{t}, x_{t-\tau_{x}}, \ldots, x_{t-\left(m_{x}-1\right) \tau_{x}}\right]^{\prime}$, embedding parameters: m_{x}, τ_{x} $\mathbf{y}_{t}=\left[y_{t}, y_{t-\tau_{y}}, \ldots, y_{t-\left(m_{y}-1\right) \tau_{y}}\right]^{\prime}$, embedding parameters: m_{y}, τ_{y}
y_{t+1} : future state of Y

Nonlinear causality measures (direct and indirect)

(Shannon) Entropy: $H(X)=-\sum_{x} p(x) \log p(x)$ Mutual Information of X and Y : $I(X ; Y)=H(X)+H(Y)-H(X, Y)$

Nonlinear causality measures (direct and indirect)

(Shannon) Entropy: $H(X)=-\sum_{x} p(x) \log p(x)$
Mutual Information of X and Y :
$I(X ; Y)=H(X)+H(Y)-H(X, Y)$

Transfer Entropy (TE) [Schreiber, 2000]

Measure the effect of X on Y at one time step ahead, accounting (conditioning) for the effect from its own current state

$$
\begin{aligned}
\operatorname{TE}_{X \rightarrow Y} & =I\left(y_{t+1} ; \mathbf{x}_{t} \mid \mathbf{y}_{t}\right) \\
& =H\left(\mathbf{x}_{t}, \mathbf{y}_{t}\right)-H\left(y_{t+1}, \mathbf{x}_{t}, \mathbf{y}_{t}\right)+H\left(y_{t+1}, \mathbf{y}_{t}\right)-H\left(\mathbf{y}_{t}\right) \\
& =\sum p\left(y_{t+1}, \mathbf{x}_{t}, \mathbf{y}_{t}\right) \log \frac{p\left(y_{t+1} \mid \mathbf{x}_{t}, \mathbf{y}_{t}\right)}{p\left(y_{t+1} \mid \mathbf{y}_{t}\right)}
\end{aligned}
$$

Nonlinear causality measures (direct and indirect)

(Shannon) Entropy: $H(X)=-\sum_{x} p(x) \log p(x)$
Mutual Information of X and Y :
$I(X ; Y)=H(X)+H(Y)-H(X, Y)$

Transfer Entropy (TE) [Schreiber, 2000]

Measure the effect of X on Y at one time step ahead, accounting (conditioning) for the effect from its own current state

$$
\begin{aligned}
T \mathrm{E}_{X \rightarrow Y} & =I\left(y_{t+1} ; \mathbf{x}_{t} \mid \mathbf{y}_{t}\right) \\
& =H\left(\mathbf{x}_{t}, \mathbf{y}_{t}\right)-H\left(y_{t+1}, \mathbf{x}_{t}, \mathbf{y}_{t}\right)+H\left(y_{t+1}, \mathbf{y}_{t}\right)-H\left(\mathbf{y}_{t}\right) \\
& =\sum p\left(y_{t+1}, \mathbf{x}_{t}, \mathbf{y}_{t}\right) \log \frac{p\left(y_{t+1} \mid \mathbf{x}_{t}, \mathbf{y}_{t}\right)}{p\left(y_{t+1} \mid \mathbf{y}_{t}\right)}
\end{aligned}
$$

Joint entropies (and distributions) can have high dimension!
Entropy estimates from nearest neighbors [Kraskov et al, 2004]

Nonlinear causality measures (direct and indirect)

(Shannon) Entropy: $H(X)=-\sum_{x} p(x) \log p(x)$
Mutual Information of X and Y :
$I(X ; Y)=H(X)+H(Y)-H(X, Y)$

Transfer Entropy (TE) [Schreiber, 2000]

Measure the effect of X on Y at one time step ahead, accounting (conditioning) for the effect from its own current state

$$
\begin{aligned}
\mathrm{TE}_{X \rightarrow Y} & =I\left(y_{t+1} ; \mathbf{x}_{t} \mid \mathbf{y}_{t}\right) \\
& =H\left(\mathbf{x}_{t}, \mathbf{y}_{t}\right)-H\left(y_{t+1}, \mathbf{x}_{t}, \mathbf{y}_{t}\right)+H\left(y_{t+1}, \mathbf{y}_{t}\right)-H\left(\mathbf{y}_{t}\right) \\
& =\sum p\left(y_{t+1}, \mathbf{x}_{t}, \mathbf{y}_{t}\right) \log \frac{p\left(y_{t+1} \mid \mathbf{x}_{t}, \mathbf{y}_{t}\right)}{p\left(y_{t+1} \mid \mathbf{y}_{t}\right)}
\end{aligned}
$$

Joint entropies (and distributions) can have high dimension!
Entropy estimates from nearest neighbors [Kraskov et al, 2004] TE is equivalent to GCI when the stochastic process of (X, Y) is Gaussian [Barnett et al, PRE 2009]

Entropy estimates from nearest neighbors [Kraskov et al, 2004] What are the appropriate embedding parameters?
Example: Unidirectionally coupled Mackey-Glass system

$$
\begin{aligned}
\dot{x}(t) & =\frac{0.2 x\left(t-\Delta_{x}\right)}{1+x\left(t-\Delta_{x}\right)^{10}}-0.1 x(t) \\
\dot{y}(t) & =\frac{0.2 y\left(t-\Delta_{y}\right)}{1+y\left(t-\Delta_{y}\right)^{10}}-0.1 y(t)+C \frac{x\left(t-\Delta_{x}\right)}{1+x\left(t-\Delta_{x}\right)^{10}}
\end{aligned}
$$

Nonlinear causality measures (direct)

driving system: X, response system: Y, conditioning on system $Z, Z=\left\{Z_{1}, Z_{2}, \ldots, Z_{K-2}\right\}$ join all $K-2 z$-reconstructed vectors: $\mathbf{Z}_{t}=\left[\mathbf{z}_{1, t}, \ldots, \mathbf{z}_{K-2, t}\right]$

Partial Transfer Entropy (PTE) [Vakorin et al, 2009; Papana et al, 2012]

Measure the effect of X on Y at T times ahead, accounting (conditioning) for the effect from its own current state and the current state of the other variables except X.

$$
\begin{gathered}
\operatorname{PTE}_{X \rightarrow Y \mid Z}=I\left(y_{t+1} ; \mathbf{x}_{t} \mid \mathbf{y}_{t}, \mathbf{Z}_{t}\right) \\
=H\left(\mathbf{x}_{t}, \mathbf{y}_{t} \mid \mathbf{Z}_{t}\right)-H\left(y_{t+1}, \mathbf{x}_{t}, \mathbf{y}_{t} \mid \mathbf{Z}_{t}\right)+H\left(y_{t+1}, \mathbf{y}_{t} \mid \mathbf{Z}_{t}\right)-H\left(\mathbf{y}_{t} \mid \mathbf{Z}_{t}\right)
\end{gathered}
$$

Joint entropies (and distributions) can have very high dimension!

Example: Global financial market

MSCI market capitalization weighted index

Data source: https://www.msci.com/market-cap-weighted-indexes

Example: Brain dynamical system

Mn/	-
M-manm	momphimm
h	
mommm	
n-ar	
-	
	-
rimencrum	
nmin	
-	
x-x	
	- mavarmmanamanu
	- mamalumammanaunu
(
Manmumummest	
5	15 20 25 time [sec]

Data source: https://physionet.org/pn6/chbmit/chb08/

How to assess the presence of a connection?

Three possible ways to convert a network of weighted connections (the Granger causality measure) to a network of binary connections:
weighted

binary

How to assess the presence of a connection?

Three possible ways to convert a network of weighted connections (the Granger causality measure) to a network of binary connections:

weighted

binary

(1) Threshold on the measure magnitude, $q(i \rightarrow j)>$ thr.

How to assess the presence of a connection?

Three possible ways to convert a network of weighted connections (the Granger causality measure) to a network of binary connections:

weighted

binary

(1) Threshold on the measure magnitude, $q(i \rightarrow j)>$ thr.
(2) Threshold on the network density, only the $d \%$ largest $q(i \rightarrow j)$.

How to assess the presence of a connection?

Three possible ways to convert a network of weighted connections (the Granger causality measure) to a network of binary connections:
weighted

binary

(1) Threshold on the measure magnitude, $q(i \rightarrow j)>$ thr.
(2) Threshold on the network density, only the $d \%$ largest $q(i \rightarrow j)$.
(3) Significance test on each $q(i \rightarrow j)$. Threshold, e.g. $\alpha=0.05$ on the p-value of the test.
Parametric or resampling test (resampling test for a nonlinear causality measure).

Example: coupled Henon maps

$$
\begin{aligned}
x_{1, t+1} & =1.4-x_{1, t}^{2}+0.3 x_{1, t-1} \\
x_{i, t+1} & =1.4-\left(0.5 C\left(x_{i-1, t}+x_{i+1, t}\right)+(1-C) x_{i, t}\right)^{2}+0.3 x_{i, t-1} \\
x_{K, t+1} & =1.4-x_{K, t}^{2}+0.3 x_{K, t-1}
\end{aligned}
$$

C: coupling strength [Politi \& Torcini, 1992]

Network structure for $K=5$

Example, TE, $K=5$

Dimitris Kugiumtzis
Connectivity networks and applications

Example, TE, $K=10$

Weighted network from $T E(m=2$, tau $=1)$
Binary network from Density (dens $=0,30$)

Binary network from FDR-Signficance (alpha=0.100)

Binary network from Significance (alpha=0.050)

Example, TE, $K=20$

True network

 (I)
 (1) Wimy

 A M

\qquad

Weighted network from $\operatorname{TE}(m=2$, tau $=1)$

Binary network from Density (dens=0.10)

Binary network from Significance (alpha=0.05
linary network from FDR-Signficance (alpha=0.0!

Example, PTE, $K=4$

True network

Binary network from FDR-Signficance (alpha=0.050

Binary network from Density (dens=0.30)

Binary network from Significance (alpha=0.050)

Example, PTE, $K=8$

True network

Binary network from Density (dens=0.30)

Binary network fromFDR-Signficance (alpha $=0.100$)
5.
5.

Binary network frogn Signifcance (alpha=0.050)
4.

Mutual Information from Mixed Embedding - 1

MIME applies dimension reduction and then uses conditional mutual information. The idea: [Vlachos \& Kugiumtzis, PRE, 2010]

Mutual Information from Mixed Embedding - 1

MIME applies dimension reduction and then uses conditional mutual information. The idea: [Vlachos \& Kugiumtzis, PRE, 2010]
(1) Find a subset \mathbf{w}_{t} of lagged variables from X and Y that explains best the future of Y, y_{t+1}.

Mutual Information from Mixed Embedding - 1

MIME applies dimension reduction and then uses conditional mutual information. The idea: [Vlachos \& Kugiumtzis, PRE, 2010]
(1) Find a subset \mathbf{w}_{t} of lagged variables from X and Y that explains best the future of Y, y_{t+1}.
(2) Quantify the information on Y ahead that is explained by the X-components in this subset.

Mutual Information from Mixed Embedding - 1

MIME applies dimension reduction and then uses conditional mutual information. The idea: [Vlachos \& Kugiumtzis, PRE, 2010]
(1) Find a subset \mathbf{w}_{t} of lagged variables from X and Y that explains best the future of Y, y_{t+1}.
(2) Quantify the information on Y ahead that is explained by the X-components in this subset.
If there are no components of X in \mathbf{w}_{t}, then $\mathrm{MIME}=0$.

Mutual Information from Mixed Embedding - 2

$$
\mathbf{w}_{t}=(\underbrace{x_{t-\tau_{x 1}}, x_{t-\tau_{x}}, \ldots, x_{t-\tau_{x m_{x}}}}_{\mathbf{w}_{t}^{x}}, \underbrace{y_{t-\tau_{y 1}}, y_{t-\tau_{y 2}}, \ldots, y_{t-\tau_{y m_{y}}}}_{\mathbf{w}_{t}^{y}})
$$

Measure 3a: The causality measure MIME

$$
R_{X \rightarrow Y}=\frac{I\left(\mathbf{y}_{t}^{T} ; \mathbf{w}_{t}^{\chi} \mid \mathbf{w}_{t}^{Y}\right)}{I\left(\mathbf{y}_{t}^{T} ; \mathbf{w}_{t}\right)}
$$

- $R_{X \rightarrow Y}$: information of Y explained only by X-components of the embedding vectors, normalized against the total mutual information (in order to give a value between 0 and 1).
- If \mathbf{w}_{t} contains no components from X, then $R_{X \rightarrow Y}=0$ and X has no effect on the future of Y.

Example: Embedding from X and Z variables of the chaotic Lorenz system to explain $X, W_{t}=\left\{x_{t}, \ldots, x_{t-24}, z_{t}, \ldots, z_{t-24}\right\}$ $\mathbf{y}_{t}^{T}=\left(x_{t+1}, \ldots, x_{t+5}\right), N=10000$, sampling time $\tau_{s}=0.05$
$x_{t}=\arg \max \left\{I\left(\mathbf{y}_{t}^{T} ; w_{t}\right)\right\}$,
$w_{t} \in W_{t}$

$z_{t-1}=$ $\arg \max \left\{I\left(\mathbf{y}_{t}^{T} ; w_{t} \mid x_{t}\right)\right\}$

$$
Z_{t-11}=\arg \max \left\{/\left(\mathbf{y}_{t}^{T} ; w_{t} \mid x_{t}, Z_{t-1}\right)\right\}
$$

Too small increase in CMI

Embedding vector:

$$
\mathbf{w}_{t}=\left(x_{t}, z_{t-1}, z_{t-11}\right)
$$

Example: Coupled Mackey-Glass system

$$
\begin{aligned}
& \Delta=17,30,100, \quad N=4096 \\
& \mathbf{y}_{t}^{T}=\left\{y_{t+1}, y_{t+\tau_{1}}, y_{t+1} y_{t}=17\right. \\
& \left.L_{2}\right\}, \quad L_{x}=L_{\substack{\Delta_{1}=30}}^{L_{y}}=50
\end{aligned}
$$

$$
\Delta_{1}=100
$$

solid line: driving system dashed line: response system

Partial Mutual Information from Mixed Embedding - 1

driving system: X, response system: Y, conditioning on system $Z, Z=\left\{Z_{1}, Z_{2}, \ldots, Z_{K-2}\right\}$

The same non-uniform embedding scheme for explaining \mathbf{y}_{t}^{T} from vector of lags of all $X, Y, Z_{1}, Z_{2}, \ldots, Z_{K-2}$,
$W_{t}=$
$\left\{x_{t}, \ldots, x_{t-L_{x}-1}, y_{t}, \ldots, y_{t-L_{y}-1}, z_{1, t}, \ldots, z_{1, t-L_{z}-1}, \ldots, z_{K-2, t-L_{z}-1}\right\}$ e.g., for $K=3, X, Y, Z$:

$$
\mathbf{w}_{t}=(\underbrace{x_{t-\tau_{x 1}}, \ldots, x_{t-\tau_{x m x}}}_{\mathbf{w}_{t}^{x}}, \underbrace{y_{t-\tau_{y 1}}, \ldots, y_{t-\tau_{y m w}}}_{\mathbf{w}_{t}^{\prime}}, \underbrace{, z_{t-\tau_{z 1}}, \ldots, z_{t-\tau_{z m_{z}}}}_{\mathbf{w}_{t}^{z}})
$$

The non-uniform embedding vector of lags of all X, Y, Z for explaining y_{t+1} :

$$
\mathbf{w}_{t}=(\underbrace{x_{t-\tau_{x 1}}, \ldots, x_{t-\tau_{x m_{x}}}}_{\mathbf{w}_{t}^{x}}, \underbrace{y_{t-\tau_{y 1}}, \ldots, y_{t-\tau_{y m_{y}}}}_{\mathbf{w}_{t}^{y}}, \underbrace{z_{t-\tau_{z 1}}, \ldots, z_{t-\tau_{z m_{z}}}}_{\mathbf{w}_{t}^{2}})
$$

Partial Mutual Information from Mixed Embedding - 2

The non-uniform embedding vector of lags of all X, Y, Z for explaining y_{t+1} :

$$
\mathbf{w}_{t}=(\underbrace{x_{t-\tau_{x 1}}, \ldots, x_{t-\tau_{x m x}}}_{\mathbf{w}_{t}^{x}}, \underbrace{y_{t-\tau_{y 1}}, \ldots, y_{t-\tau_{y m_{y}}}}_{\mathbf{w}_{t}^{y}}, \underbrace{z_{t-\tau_{z 1}}, \ldots, z_{t-\tau_{z m_{z}}}}_{\mathbf{w}_{t}^{2}})
$$

The causality measure PMIME

$$
R_{X \rightarrow Y \mid Z}=\frac{I\left(y_{t+1} ; \mathbf{w}_{t}^{x} \mid \mathbf{w}_{t}^{y}, \mathbf{w}_{t}^{Z}\right)}{I\left(y_{t+1} ; \mathbf{w}_{t}\right)}
$$

- $R_{X \rightarrow Y \mid Z}$: information on the future of Y explained only by X-components of the embedding vector (given the components of Y and Z), normalized with the mutual information of the future of Y and the embedding vector.

Partial Mutual Information from Mixed Embedding - 2

The non-uniform embedding vector of lags of all X, Y, Z for explaining y_{t+1} :

$$
\mathbf{w}_{t}=(\underbrace{x_{t-\tau_{x 1}}, \ldots, x_{t-\tau_{x m x}}}_{\mathbf{w}_{t}^{x}}, \underbrace{y_{t-\tau_{y 1}}, \ldots, y_{t-\tau_{y m_{y}}}}_{\mathbf{w}_{t}^{y}}, \underbrace{z_{t-\tau_{z 1}}, \ldots, z_{t-\tau_{z m_{z}}}}_{\mathbf{w}_{t}^{2}})
$$

The causality measure PMIME

$$
R_{X \rightarrow Y \mid Z}=\frac{I\left(y_{t+1} ; \mathbf{w}_{t}^{x} \mid \mathbf{w}_{t}^{Y}, \mathbf{w}_{t}^{Z}\right)}{I\left(y_{t+1} ; \mathbf{w}_{t}\right)}
$$

- $R_{X \rightarrow Y \mid Z}$: information on the future of Y explained only by X-components of the embedding vector (given the components of Y and Z), normalized with the mutual information of the future of Y and the embedding vector.
- If $\mathbf{w}_{t}^{Z}=\emptyset$, then $R_{X \rightarrow Y \mid Z}=R_{X \rightarrow Y}$.

Partial Mutual Information from Mixed Embedding - 2

The non-uniform embedding vector of lags of all X, Y, Z for explaining y_{t+1} :

$$
\mathbf{w}_{t}=(\underbrace{x_{t-\tau_{x 1}}, \ldots, x_{t-\tau_{x m}}}_{\mathbf{w}_{t}^{x}}, \underbrace{y_{t-\tau_{y 1}}, \ldots, y_{t-\tau_{y m_{y}}}}_{\mathbf{w}_{t}^{y}}, \underbrace{z_{t-\tau_{z 1}}, \ldots, z_{t-\tau_{z m_{z}}}}_{\mathbf{w}_{t}^{2}})
$$

The causality measure PMIME

$$
R_{X \rightarrow Y \mid Z}=\frac{I\left(y_{t+1} ; \mathbf{w}_{t}^{x} \mid \mathbf{w}_{t}^{Y}, \mathbf{w}_{t}^{Z}\right)}{I\left(y_{t+1} ; \mathbf{w}_{t}\right)}
$$

- $R_{X \rightarrow Y \mid Z}$: information on the future of Y explained only by X-components of the embedding vector (given the components of Y and Z), normalized with the mutual information of the future of Y and the embedding vector.
- If $\mathbf{w}_{t}^{Z}=\emptyset$, then $R_{X \rightarrow Y \mid Z}=R_{X \rightarrow Y}$.
- If \mathbf{w}_{t} contains no components from X, then $R_{X \rightarrow Y \mid Z}=0$ and X has no direct effect on the future of Y.

Partial Mutual Information from Mixed Embedding - 3

Three main advantages of PMIME

Partial Mutual Information from Mixed Embedding - 3

Three main advantages of PMIME

- $R_{X \rightarrow Y \mid Z}=0$ when no significant causality is present, and $R_{X \rightarrow Y \mid Z}>0$ when it is present [no significance test, no issues with multiple testing!]

Partial Mutual Information from Mixed Embedding - 3

Three main advantages of PMIME

- $R_{X \rightarrow Y \mid Z}=0$ when no significant causality is present, and $R_{X \rightarrow Y \mid Z}>0$ when it is present [no significance test, no issues with multiple testing!]
- mixed embedding for all variables is formed as part of the measure [it does not require the determination of embedding parameters for each variable]

Partial Mutual Information from Mixed Embedding - 3

Three main advantages of PMIME

- $R_{X \rightarrow Y \mid Z}=0$ when no significant causality is present, and $R_{X \rightarrow Y \mid Z}>0$ when it is present [no significance test, no issues with multiple testing!]
- mixed embedding for all variables is formed as part of the measure [it does not require the determination of embedding parameters for each variable]
- inclusion of more confounding variables only slows the computation and has no effect on statistical accuracy [no "curse of dimensionality" for any dimension of Z, only slow computation time]

Partial Mutual Information from Mixed Embedding - 3

Three main advantages of PMIME

- $R_{X \rightarrow Y \mid Z}=0$ when no significant causality is present, and $R_{X \rightarrow Y \mid Z}>0$ when it is present [no significance test, no issues with multiple testing!]
- mixed embedding for all variables is formed as part of the measure [it does not require the determination of embedding parameters for each variable]
- inclusion of more confounding variables only slows the computation and has no effect on statistical accuracy [no "curse of dimensionality" for any dimension of Z, only slow computation time]
\Rightarrow good candidate for causality analysis with many variables

Example: linear coupled system

$K=5$ linear Vector Autoregressive process, $\operatorname{VAR}(4)$ in 5 variables

$$
\begin{aligned}
& x_{1, t}=0.4 x_{1, t-1}-0.5 x_{1, t-2}+0.4 x_{5, t-1}+e_{1, t} \\
& x_{2, t}=0.4 x_{2, t-1}-0.3 x_{1, t-4}+0.4 x_{5, t-2}+e_{2, t} \\
& x_{3, t}=0.5 x_{3, t-1}-0.7 x_{3, t-2}-0.3 x_{5, t-3}+e_{3, t} \\
& x_{4, t}=0.8 x_{4, t-3}+0.4 x_{1, t-2}+0.3 x_{2, t-2}+e_{4, t} \\
& x_{5, t}=0.7 x_{5, t-1}-0.5 x_{5, t-2}-0.4 x_{4, t-1}+e_{5, t}
\end{aligned}
$$

[Schelter et al, 2006]
Network with directed links
Causality matrix
true connecntion matrix

Linear VAR(4) in 5 variables
$n=1000, p=m=L_{x}=L_{y}=5, T=1$

GCI

CGCI
CGCl

TE

PTE
PTENN

MIME

PMIME

Nonlinear stochastic map:

$$
\begin{aligned}
& x_{1, t}=3.4 x_{1, t-1}\left(1-x_{1, t-1}^{2}\right) e^{-x_{1, t-1}^{2}}+0.4 e_{1, t} \\
& x_{2, t}=3.4 x_{2, t-1}\left(1-x_{2, t-1}^{2}\right) e^{-x_{2, t-1}^{2}}+0.5 x_{1, t-1} x_{2, t-1}+0.4 e_{2, t} \\
& x_{3, t}=3.4 x_{3, t-1}\left(1-x_{3, t-1}^{2}\right) e^{-x_{3, t-1}^{2}}+0.3 x_{2, t-1}+0.5 x_{1, t-1}^{2}+0.4 e_{3, t}
\end{aligned}
$$

$$
n=512 \quad[\text { Model } 7, \text { Gourevich et al, 2006] }
$$

Nonlinear stochastic map

$$
\begin{gathered}
n=512, p=m=5, L_{x}=L_{y}=5, T=1 \\
\mathrm{GCl}
\end{gathered}
$$

CGCI

PTE

MIME

PMIME

$K=5$ Henon coupled maps

$$
\begin{aligned}
x_{1, t+1} & =1.4-x_{1, t}^{2}+0.3 x_{1, t-1} \\
x_{i, t+1} & =1.4-\left(0.5 C\left(x_{i-1, t}+x_{i+1, t}\right)+(1-C) x_{i, t}\right)^{2}+0.3 x_{i, t-1} \\
x_{K, t+1} & =1.4-x_{K, t}^{2}+0.3 x_{K, t-1}
\end{aligned}
$$

coupling strength: $C=0, \ldots, 0.9, \quad n=4096$

Network with directed links

True connection Matrix

Causality matrix (not symmetric)

$N=4096, M=100 \quad$ weak coupling $C=0.2$
$\mathrm{TE}_{X \rightarrow Y}, m=2$
matrix of p-values from the randomization test

$p\left(\mathrm{TE}_{X \rightarrow Y}\right)=\left[\begin{array}{lllll} & 0.0133 & 0.0133 & 0.2106 & 0.3093 \\ 0.1317 & & 0.0133 & 0.0133 & 0.3685 \\ 0.7237 & 0.0133 & & 0.0133 & 0.7040 \\ 0.7632 & 0.0133 & 0.0133 & & 0.5264 \\ 0.3685 & 0.4080 & 0.0133 & 0.0133 & \end{array}\right]$

connection matrix

True connection Matrix
$N=4096, M=100$
TE for $m_{x}=m_{y}=2$ and $m_{x}=m_{y}=4$
MIME for $L_{x}=L_{y}=5$
$C=0.0$

adjacecny matrix TE m=4

adjacecny matrix MIME $A=95$

True connection Matrix
$N=4096, M=100$
TE for $m_{x}=m_{y}=2$ and $m_{x}=m_{y}=4$
MIME for $L_{x}=L_{y}=5$
$C=0.1$
causality matrix TE $\mathrm{m}=2$

adjacenny matrix TE $m=2$

causality matrix TE $\mathrm{m}=4$

adjacecny matrix TE $m=4$

adjacecny matrix MIME $A=95$

True connection Matrix
$N=4096, M=100$
TE for $m_{x}=m_{y}=2$ and $m_{x}=m_{y}=4$
MIME for $L_{x}=L_{y}=5$
$C=0.2$
causality matrix TE m=2

adjacecny matrix TE $m=2$

adjacecny matrix MIME $A=95$

$N=4096, M=100$
TE for $m_{x}=m_{y}=2$ and $m_{x}=m_{y}=4$
MIME for $L_{x}=L_{y}=5$
$C=0.4$

adjacecny matrix TE $m=2$

causality matrix TE $\mathrm{m}=4$

adjacecny matrix TE $\mathrm{m}=4$

adjacecny matrix MIME $A=95$

True connection Matrix
$N=4096, M=100$
TE for $m_{x}=m_{y}=2$ and $m_{x}=m_{y}=4$
MIME for $L_{x}=L_{y}=5$
$C=0.6$

adjacecny matrix TE $m=2$

causality matrix TE $m=4$

adjacecny matrix TE $m=4$

causality matrix MIME A $=95$

adjacecny matrix MIME A=95

True connection Matrix
$N=4096, M=100$
TE for $m_{x}=m_{y}=2$ and $m_{x}=m_{y}=4$
MIME for $L_{x}=L_{y}=5$
$C=0.9$

adjacecny matrix TE $m=2$

causality matrix MIME A=95

adjacecny matrix MIME $A=95$

$C=0.0 n=1024, p=5, m=2, L=5, T=1$

GCI

CGCI

TE

PTE

MIME
couplechenonmaps2K5COn1024MIMEpar95

PMIME

$$
C=0.1 n=1024, p=5, m=2, L=5, T=1
$$

CGCl

TE
couplechenormaps2K5C10n1024TENNpar2

PTE

coupledhenonmaps2K5C10n1024M1MEpar35

PMIME

$$
C=0.2 n=1024, p=5, m=2, L=5, T=1
$$

GCI

CGCI

TE
couplechencomaps2K5C20n1024TENNpar2

PTE

coupledhenonmaps2K5C2On1024M1MEpars5

PMIME

$C=0.4 n=1024, p=5, m=2, L=5, T=1$

GCI

CGCI

TE
coupledhenonmaps2K5C40TENNpar2

PTE

coupledhenonmaps2K5C40MIMEpar95

PMIME
couplechenormaps2K5C40PMIMEpar95

$C=0.6 n=1024, p=5, m=2, L=5, T=1$

GCI

CGCl

TE
coupledhenonmaps2K5C60TENNpar2

PTE

coupledhenonmaps2K5C60MIMEpar95

PMIME
Couplecthenormaps2K5C50PMIMEpar95

$C=0.7 n=1024, p=5, m=2, L=5, T=1$
GCI

CGCI

TE
coupledhenonmaps2K5C70TENNpar2

PTE

coupledhenonmaps2K5C70MIMEpar95

PMIME
couplechenormaps2K5C70PMIMEpar95

$C=0.8 n=1024, p=5, m=2, L=5, T=1$

GCI

CGCI

TE
couplechenonmaps2K5C80TENNpar2

PTE

coupledhenonmaps2K5C80MIMEpar95

PMIME

$C=0.9 n=1024, p=5, m=2, L=5, T=1$
GCI

CGCl

TE
coupledhenonmaps2K5C90TENNpar2

PTE

coupledhenonmaps2K5C90MIMEpar95

PMIME

Example: coupled Mackey-Glass

Coupled identical Mackey-Glass delayed differential equations

$$
\dot{x}_{i}(t)=-0.1 x_{i}(t)+\sum_{j=1}^{K} \frac{C_{i j} x_{j}(t-\Delta)}{1+x_{j}(t-\Delta)^{10}} \quad \text { for } \quad i=1, \ldots, K
$$

$K=5$

Mackey-Glass, $C=0.2$

$\Delta=20$

Mackey-Glass, $C=0.2$

$\Delta=100$

Mackey-Glass: true/estimated network [Kusiumtis and Kimiskdids, uns 2015]

$K=5 \quad$ True \quad from $\operatorname{PMIME}(\Delta=20) \quad$ from $\operatorname{PMIME}(\Delta=100)$

Network indices

Symbol	Description
deg ${ }^{m}$	degree distribution, $\mathrm{m}=$ mean,std,skewness,kurtosis
$s t r^{m}$	strength distribution, m=mean,std,skewness,kurtosis
Tr R_{k}	transitivity ratio, $\mathrm{k}=$ binary undirected (bu),binary directed (bd) weighted directed (wd)
EigC ${ }^{\text {m }}$	eigenvector centrality distribution, $m=$ mean,std
λ_{k}	characteristic path length, $\mathrm{k}=\mathrm{bd}, \mathrm{wd}$
$G E_{k}$	global efficiency, $\mathrm{k}=\mathrm{bd}, \mathrm{wd}$
ϵ_{k}^{m}	eccentricity distribution, $m=$ mean,std and $\mathrm{k}=\mathrm{bd}, \mathrm{wd}$
rad_{k}	radius, $\mathrm{k}=\mathrm{bd}$, wd
d_{k}	diameter, $\mathrm{k}=\mathrm{bd}$, wd
C_{k}^{m}	clustering coefficient distribution,m=mean,std and $k=b d, w d$
g_{k}^{m}	betweenness centrality distribution,m=mean,std and $k=b d, w d$
$e-g_{k}^{m}$	edge betweenness centrality distribution,m=mean,std and $k=b d$,wd
$L E_{k}^{m}$	local efficiency distribution, $\mathrm{m}=$ mean,std and $\mathrm{k}=\mathrm{bd}$,wd
3motif(i)	$\mathrm{i}^{\text {th }}$ motif of 3 nodes, $\mathrm{i}=1,2, \ldots 13$
modul(i)	modularity for i modules, $\mathrm{i}=2,3,5$
$r_{\text {deg }}(i, j)$	assortativity coefficient in terms of the degree, $\mathrm{i}=\mathrm{in}$,out and $\mathrm{j}=\mathrm{in}$,out or $\mathrm{i}, \mathrm{j}=$ und
$r_{\text {str }}(i, j)$	assortativity coefficient in terms of the strength, $\mathrm{i}=\mathrm{in}$,out and $\mathrm{j}=\mathrm{in}$,out or $\mathrm{i}, \mathrm{j}=$ und
$p_{\text {top }}$	Rent exponent:topological
$p_{p h}$	Rent exponent:physical
$p_{\text {ee }}$	Rent exponent:efficient embedding
S W_{k}	small-worldness, $\mathrm{k}=\mathrm{bd}$,wd
kcs	k -core size, $\mathrm{k}=90$-percentile of degree distribution
scs	s -core size, $\mathrm{k}=90$-percentile of strength distribution
ϕ_{k}	Rich club coefficient, $\mathrm{k}=\mathrm{bd}$, wd
cycprob $_{1}$	fraction of 3-cycles out of 3-paths
cycprob $_{2}$	probability: non-cyclic 2-path extend to 3-cycle

Simulation: Random, Small-World, Scale-Free networks

Simulation example:

- coupled Mackey-Glass system, $K=25, \Delta=100, C=0.2$
- Three network types: Random (RAND), Small-World (SW), Scale-Free(SCF)
- Different realizations of the same network type

Mutivariate time series record with structural changes

Simulation: Random, Small-World, Scale-Free networks

Simulation example:

- coupled Mackey-Glass system, $K=25, \Delta=100, C=0.2$
- Three network types: Random (RAND), Small-World (SW), Scale-Free(SCF)
- Different realizations of the same network type

Mutivariate time series record with structural changes
Estimation of networks with PMIME at sliding windows

Simulation: Random, Small-World, Scale-Free networks

Simulation example:

- coupled Mackey-Glass system, $K=25, \Delta=100, C=0.2$
- Three network types: Random (RAND), Small-World (SW), Scale-Free(SCF)
- Different realizations of the same network type

Mutivariate time series record with structural changes

Estimation of networks with PMIME at sliding windows
Estimation of network characteristics on the PMIME networks

Simulation: Random, Small-World, Scale-Free networks

Simulation example:

- coupled Mackey-Glass system, $K=25, \Delta=100, C=0.2$
- Three network types: Random (RAND), Small-World (SW), Scale-Free(SCF)
- Different realizations of the same network type

Mutivariate time series record with structural changes

Estimation of networks with PMIME at sliding windows
Estimation of network characteristics on the PMIME networks
Structural change detection [Slow]
[Middle]
[Fast]
[Very fast]

Analysis of EEG

Practical problems to overcome:

- Application on small time windows \Rightarrow limited data size
- scalp EEG \Rightarrow many channels \Rightarrow many variables in Z to account for
- Brain system is complex: the connectivity measure has to deal with $\left\{\begin{array}{l}\text { high dimensionality } \\ \text { nonlinearity? } \\ \text { sensitivity on free parameters? }\end{array}\right.$

Analysis of epileptic EEG

Scalp EEG from
Rikshospital, Norway.
Use 8 channels:
C3, C4, T7, T8, F3, F4, P3, P4

Subtract the average value of the four neighboring channels.

Non-overlapping segments of 20 sec .

TE for $m_{x}=m_{y}=5$
MIME for $L_{x}=L_{y}=15$

Recording: 19h 45min of scalp multi-channel EEG. No 1 No 2 No 3 No 4 No 5 No 6 No 7

EEG, cumulative driving

Cumulative driving for channel i (e.g., $\sum_{j \neq i} \mathrm{TE}_{i \rightarrow j}$)

5 - 57
 ${ }_{0}^{5}$

 .

Cumulative driving, PMIME

EEG, cumulative response

Cumulative response for channel i : (e.g., $\sum_{j \neq i} \mathrm{TE}_{j \rightarrow i}$)

Cumulative response, PMIME

EEG, driving and response

Recording: 4h 35min of scalp multi-channel EEG. No 1 No 2

EEG, cumulative driving

Cumulative driving, GCIN

Cumulative driving, CGCIN

Cumulative driving, TENN

Cumulative driving, PTENN

Cumulative driving, MIME

Cumulative driving, PMIME

EEG, cumulative response

Cumulative response, GCIN

Cumulative response, CGCIN

Cumulative response, TENN

Cumulative response, PTENN

Curnulative response, MIME

Cumulative response, PMIME

Transcranial Magnetic Stimulation (TMS)

EEG - TMS: brain connectivity analysis

Many issues related to processing of EEG-TMS data:
(1) Rejection of corrupted EEG channels [by visual inspection, initially 60 channels]
(2) Elimination of TMS artifact [forward-backward nearest neighbor smoothing]
(3) Removal of artifacts [ICA]
(9) Filtering [FIR, lowpass 0.3 Hz , highpass 40 Hz , order 60]
(3) Re-referencing [from mastoid to infinite reference, REST]
(0) Sampling frequency [downsampling from 1450 Hz to 200 Hz]

TMS was administered in blocks of 5 at frequency 3 Hz after epileptic discharges were visually detected.

Computation of PMIME was done on sliding windows (length: 2 sec , sliding step: 1 sec).

Connectivity is reduced during ED and is regained by the end of ED

ED no TMS 1
ED no TMS 2
TMS terminates ED and regains connectivity
ED with TMS 1
ED with TMS 2

Network measure: Average Strength

(a)

(c)

(b)

Network measure: Average Strength

(b)

Strength of connection is reduced at ED and regained by TMS

5 top stocks for each of the 8 sectors of the US economy Daily closing index in the period 30/12/2002-28/9/2012

Sector	Symbol	Name	Sector	Symbol	Name
basic materials	XOM	Exxon Mobil Corp	Healthcare	JNJ	Johnson \& Johnson
	CVX	Chevron corporation		PFE	Pfizer Inc.
	SLB	Schlumberger N.V.		MRK	Merck \& Company
	COP	ConocoPhillips Co.		BMY	Bristol-Myers
	OXY	Occidental Petrol		AMGN	Amgen Inc.
Conglomerates	UTX	United Technological	Industrials	GE	General Electric
	MMM	3M		HON	Honeywell
	CAT	Caterpillar Inc.		CAT	Caterpillar Inc.
	DOW	Dow Chemical Company		EMR	Emerson
	MGT	MGT Capital Investments		LMT	Lockheed Martin
Consumer	PG	Proctor \& Gamble	Services	WMT	Wal-Mart Stores
	KO	Coca Cola		AMZN	Amazon.com
	PM	Phillip Morris Int		DIS	Walt Disney Company
	PEP	Pepsico Inc.		HD	Home Depot
	MO	Altria Group Inc.		CMCSA	Comcast Corporation
Financials	BRK-B	Berkshire Hathaway	Technology	AAPL	Apple Inc.
	WFC	Wells Fargo		GOOG	Google
	JPM	JP Morgan Chase		MSFT	Microsoft
	C	Citigroup		IBM	IBM
	BAC	Bank of America		T	AT\&T

Excluded:
CAT (Caterpillar Inc.): doubled (Conglomerates and Industrials)
PM (Phillip Morris Int): index starts 31/3/2008
GOOG (Google): index starts 19/8/2004

Structural change in 2008,

e.g. change point on 22/2/2008
[Dehling et al, 2013]
stock history

stock returns history

Structural change in 2008,

e.g. change point on 22/2/2008
[Dehling et al, 2013]

causality measure

 computed on log-returns atwindows of 300 days, sliding step 100 days

Network from $\mathrm{CGCl}(m=5)$

In-Strength

SecStocks 37 n 300 s 100 CGCN par5 in Strength

In-Out-Strength

SecSlocks $37 n 300 s 100 \mathrm{CGCINpar} 5$ In-Out Strength

Out-Strength
SecStocks 37 n 300 s 100 CGCINpar5 Out Strength

Average strength

Network from PMIME

In-Strength

SecStocks 37n300s 100PMIMEL5T1 par5 In Strength

In-Out-Strength

Out-Strength

Average strength

Dimitris Kugiumtzis

Network from PMIME

Average strength of PMIME / CGCI

Network from PMIME

Average strength of PMIME / CGCI Average strength of autocorrelation

Network from PMIME

Average strength of PMIME / CGCI Average strength of autocorrelation

Average strength of cross-correlation

Network from PMIME

Average strength of PMIME / CGCI Average strength of autocorrelation

Average strength of cross-correlation

Average strength of partial correlation

Connectivity networks and applications

Summary

Dimitris Kugiumtzis

Summary

- Granger causality measures can capture the inter-dependence structure of a multivariate complex system / stochastic process.
- Granger causality measures can capture the inter-dependence structure of a multivariate complex system / stochastic process.
- Granger causality measures are good candidates to detect structural changes.
- Granger causality measures can capture the inter-dependence structure of a multivariate complex system / stochastic process.
- Granger causality measures are good candidates to detect structural changes.
- Many measures of causality:
- Granger causality measures can capture the inter-dependence structure of a multivariate complex system / stochastic process.
- Granger causality measures are good candidates to detect structural changes.
- Many measures of causality: best: these that can capture also nonlinear and direct causal effects at the presence of many variables...
- Granger causality measures can capture the inter-dependence structure of a multivariate complex system / stochastic process.
- Granger causality measures are good candidates to detect structural changes.
- Many measures of causality: best: these that can capture also nonlinear and direct causal effects at the presence of many variables... but practically hard to estimate reliably.
- Granger causality measures can capture the inter-dependence structure of a multivariate complex system / stochastic process.
- Granger causality measures are good candidates to detect structural changes.
- Many measures of causality: best: these that can capture also nonlinear and direct causal effects at the presence of many variables... but practically hard to estimate reliably.
(1) More advanced measures (nonlinear, direct effects) involve more (and depend more on) free parameters.
(2) Harder to establish statistical significance of the measures when many variables are present (many nodes in the network). Correction for multiple testing requires many many surrogates.
(3) Statistical accuracy of the direct causality measures decreases with the number of confounding variables.

Brandt PT \& Williams JT (2007) Multiple Time Series Models, Sage Publications
Dehling H, Vogel D, Wendler M, Wied D (2013) "An efficient and robust test for a change-point in correlation, arXiv:1203.4871

Kimiskidis V K, Kugiumtzis D, Papagiannopoulos S, Vlaikidis N (2013) "Transcranial Magnetic Stimulation (TMS) Modulates Epileptiform Discharges in Patients with Frontal Lobe Epilepsy: a Preliminary EEGTMS Study", International Journal of Neural Systems, 23, 1250035

Kraskov A, Stögbauer H \& Grassberger P (2004) "Estimating Mutual Information", Physical Review E, 69(6): 066138

Kugiumtzis D (2013) "Direct Coupling Information Measure from Non-uniform Embedding", Physical Review E, 87: 062918

Papana A, Kugiumtzis D \& Larsson PG (2011) "Reducing the bias of causality measures", Physical Review E, 83: 036207

Papana A, Kugiumtzis D \& Larsson PG (2012) "Detection of direct causal effects and application in the analysis of electroencephalograms from patients with epilepsy", International Journal of Bifurcation and Chaos, to be published

Schreiber T (2000) "Measuring Information Transfer", Physical Review Letters, 85(2): 461-464
Vlachos I \& Kugiumtzis D (2010) "Non-uniform state space reconstruction and coupling detection", Physical Review E, 82: 016207

[^0]:

