Connectivity networks and applications

Dimitris Kugiumtzis

e-mail: dkugiu@gen.auth.gr http://users.auth.gr/dkugiu

November 13, 2019

Dimitris Kugiumtzis Connectivity networks and applications

→

Financial World Markets

Э

Electroencephalogram (EEG)

http://en.wikipedia.org/wiki/File:EEG_cap.jpg

イロト イヨト イヨト イヨト

臣

Э

æ

Dimitris Kugiumtzis Connectivity networks and applications

Э

æ

Dimitris Kugiumtzis Connectivity networks and applications

Dimitris Kugiumtzis Connectivity networks and applications

э

Э

э

Complex networks from multivariate time series

æ

Complex networks from multivariate time series

æ

(auto)correlation $r(X_t; X_{t-\tau})$ Are X_t and X_{t-1} linearly correlated? $r(X_t; X_{t-1}) \neq 0$? Are X_t and X_{t-2} linearly correlated? $r(X_t; X_{t-2}) \neq 0$?

(auto)correlation $r(X_t; X_{t-\tau})$

Are X_t and X_{t-1} linearly correlated? $r(X_t; X_{t-1}) \neq 0$? Yes Are X_t and X_{t-2} linearly correlated? $r(X_t; X_{t-2}) \neq 0$? Yes

Are X_t and X_{t-2} directly linearly correlated?

문 > 문

Are X_t and X_{t-2} directly linearly correlated? Are X_t and X_{t-2} linearly correlated given X_{t-1} ? $r(X_t; X_{t-2}|X_{t-1}) \neq 0$?

Are X_t and X_{t-2} directly linearly correlated? Are X_t and X_{t-2} linearly correlated given X_{t-1} ? $r(X_t; X_{t-2}|X_{t-1}) \neq 0$? No

Dimitris Kugiumtzis Connectivity networks and applications

∃ >

 $I(X_t; X_{t-2} | X_{t-1}) \neq 0?$

Dimitris Kugiumtzis Connectivity networks and applications

Dimitris Kugiumtzis Connectivity networks and applications

・ロ・ ・ 日・ ・ ヨ・

< ≣ >

æ

Image: A mathematical states and a mathem

< ∃⇒

æ

Dimitris Kugiumtzis Connectivity networks and applications

Э

臣

Э

Correlation massures		
	Correlation measures	
	$X \sim Y$	$X \sim Y Z$
Linear	- Cross-Correlation	- Partial Correlation
	- Coherence	- Partial Coherence
Nonlinear	- Phase Synchronization	?
	- Cross Mutual Information	?
Granger Causality measures		
	$X \to Y$	$X \to Y Z$
Linear	- Granger Causality Index	- Conditional (Partial) GCI
	(GCI)	(CGCI)
	- Directed Coherence (DC)	- Partial DC (PDC)
	- Directed Transfer Function	- direct DTF (dDTF)
	(DTF)	
Nonlinear	- Directionality Index	?
	- Mean Conditional Recurrence	?
	- Transfer entropy (TE)	- Partial TE (PTE)
	- Mutual Information from	- Partial MIME (PMIME)
	Mixed Embedding (MIME)	
	- ()	A D P A 目 P A 目 P A 目 P A Q P A D P A 目 P A 目 P A D

Correlation measures

Bivariate time series $\{x_t, y_t\}_{t=1}^n$

Linear correlation measures:

Estimate of cross-covariance

$$c_{XY}(\tau) = \hat{\gamma}_{XY}(\tau) = \frac{1}{n-\tau} \sum_{t=1}^{n-\tau} (x_t - \bar{x})(y_{t+\tau} - \bar{y})$$

 \bar{x} and \bar{y} are sample means.

Estimate of cross-correlation:

$$r_{XY}(\tau) = r(X_t, Y_{t+\tau}) = \hat{\rho}_{XY}(\tau) = \frac{c_{XY}(\tau)}{c_{XY}(0)} = \frac{c_{XY}(\tau)}{s_X s_Y}$$

 s_X and s_Y are sample standard deviations.

•
$$|r_{XY}(\tau)| \le 1$$

• $r_{XY}(\tau) = r_{YX}(-\tau)$ but $r_{XY}(\tau) \ne r_{XY}(-\tau)$

Noninear correlation measures:

Entropy: information from each sample of X (assume proper discretization of X)

$$H(X) = \sum_{x} p_X(x) \log p_X(x)$$

Mutual information: information for Y knowing X and vice versa

$$I(X, Y) = H(X) + H(Y) - H(X, Y) = \sum_{x, y} p_{XY}(x, y) \log \frac{p_{XY}(x, y)}{p_X(x)p_Y(y)}$$

For $X \to X_t$ and $Y \to Y_{t+\tau}$, cross-delayed mutual information:

$$I_{XY}(\tau) = I(X_t, Y_{t+\tau}) = \sum_{x_t, y_{t+\tau}} p_{X_t Y_{t+\tau}}(x_t, y_{t+\tau}) \log \frac{p_{X_t Y_{t+\tau}}(x_t, y_{t+\tau})}{p_{X_t}(x_t) p_{Y_{t+\tau}}(y_{t+\tau})}$$

To compute $I_{XY}(\tau)$ make a partition of $\{x_t\}_{t=1}^n$, a partition of $\{y_t\}_{t=1}^n$ and compute probabilities for each cell from the relative frequency.

 \implies (linear) correlation of x_t and y_t

 \implies systems X and Y are correlated, $X \sim Y$

通とくほとくほど

臣

 \implies (linear) correlation of x_t and y_t

 \implies systems X and Y are correlated, $X \sim Y$

 $r_{XY}(au) \neq 0$:

 \implies (linear) correlation of x_t and $y_{t+\tau}$

 \implies X effects the future of Y

 $\Longrightarrow X \to Y$

 $r_{XY}(- au)
eq 0 \implies Y o X$

向下 イヨト イヨト

3

 \implies (linear) correlation of x_t and y_t

 \implies systems X and Y are correlated, $X \sim Y$

 $r_{XY}(au) \neq 0$:

 \implies (linear) correlation of x_t and $y_{t+\tau}$

 \implies X effects the future of Y

 $\Longrightarrow X \to Y$

 $r_{XY}(- au)
eq 0 \implies Y o X$

Thus $r_{XY}(\tau) = r(X_t, Y_{t+\tau})$ and $I_{XY}(\tau) = I(X_t, Y_{t+\tau})$ indicate the direction of interaction.

向下 イヨト イヨト

3

 \implies (linear) correlation of x_t and y_t

 \implies systems X and Y are correlated, $X \sim Y$

 $r_{XY}(au) \neq 0$:

 \implies (linear) correlation of x_t and $y_{t+\tau}$

 \implies X effects the future of Y

 $\Longrightarrow X \to Y$

 $r_{XY}(- au)
eq 0 \implies Y o X$

Thus $r_{XY}(\tau) = r(X_t, Y_{t+\tau})$ and $I_{XY}(\tau) = I(X_t, Y_{t+\tau})$ indicate the direction of interaction.

Can they also be used as causality measures?

• • = • • = •

 \implies (linear) correlation of x_t and y_t

 \implies systems X and Y are correlated, $X \sim Y$

 $r_{XY}(au)
eq 0$:

 \implies (linear) correlation of x_t and $y_{t+\tau}$

 \implies X effects the future of Y

 $\Longrightarrow X \to Y$

 $r_{XY}(- au)
eq 0 \implies Y o X$

Thus $r_{XY}(\tau) = r(X_t, Y_{t+\tau})$ and $I_{XY}(\tau) = I(X_t, Y_{t+\tau})$ indicate the direction of interaction.

Can they also be used as causality measures?

How can we approximate: $r(X_t; Y_{t+1}|Y_t), r(X_t; Y_{t+1}|Y_t)$?

伺下 イヨト イヨト

 \implies (linear) correlation of x_t and y_t

 \implies systems X and Y are correlated, $X \sim Y$

 $r_{XY}(au)
eq 0$:

 \implies (linear) correlation of x_t and $y_{t+\tau}$

 \implies X effects the future of Y

 $\Longrightarrow X \to Y$

 $r_{XY}(- au)
eq 0 \implies Y o X$

Thus $r_{XY}(\tau) = r(X_t, Y_{t+\tau})$ and $I_{XY}(\tau) = I(X_t, Y_{t+\tau})$ indicate the direction of interaction.

Can they also be used as causality measures?

How can we approximate: $r(X_t; Y_{t+1}|Y_t)$, $r(X_t; Y_{t+1}|Y_t)$? ...or even $r(X_t; Y_{t+1}|Y_t, Z_t)$, $r(X_t; Y_{t+1}|Y_t, Z_t)$?

・ 同 ト ・ ヨ ト ・ ヨ ト …

Dimitris Kugiumtzis Connectivity networks and applications

Randomization test

- Generate *M* resampled (surrogate) time series, each by shifting the original observations with a random time step *w*: original time series: {*x_t*} = {*x₁, x₂,..., x_n*} *i*-th surrogate time series: {*x_t^{*i}*} = {*x_{w+1}, x_{w+2},..., x_n, x₁,..., x_{w-1}, x_w*}
- Compute the statistic q on the original pair, q₀, and on the M surrogate pairs, q₁,..., q_M,
 e.g. q₀ ≡ r_{XY}(τ) = Corr(x_t, y_{t+τ}) and q_i ≡ Corr(x_t^{*i}, y_{t+τ}^{*i})
- 3 If q_0 is at the tails of the empirical null distribution formed by q_1, \ldots, q_M , reject H₀.

We use rank ordering: for a two-sided test, the p-value of the test is [Yu and Huang, 2001]

$$2\frac{r_{q_0}-0.326}{M+1+0.348} \quad \text{if} \quad r_{q_0} < \frac{M+1}{2} \\ 2(1-\frac{r_{q_0}-0.326}{M+1+0.348}) \quad \text{if} \quad r_{q_0} \ge \frac{M+1}{2}$$

Example: Returns for USA, UnitedKingdom, Greece and Australia. Correlation matrix for delay 1, $r_{XY}(1)$

$$R(1) = \begin{bmatrix} 0.382 & 0.333 & 0.596 \\ 0.049 & 0.039 & 0.303 \\ 0.096 & 0.001 & 0.190 \\ 0.031 & -0.001 & -0.021 \end{bmatrix}$$

Randomization significance test for $r_{XY}(1)$ (M = 1000)Matrix of p-valuesAdjacency matrix

$$P(R(1)) = \begin{bmatrix} 0.0013 & 0.0013 & 0.0033 \\ 0.0732 & 0.1991 & 0.0013 \\ 0.0073 & 0.8901 & 0.0033 \\ 0.2450 & 0.9760 & 0.4028 \end{bmatrix} A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

For significance level, say $\alpha = 0.05$, there may be $p < \alpha$ more often than it should be due to multiple testing. Correction with e.g. False Discovery Rate

Network for World Financial Markets

Dimitris Kugiumtzis

Connectivity networks and applications

 \implies (linear) correlation of x_t and y_t

 \implies systems X and Y are correlated, $X \sim Y$

通とくほとくほど

臣
\implies (linear) correlation of x_t and y_t

 \implies systems X and Y are correlated, $X \sim Y$

 $r_{XY}(au) \neq 0$:

 \implies (linear) correlation of x_t and $y_{t+\tau}$

 \implies X effects the future of Y

 $\Longrightarrow X \to Y$

 $r_{XY}(- au)
eq 0 \implies Y o X$

向下 イヨト イヨト

3

 \implies (linear) correlation of x_t and y_t

 \implies systems X and Y are correlated, $X \sim Y$

 $r_{XY}(au) \neq 0$:

 \implies (linear) correlation of x_t and $y_{t+\tau}$

 \implies X effects the future of Y

 $\Longrightarrow X \to Y$

 $r_{XY}(- au)
eq 0 \implies Y o X$

Thus $r_{XY}(\tau) = r(X_t, Y_{t+\tau})$ and $I_{XY}(\tau) = I(X_t, Y_{t+\tau})$ indicate the direction of interaction.

向下 イヨト イヨト

3

 \implies (linear) correlation of x_t and y_t

 \implies systems X and Y are correlated, $X \sim Y$

 $r_{XY}(au) \neq 0$:

 \implies (linear) correlation of x_t and $y_{t+\tau}$

 \implies X effects the future of Y

 $\Longrightarrow X \to Y$

 $r_{XY}(- au)
eq 0 \implies Y o X$

Thus $r_{XY}(\tau) = r(X_t, Y_{t+\tau})$ and $I_{XY}(\tau) = I(X_t, Y_{t+\tau})$ indicate the direction of interaction.

Can they also be used as causality measures?

• • = • • = •

 \implies (linear) correlation of x_t and y_t

 \implies systems X and Y are correlated, $X \sim Y$

 $r_{XY}(au)
eq 0$:

 \implies (linear) correlation of x_t and $y_{t+\tau}$

 \implies X effects the future of Y

 $\Longrightarrow X \to Y$

 $r_{XY}(- au)
eq 0 \implies Y o X$

Thus $r_{XY}(\tau) = r(X_t, Y_{t+\tau})$ and $I_{XY}(\tau) = I(X_t, Y_{t+\tau})$ indicate the direction of interaction.

Can they also be used as causality measures?

How can we approximate: $r(X_t; Y_{t+1}|Y_t), r(X_t; Y_{t+1}|Y_t)$?

伺下 イヨト イヨト

 \implies (linear) correlation of x_t and y_t

 \implies systems X and Y are correlated, $X \sim Y$

 $r_{XY}(au)
eq 0$:

 \implies (linear) correlation of x_t and $y_{t+\tau}$

 \implies X effects the future of Y

 $\Longrightarrow X \to Y$

 $r_{XY}(- au)
eq 0 \implies Y o X$

Thus $r_{XY}(\tau) = r(X_t, Y_{t+\tau})$ and $I_{XY}(\tau) = I(X_t, Y_{t+\tau})$ indicate the direction of interaction.

Can they also be used as causality measures?

How can we approximate: $r(X_t; Y_{t+1}|Y_t)$, $r(X_t; Y_{t+1}|Y_t)$? ...or even $r(X_t; Y_{t+1}|Y_t, Z_t)$, $r(X_t; Y_{t+1}|Y_t, Z_t)$?

・ 同 ト ・ ヨ ト ・ ヨ ト …

Idea of Granger causality $X \rightarrow Y$: [Brandt & Williams, 2007, Chp 2] predict Y better when including X in the regression model.

Measure 1a: Granger Causality Index (GCI)

Bivariate time series $\{x_t, y_t\}_{t=1}^n$ driving system: X, response system: Y

Model 1 (restricted, R, X absent in the model):

$$y_t = \sum_{i=1}^p a_i y_{t-i} + e_{R,t}$$

Model 2 (unrestricted, U, X present in the model):

$$y_t = \sum_{i=1}^{p} a_i y_{t-i} + \sum_{i=1}^{p} b_i x_{t-i} + e_{U,t}$$

$$Var(\hat{e}_{P,t})$$

 $\operatorname{\mathsf{GCl}}_{X \to Y} = \operatorname{\mathsf{In}} \frac{\operatorname{\mathsf{Var}}(e_{R,t})}{\operatorname{\mathsf{Var}}(\hat{e}_{U,t})} \qquad \operatorname{\mathsf{GCl}}_{X \to Y} > 0 \Rightarrow X \to Y \text{ holds}$

 $\operatorname{GCl}_{X \to Y} > 0$? \Rightarrow Significance test

If X does not Granger causes Y then the contribution of X-lags in the unrestricted model should be insignificant \Rightarrow

the terms of X should be insignificant

H₀: $b_i = 0$, for all i = 1, ..., pH₁: $b_i \neq 0$, for any of i = 1, ..., p

Snedecor-Fisher test (F-test):

$$F = \frac{(SSE^R - SSE^U)/p}{SSE^U/ndf}$$

SSE: sum of squared errors ndf: number of degrees of freedoms, ndf = (n - p) - 2p, n - p: number of equations, 2p: number of coefficients in the U-model.

・ 何 ト ・ ヨ ト ・ ヨ ト

Measure 1b: Conditional Granger Causality Index (CGCI)

K time series $\{x_t, y_t\}_{t=1}^n$ and $\{\mathbf{z}_t\}_{t=1}^n = \{z_{1,t}, z_{2,t}, \dots, z_{K-2,t}\}_{t=1}^n$ driving system: *X*, response system: *Y*, conditioning on system *Z*, $Z = \{Z_1, Z_2, \dots, Z_{K-2}\}$

Model 1 (restricted, R, X absent in the model):

$$y_t = \sum_{i=1}^{p} a_i y_{t-i} + \sum_{i=1}^{p} A_i \mathbf{z}_{t-i} + e_{R,t}$$

Model 2 (unrestricted, U, X present in the model):

$$y_t = \sum_{i=1}^{p} a_i y_{t-i} + \sum_{i=1}^{p} b_i x_{t-i} + \sum_{i=1}^{p} A_i \mathbf{z}_{t-i} + e_{U,t}$$
$$\mathsf{CGCl}_{X \to Y|Z} = \mathsf{In} \, \frac{\mathsf{Var}(\hat{e}_{R,t})}{\mathsf{Var}(\hat{e}_{U,t})}$$

(日本) (日本) (日本)

 $CGCI_{X \to Y|Z} > 0 \quad ? \quad \Rightarrow \quad \text{Significance test as for GCI}$ $H_0: \ b_i = 0, \text{ for all } i = 1, \dots, p$ $H_1: \ b_i \neq 0, \text{ for any of } i = 1, \dots, p$ $F = \frac{(\text{SSE}^R - \text{SSE}^U)/p}{\text{SSE}^U/\text{ndf}}$

ndf = (n - p) - Kp, n - p: number of equations, Kp: number of coefficients in the U-model.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

VAR model for Y

$$y_t = \sum_{i=1}^{p} a_i y_{t-i} + \sum_{i=1}^{p} b_i x_{t-i} + e_{U,t}$$

回 とうほう うほとう

臣

VAR model for Y

$$y_t = \sum_{i=1}^{p} a_i y_{t-i} + \sum_{i=1}^{p} b_i x_{t-i} + e_{U,t}$$

$$y_{t+1} = \sum_{i=1}^{p} a_i y_{t-i+1} + \sum_{i=1}^{p} b_i x_{t-i+1} + e_{U,t+1}$$

 $\begin{aligned} &y_{t+1} \text{ is given in terms of } \mathbf{y}_t = [y_t, y_{t-1}, \dots, y_{t-p+1}] \text{ and} \\ &\mathbf{x}_t = [x_t, x_{t-1}, \dots, x_{t-p+1}], \quad y_{t+1} = \mathbf{F}(\mathbf{y}_t, \mathbf{x}_t) + e_{t+1} \end{aligned}$

VAR model for Y

$$y_t = \sum_{i=1}^{p} a_i y_{t-i} + \sum_{i=1}^{p} b_i x_{t-i} + e_{U,t}$$

$$y_{t+1} = \sum_{i=1}^{p} a_i y_{t-i+1} + \sum_{i=1}^{p} b_i x_{t-i+1} + e_{U,t+1}$$

 y_{t+1} is given in terms of $\mathbf{y}_t = [y_t, y_{t-1}, \dots, y_{t-p+1}]$ and $\mathbf{x}_t = [x_t, x_{t-1}, \dots, x_{t-p+1}], \quad y_{t+1} = \mathbf{F}(\mathbf{y}_t, \mathbf{x}_t) + e_{t+1}$ Let the lag step be $\tau \ge 1 \implies \mathbf{y}_t = [y_t, y_{t-\tau}, \dots, y_{t-(p-1)\tau}]$: τ, p : embedding parameters (generally different for X and Y)

VAR model for Y

$$y_t = \sum_{i=1}^{p} a_i y_{t-i} + \sum_{i=1}^{p} b_i x_{t-i} + e_{U,t}$$

$$y_{t+1} = \sum_{i=1}^{p} a_i y_{t-i+1} + \sum_{i=1}^{p} b_i x_{t-i+1} + e_{U,t+1}$$

 $\begin{array}{l} y_{t+1} \text{ is given in terms of } \mathbf{y}_t = [y_t, y_{t-1}, \ldots, y_{t-p+1}] \text{ and} \\ \mathbf{x}_t = [x_t, x_{t-1}, \ldots, x_{t-p+1}], \quad y_{t+1} = \mathbf{F}(\mathbf{y}_t, \mathbf{x}_t) + e_{t+1} \\ \text{Let the lag step be } \tau \geq 1 \quad \Rightarrow \quad \mathbf{y}_t = [y_t, y_{t-\tau}, \ldots, y_{t-(p-1)\tau}]: \\ \tau, p: \text{ embedding parameters (generally different for X and Y)} \end{array}$

State space reconstruction:

 $\begin{aligned} \mathbf{x}_t &= [x_t, x_{t-\tau_x}, \dots, x_{t-(m_x-1)\tau_x}]', \text{ embedding parameters: } & m_x, \tau_x \\ \mathbf{y}_t &= [y_t, y_{t-\tau_y}, \dots, y_{t-(m_y-1)\tau_y}]', \text{ embedding parameters: } & m_y, \tau_y \end{aligned}$

 y_{t+1} : future state of Y

医下颌 医下口

(Shannon) Entropy: $H(X) = -\sum_{x} p(x) \log p(x)$ Mutual Information of X and Y: I(X; Y) = H(X) + H(Y) - H(X, Y)

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

(Shannon) Entropy:
$$H(X) = -\sum_{x} p(x) \log p(x)$$

Mutual Information of X and Y:
 $I(X; Y) = H(X) + H(Y) - H(X, Y)$

Transfer Entropy (TE) [Schreiber, 2000]

Measure the effect of X on Y at one time step ahead, accounting (conditioning) for the effect from its own current state

$$\mathsf{TE}_{\boldsymbol{X} \to \boldsymbol{Y}} = I(y_{t+1}; \mathbf{x}_t | \mathbf{y}_t)$$

= $H(\mathbf{x}_t, \mathbf{y}_t) - H(y_{t+1}, \mathbf{x}_t, \mathbf{y}_t) + H(y_{t+1}, \mathbf{y}_t) - H(\mathbf{y}_t)$
= $\sum p(y_{t+1}, \mathbf{x}_t, \mathbf{y}_t) \log \frac{p(y_{t+1} | \mathbf{x}_t, \mathbf{y}_t)}{p(y_{t+1} | \mathbf{y}_t)}$

(Shannon) Entropy:
$$H(X) = -\sum_{x} p(x) \log p(x)$$

Mutual Information of X and Y:
 $I(X; Y) = H(X) + H(Y) - H(X, Y)$

Transfer Entropy (TE) [Schreiber, 2000]

Measure the effect of X on Y at one time step ahead, accounting (conditioning) for the effect from its own current state

$$\begin{aligned} \mathsf{TE}_{X \to Y} &= I(y_{t+1}; \mathbf{x}_t | \mathbf{y}_t) \\ &= H(\mathbf{x}_t, \mathbf{y}_t) - H(y_{t+1}, \mathbf{x}_t, \mathbf{y}_t) + H(y_{t+1}, \mathbf{y}_t) - H(\mathbf{y}_t) \\ &= \sum p(y_{t+1}, \mathbf{x}_t, \mathbf{y}_t) \log \frac{p(y_{t+1} | \mathbf{x}_t, \mathbf{y}_t)}{p(y_{t+1} | \mathbf{y}_t)} \end{aligned}$$

Joint entropies (and distributions) can have high dimension! Entropy estimates from nearest neighbors [Kraskov et al, 2004]

(Shannon) Entropy:
$$H(X) = -\sum_{x} p(x) \log p(x)$$

Mutual Information of X and Y:
 $I(X; Y) = H(X) + H(Y) - H(X, Y)$

Transfer Entropy (TE) [Schreiber, 2000]

Measure the effect of X on Y at one time step ahead, accounting (conditioning) for the effect from its own current state

$$\begin{aligned} \mathsf{TE}_{X \to Y} &= I(y_{t+1}; \mathbf{x}_t | \mathbf{y}_t) \\ &= H(\mathbf{x}_t, \mathbf{y}_t) - H(y_{t+1}, \mathbf{x}_t, \mathbf{y}_t) + H(y_{t+1}, \mathbf{y}_t) - H(\mathbf{y}_t) \\ &= \sum p(y_{t+1}, \mathbf{x}_t, \mathbf{y}_t) \log \frac{p(y_{t+1} | \mathbf{x}_t, \mathbf{y}_t)}{p(y_{t+1} | \mathbf{y}_t)} \end{aligned}$$

Joint entropies (and distributions) can have high dimension!

Entropy estimates from nearest neighbors [Kraskov et al, 2004]

TE is equivalent to GCI when the stochastic process of (X, Y) is Gaussian [Barnett et al, PRE 2009]

Entropy estimates from nearest neighbors [Kraskov et al, 2004] What are the appropriate embedding parameters? Example: Unidirectionally coupled Mackey-Glass system

$$egin{array}{rll} \dot{x}(t) &=& rac{0.2x(t-\Delta_x)}{1+x(t-\Delta_x)^{10}} - 0.1x(t) \ \dot{y}(t) &=& rac{0.2y(t-\Delta_y)}{1+y(t-\Delta_y)^{10}} - 0.1y(t) + Crac{x(t-\Delta_x)}{1+x(t-\Delta_x)^{10}}. \end{array}$$

< A > < E

.⊒ .⊳

driving system: X, response system: Y, conditioning on system Z, $Z = \{Z_1, Z_2, \dots, Z_{K-2}\}$ join all K - 2 z-reconstructed vectors: $\mathbf{Z}_t = [\mathbf{z}_{1,t}, \dots, \mathbf{z}_{K-2,t}]$

Measure the effect of X on Y at T times ahead, accounting (conditioning) for the effect from its own current state and the current state of the other variables except X.

Partial Transfer Entropy (PTE) [Vakorin et al, 2009; Papana et al, 2012]

$$\begin{aligned} \mathsf{PTE}_{X \to Y|Z} &= I(y_{t+1}; \mathbf{x}_t | \mathbf{y}_t, \mathbf{Z}_t) \\ &= H(\mathbf{x}_t, \mathbf{y}_t | \mathbf{Z}_t) - H(y_{t+1}, \mathbf{x}_t, \mathbf{y}_t | \mathbf{Z}_t) + H(y_{t+1}, \mathbf{y}_t | \mathbf{Z}_t) - H(\mathbf{y}_t | \mathbf{Z}_t) \end{aligned}$$

Joint entropies (and distributions) can have very high dimension!

・ 同 ト ・ ヨ ト ・ ヨ ト

Example: Global financial market

MSCI market capitalization weighted index

Data source: https://www.msci.com/market-cap-weighted-indexes

■ Network ?

Dimitris Kugiumtzis Connectivity networks and applications

Data source: https://physionet.org/pn6/chbmit/chb08/

Network_?

Dimitris Kugiumtzis

Connectivity networks and applications

Three possible ways to convert a network of weighted connections (the Granger causality measure) to a network of binary connections:

Three possible ways to convert a network of weighted connections (the Granger causality measure) to a network of binary connections:

① Threshold on the measure magnitude, $q(i \rightarrow j) > \text{thr.}$

Three possible ways to convert a network of weighted connections (the Granger causality measure) to a network of binary connections:

- **①** Threshold on the measure magnitude, $q(i \rightarrow j) > \text{thr.}$
- ② Threshold on the network density, only the d% largest q(i → j).

Three possible ways to convert a network of weighted connections (the Granger causality measure) to a network of binary connections:

- **1** Threshold on the measure magnitude, $q(i \rightarrow j) > \text{thr.}$
- ② Threshold on the network density, only the d% largest $q(i \rightarrow j)$.
- Significance test on each $q(i \rightarrow j)$. Threshold, e.g. $\alpha = 0.05$ on the *p*-value of the test.

Parametric or resampling test (resampling test for a nonlinear causality measure).

Example: coupled Henon maps

$$\begin{aligned} x_{1,t+1} &= 1.4 - x_{1,t}^2 + 0.3x_{1,t-1} \\ x_{i,t+1} &= 1.4 - (0.5C(x_{i-1,t} + x_{i+1,t}) + (1-C)x_{i,t})^2 + 0.3x_{i,t-1} \\ x_{K,t+1} &= 1.4 - x_{K,t}^2 + 0.3x_{K,t-1} \end{aligned}$$

C: coupling strength [Politi & Torcini, 1992]

Network structure for K = 5

同 とく ヨ とく ヨ と

Example, $\overline{\mathsf{TE}}$, K = 5

Dimitris Kugiumtzis

Connectivity networks and applications

Example, TE, K = 10

True network

Binary network from Threshold (thr=0.01)

Example, TE, K = 20

True network

Example, PTE, K = 4

Example, PTE, K = 8

.0

• Find a subset \mathbf{w}_t of lagged variables from X and Y that explains best the future of Y, y_{t+1} .

- Find a subset \mathbf{w}_t of lagged variables from X and Y that explains best the future of Y, y_{t+1} .
- Quantify the information on Y ahead that is explained by the X-components in this subset.

- Find a subset \mathbf{w}_t of lagged variables from X and Y that explains best the future of Y, y_{t+1} .
- Quantify the information on Y ahead that is explained by the X-components in this subset.
- If there are no components of X in \mathbf{w}_t , then MIME = 0.

- 同 ト - ヨ ト - ヨ ト
$$\mathbf{w}_{t} = (\underbrace{x_{t-\tau_{x1}}, x_{t-\tau_{x2}}, \dots, x_{t-\tau_{xm_x}}}_{\mathbf{w}_{t}^{\mathsf{x}}}, \underbrace{y_{t-\tau_{y1}}, y_{t-\tau_{y2}}, \dots, y_{t-\tau_{ym_y}}}_{\mathbf{w}_{t}^{\mathsf{y}}})$$

Measure 3a: The causality measure MIME

$$R_{\boldsymbol{X} \to \boldsymbol{Y}} = \frac{I(\mathbf{y}_t^T; \mathbf{w}_t^X \mid \mathbf{w}_t^Y)}{I(\mathbf{y}_t^T; \mathbf{w}_t)}$$

- *R_{X→Y}*: information of *Y* explained only by *X*-components of the embedding vectors, normalized against the total mutual information (in order to give a value between 0 and 1).
- If w_t contains no components from X, then R_{X→Y} = 0 and X has no effect on the future of Y.

向下 イヨト イヨト

solid line: driving system dashed line: response system

A (1) > A (2)

< 注→ …

driving system: *X*, response system: *Y*, conditioning on system *Z*, $Z = \{Z_1, Z_2, ..., Z_{K-2}\}$

The same non-uniform embedding scheme for explaining \mathbf{y}_t^T from vector of lags of all $X, Y, Z_1, Z_2, \dots, Z_{K-2}$,

$$W_{t} = \{x_{t}, \dots, x_{t-L_{x}-1}, y_{t}, \dots, y_{t-L_{y}-1}, z_{1,t}, \dots, z_{1,t-L_{z}-1}, \dots, z_{K-2,t-L_{z}-1}\}$$

e.g., for $K = 3, X, Y, Z$:

伺下 イヨト イヨト

The non-uniform embedding vector of lags of all X, Y, Z for explaining y_{t+1} :

$$\mathbf{w}_{t} = \left(\underbrace{x_{t-\tau_{x1}}, \ldots, x_{t-\tau_{xm_x}}}_{\mathbf{w}_{t}^{x}}, \underbrace{y_{t-\tau_{y1}}, \ldots, y_{t-\tau_{ym_y}}}_{\mathbf{w}_{t}^{y}}, \underbrace{z_{t-\tau_{z1}}, \ldots, z_{t-\tau_{zm_z}}}_{\mathbf{w}_{t}^{z}}\right)$$

・ 回 ト ・ ヨ ト ・ ヨ ト

臣

The non-uniform embedding vector of lags of all X, Y, Z for explaining y_{t+1} :

$$\mathbf{w}_t = \left(\underbrace{x_{t-\tau_{x1}}, \ldots, x_{t-\tau_{xm_x}}}_{\mathbf{w}_t^x}, \underbrace{y_{t-\tau_{y1}}, \ldots, y_{t-\tau_{ym_y}}}_{\mathbf{w}_t^y}, \underbrace{z_{t-\tau_{z1}}, \ldots, z_{t-\tau_{zm_z}}}_{\mathbf{w}_t^z}\right)$$

The causality measure PMIME

$$R_{\boldsymbol{X} \to \boldsymbol{Y} | \boldsymbol{Z}} = \frac{I(y_{t+1}; \boldsymbol{w}_t^{\boldsymbol{X}} \mid \boldsymbol{w}_t^{\boldsymbol{Y}}, \boldsymbol{w}_t^{\boldsymbol{Z}})}{I(y_{t+1}; \boldsymbol{w}_t)}$$

R_{X→Y|Z}: information on the future of *Y* explained only by *X*-components of the embedding vector (given the components of *Y* and *Z*), normalized with the mutual information of the future of *Y* and the embedding vector.

The non-uniform embedding vector of lags of all X, Y, Z for explaining y_{t+1} :

$$\mathbf{w}_{t} = \left(\underbrace{x_{t-\tau_{x1}}, \ldots, x_{t-\tau_{xm_x}}}_{\mathbf{w}_{t}^{x}}, \underbrace{y_{t-\tau_{y1}}, \ldots, y_{t-\tau_{ym_y}}}_{\mathbf{w}_{t}^{y}}, \underbrace{z_{t-\tau_{z1}}, \ldots, z_{t-\tau_{zm_z}}}_{\mathbf{w}_{t}^{z}}\right)$$

The causality measure PMIME

$$R_{\boldsymbol{X} \to \boldsymbol{Y} | \boldsymbol{Z}} = \frac{I(y_{t+1}; \boldsymbol{w}_t^{\boldsymbol{X}} \mid \boldsymbol{w}_t^{\boldsymbol{Y}}, \boldsymbol{w}_t^{\boldsymbol{Z}})}{I(y_{t+1}; \boldsymbol{w}_t)}$$

R_{X→Y|Z}: information on the future of *Y* explained only by *X*-components of the embedding vector (given the components of *Y* and *Z*), normalized with the mutual information of the future of *Y* and the embedding vector.

• If
$$\mathbf{w}_t^Z = \emptyset$$
, then $R_{X \to Y|Z} = R_{X \to Y}$.

The non-uniform embedding vector of lags of all X, Y, Z for explaining y_{t+1} :

$$\mathbf{w}_{t} = \left(\underbrace{x_{t-\tau_{x1}}, \ldots, x_{t-\tau_{xm_x}}}_{\mathbf{w}_{t}^{x}}, \underbrace{y_{t-\tau_{y1}}, \ldots, y_{t-\tau_{ym_y}}}_{\mathbf{w}_{t}^{y}}, \underbrace{z_{t-\tau_{z1}}, \ldots, z_{t-\tau_{zm_z}}}_{\mathbf{w}_{t}^{z}}\right)$$

The causality measure PMIME

$$R_{\boldsymbol{X} \to \boldsymbol{Y} | \boldsymbol{Z}} = \frac{I(y_{t+1}; \boldsymbol{w}_t^{\boldsymbol{X}} \mid \boldsymbol{w}_t^{\boldsymbol{Y}}, \boldsymbol{w}_t^{\boldsymbol{Z}})}{I(y_{t+1}; \boldsymbol{w}_t)}$$

R_{X→Y|Z}: information on the future of *Y* explained only by *X*-components of the embedding vector (given the components of *Y* and *Z*), normalized with the mutual information of the future of *Y* and the embedding vector.

• If
$$\mathbf{w}_t^Z = \emptyset$$
, then $R_{X \to Y|Z} = R_{X \to Y}$.

• If \mathbf{w}_t contains no components from X, then $R_{X \to Y|Z} = 0$ and X has no direct effect on the future of Y.

Three main advantages of PMIME

▲冊▶ ▲臣▶ ▲臣▶

 R_{X→Y|Z} = 0 when no significant causality is present, and R_{X→Y|Z} > 0 when it is present [no significance test, no issues with multiple testing!]

高 ト イ ヨ ト イ ヨ

- $R_{X \to Y|Z} = 0$ when no significant causality is present, and $R_{X \to Y|Z} > 0$ when it is present [no significance test, no issues with multiple testing!]
- mixed embedding for all variables is formed as part of the measure [it does not require the determination of embedding parameters for each variable]

- $R_{X \to Y|Z} = 0$ when no significant causality is present, and $R_{X \to Y|Z} > 0$ when it is present [no significance test, no issues with multiple testing!]
- mixed embedding for all variables is formed as part of the measure [it does not require the determination of embedding parameters for each variable]
- inclusion of more confounding variables only slows the computation and has no effect on statistical accuracy [no "curse of dimensionality" for any dimension of Z, only slow computation time]

・ 同 ト ・ ヨ ト ・ ヨ ト

- $R_{X \to Y|Z} = 0$ when no significant causality is present, and $R_{X \to Y|Z} > 0$ when it is present [no significance test, no issues with multiple testing!]
- mixed embedding for all variables is formed as part of the measure [it does not require the determination of embedding parameters for each variable]
- inclusion of more confounding variables only slows the computation and has no effect on statistical accuracy [no "curse of dimensionality" for any dimension of Z, only slow computation time]

 \Rightarrow good candidate for causality analysis with many variables

向下 イヨト イヨト

Example: linear coupled system

K = 5 linear Vector Autoregressive process, VAR(4) in 5 variables

$$\begin{aligned} x_{1,t} &= 0.4x_{1,t-1} - 0.5x_{1,t-2} + 0.4x_{5,t-1} + e_{1,t} \\ x_{2,t} &= 0.4x_{2,t-1} - 0.3x_{1,t-4} + 0.4x_{5,t-2} + e_{2,t} \\ x_{3,t} &= 0.5x_{3,t-1} - 0.7x_{3,t-2} - 0.3x_{5,t-3} + e_{3,t} \\ x_{4,t} &= 0.8x_{4,t-3} + 0.4x_{1,t-2} + 0.3x_{2,t-2} + e_{4,t} \\ x_{5,t} &= 0.7x_{5,t-1} - 0.5x_{5,t-2} - 0.4x_{4,t-1} + e_{5,t} \end{aligned}$$

[Schelter et al, 2006]

Dimitris Kugiumtzis Connectivity networks and applications

Dimitris Kugiumtzis

Nonlinear stochastic map:

$$\begin{aligned} x_{1,t} &= 3.4x_{1,t-1}(1-x_{1,t-1}^2)e^{-x_{1,t-1}^2} + 0.4e_{1,t} \\ x_{2,t} &= 3.4x_{2,t-1}(1-x_{2,t-1}^2)e^{-x_{2,t-1}^2} + 0.5x_{1,t-1}x_{2,t-1} + 0.4e_{2,t} \\ x_{3,t} &= 3.4x_{3,t-1}(1-x_{3,t-1}^2)e^{-x_{3,t-1}^2} + 0.3x_{2,t-1} + 0.5x_{1,t-1}^2 + 0.4e_{3,t} \end{aligned}$$

n = 512 [Model 7, Gourevich et al, 2006]

true connecntivity matrix

< (10) > < 3

< ∃⇒

臣

Dimitris Kugiumtzis

K = 5 Henon coupled maps

$$\begin{aligned} x_{1,t+1} &= 1.4 - x_{1,t}^2 + 0.3x_{1,t-1} \\ x_{i,t+1} &= 1.4 - (0.5C(x_{i-1,t} + x_{i+1,t}) + (1-C)x_{i,t})^2 + 0.3x_{i,t-1} \\ x_{K,t+1} &= 1.4 - x_{K,t}^2 + 0.3x_{K,t-1} \end{aligned}$$

coupling strength: $C = 0, \ldots, 0.9$, n = 4096

Network with directed links

Causality matrix (not symmetric)

Dimitris Kugiumtzis Connectivity networks and applications

< A > < B

adiacecny matrix TE m=2

adjacecny matrix TE m=4

adjacecny matrix MIME A=95

Dimitris Kugiumtzis Com

C = 0.1

True connection Matrix

æ

adjacecny matrix TE m=2

adjacecny matrix TE m=4

adiacecny matrix MIME A=95

Dimitris Kugiumtzis

True connection Matrix

æ

adjacecny matrix TE m=2

Dimitris Kugiumtzis

æ

True connection Matrix

adjacecny matrix TE m=2

adjacecny matrix MIME A=95

Dimitris Kugiumtzis

æ

True connection Matrix

adjaceony matrix TE m=4

adjacecny matrix MIME A=95

Dimitris Kugiumtzis

æ

True connection Matrix

adjaceony matrix TE m=4

Dimitris Kugiumtzis

C = 0.0 n = 1024, p = 5, m = 2, L = 5, T = 1

MIME

CGCI

PTE

PMIME

3 H K

-

Dimitris Kugiumtzis

Connectivity networks and applications

3 08 8

PTE

PMIME

Dimitris Kugiumtzis

GCI

PMIME

CGCI

Dimitris Kugiumtzis

PMIME

Dimitris Kugiumtzis

PMIME

Dimitris Kugiumtzis

PTE

PMIME

Dimitris Kugiumtzis

Dimitris Kugiumtzis

PMIME

Dimitris Kugiumtzis

Coupled identical Mackey-Glass delayed differential equations

$$\dot{x}_i(t) = -0.1 x_i(t) + \sum_{j=1}^{K} rac{C_{ij} x_j(t-\Delta)}{1 + x_j(t-\Delta)^{10}} \quad ext{for} \quad i = 1, \dots, K$$

K = 5

< ∃⇒

Mackey-Glass,
$$C = 0.2$$

 $\Delta = 20$

<2 € ▶ 12

Mackey-Glass,
$$C = 0.2$$

 $\Delta = 20$

 $\Delta = 100$

Image: A math a math

< 注 → 注

→ ∃ →

Dimitris Kugiumtzis Connectivity networks and applications

Network indices

Symbol	Description				
degm	degree distribution, m=mean,std,skewness,kurtosis				
strm	strength distribution, m=mean,std,skewness,kurtosis				
TrR_k	transitivity ratio, k=binary undirected (bu), binary directed (bd)				
	weighted directed (wd)				
$EigC^m$	eigenvector centrality distribution, m=mean,std				
λ_k	characteristic path length, k=bd,wd				
GE_k	global efficiency, k=bd,wd				
ϵ_k^m	eccentricity distribution, m=mean,std and k=bd,wd				
radk	radius, k=bd,wd				
d_k	diameter, k=bd,wd				
C_k^m	clustering coefficient distribution,m=mean,std and k=bd,wd				
S_k^m	betweenness centrality distribution,m=mean,std and k=bd,wd				
$e - g_k^m$	edge betweenness centrality distribution,m=mean,std and k=bd,wd				
LE_k^m	local efficiency distribution,m=mean,std and k=bd,wd				
3motif(i)	i th motif of 3 nodes, i=1,2,13				
modul(i)	modularity for i modules, i=2,3,5				
$r_{deg}(i, j)$	assortativity coefficient in terms of the degree, i=in,out and j=in,out or i,j=und				
$r_{str}(i, j)$	assortativity coefficient in terms of the strength, i=in,out and j=in,out or i,j=und				
Ptop	Rent exponent: topological				
p_{ph}	Rent exponent: physical				
Pee	Rent exponent: efficient embedding				
SW_k	small-worldness, k=bd,wd				
kcs	k-core size, k=90-percentile of degree distribution				
SCS	s-core size, k=90-percentile of strength distribution				
ϕ_k	Rich club coefficient, k=bd,wd				
cycprob ₁	fraction of 3-cycles out of 3-paths				
cycprob ₂	probability: non-cyclic 2-path extend to 3-cycle				

- coupled Mackey-Glass system, $K=25, \Delta=100, C=0.2$
- Three network types: Random (RAND), Small-World (SW), Scale-Free(SCF)
- Different realizations of the same network type

Mutivariate time series record with structural changes

- coupled Mackey-Glass system, $K=25, \Delta=100, C=0.2$
- Three network types: Random (RAND), Small-World (SW), Scale-Free(SCF)
- Different realizations of the same network type

Mutivariate time series record with structural changes

Estimation of networks with PMIME at sliding windows

- coupled Mackey-Glass system, ${\cal K}=25,~\Delta=100,~{\cal C}=0.2$
- Three network types: Random (RAND), Small-World (SW), Scale-Free(SCF)
- Different realizations of the same network type

Mutivariate time series record with structural changes

Estimation of networks with PMIME at sliding windows

Estimation of network characteristics on the PMIME networks

- coupled Mackey-Glass system, $K=25, \Delta=100, C=0.2$
- Three network types: Random (RAND), Small-World (SW), Scale-Free(SCF)
- Different realizations of the same network type

Mutivariate time series record with structural changes

Estimation of networks with PMIME at sliding windows

Estimation of network characteristics on the PMIME networks

Structural change detection [Slow] [Middle] [Fast] [Very fast]

・ 同 ト ・ ヨ ト ・ ヨ ト …

Practical problems to overcome:

- Application on small time windows \Rightarrow limited data size
- scalp EEG ⇒ many channels ⇒ many variables in Z to account for
- Brain system is complex: the connectivity measure has to deal (high dimensionality
 - with { high dimensionality nonlinearity? sensitivity on free parameters?

向下 イヨト イヨト

Analysis of epileptic EEG

Scalp EEG from Rikshospital, Norway. Use 8 channels: C3, C4, T7, T8, F3, F4, P3, P4

Subtract the average value of the four neighboring channels.

Non-overlapping segments of 20 sec.

TE for $m_x = m_y = 5$ MIME for $L_x = L_y = 15$

Recording: 19h 45min of scalp multi-channel EEG. No 1 No 2 No 3 No 4 No 5 No 6 No 7

Dimitris Kugiumtzis

Connectivity networks and applications

EEG, cumulative driving

Cumulative driving for channel *i* (e.g., $\sum_{i \neq i} TE_{i \rightarrow j}$)

Э

イロン イヨン イヨン イヨン

EEG, cumulative response

Cumulative response for channel *i*: (e.g., $\sum_{i \neq i} TE_{j \rightarrow i}$)

<ロ> (四) (四) (三) (三) (三)

Recording: 4h 35min of scalp multi-channel EEG. No 1 No 2

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

臣

EEG, cumulative driving

Э

・ロ・ ・ 日 ・ ・ ヨ ・ ・ 日 ・

EEG, cumulative response

Cumulative response, GCIN -2 time (min Cumulative response, CGCIN hallowed the second and the second -2 time (min)

Э

イロン 不同 とくほと 不良 とう

Transcranial Magnetic Stimulation (TMS)

イロト イヨト イヨト イヨト

臣

EEG - TMS: brain connectivity analysis

Many issues related to processing of EEG-TMS data:

- Rejection of corrupted EEG channels [by visual inspection, initially 60 channels]
- Elimination of TMS artifact [forward-backward nearest neighbor smoothing]
- 8 Removal of artifacts [ICA]
- Filtering [FIR, lowpass 0.3Hz, highpass 40Hz, order 60]
- **o** Re-referencing [from mastoid to infinite reference, REST]
- Sampling frequency [downsampling from 1450 Hz to 200 Hz]

TMS was administered in blocks of 5 at frequency 3Hz after epileptic discharges were visually detected.

Computation of PMIME was done on sliding windows (length: 2 sec, sliding step: 1 sec).

イロト イポト イヨト イヨト

Connectivity is reduced during ED and is regained by the end of ED

ED no TMS 1 ED no TMS 2

TMS terminates ED and regains connectivity ED with TMS 1 ED with TMS 2

・ 同 ト ・ ヨ ト ・ ヨ ト …

Э

Network measure: Average Strength

Dimitris Kugiumtzis

Connectivity networks and applications

Network measure: Average Strength

Strength of connection is reduced at ED and regained by TMS

Dimitris Kugiumtzis

Connectivity networks and applications

5 top stocks for each of the 8 sectors of the US economy Daily closing index in the period 30/12/2002 - 28/9/2012

Sector	Symbol	Name	Sector	Symbol	Name
basic materials	XOM CVX SLB COP OXY	Exxon Mobil Corp Chevron corporation Schlumberger N.V. ConocoPhillips Co. Occidental Petrol	Healthcare	JNJ PFE MRK BMY AMGN	Johnson & Johnson Pfizer Inc. Merck & Company Bristol-Myers Amgen Inc.
Conglomerate	es UTX MMM CAT DOW MGT	United Technological 3M Caterpillar Inc. Dow Chemical Company MGT Capital Investments	Industrials	GE HON <mark>CAT</mark> EMR LMT	General Electric Honeywell <mark>Caterpillar Inc.</mark> Emerson Lockheed Martin
Consumer	PG KO PM PEP MO	Proctor & Gamble Coca Cola Phillip Morris Int Pepsico Inc. Altria Group Inc.	Services	WMT AMZN DIS HD CMCSA	Wal-Mart Stores Amazon.com Walt Disney Company Home Depot Comcast Corporation
Financials	BRK-B WFC JPM C BAC	Berkshire Hathaway Wells Fargo JP Morgan Chase Citigroup Bank of America	Technology	AAPL GOOG MSFT IBM T	Apple Inc. Google Microsoft IBM AT&T

Excluded:

CAT (Caterpillar Inc.): doubled (Conglomerates and Industrials) PM (Phillip Morris Int): index starts 31/3/2008 GOOG (Google): index starts 19/8/2004

Structural change in 2008, e.g. change point on 22/2/2008 [Dehling et al, 2013]

-≣->

Structural change in 2008, e.g. change point on 22/2/2008 [Dehling et al, 2013]

causality measure computed on log-returns at windows of 300 days, sliding step 100 days

A (10) > (10) =

Network from CGCI(m = 5)

In-Strength

In-Out-Strength

Out-Strength

Average strength

Dimitris Kugiumtzis

Connectivity networks and applications

In-Strength

In-Out-Strength

Out-Strength

SecStocks37n300s100PMIMEL5T1par5 Out Strength

Average strength

Dimitris Kugiumtzis

Connectivity networks and applications

Average strength of PMIME / CGCI

・ロト ・日ト ・ヨト ・ヨト

臣

Average strength of PMIME / CGCI

I Average strength of autocorrelation

< (F) > < 3

< ∃⇒

Average strength of PMIME / CGCI

I Average strength of autocorrelation

Average strength of cross-correlation

Average strength of PMIME / CGCI

Average strength of cross-correlation

0.1

Connectivity networks and applications

Average strength of autocorrelation

Average strength of partial correlation

Dimitris Kugiumtzis

Ð,

• Granger causality measures can capture the inter-dependence structure of a multivariate complex system / stochastic process.

< ∃⇒

• Granger causality measures can capture the inter-dependence structure of a multivariate complex system / stochastic process.

• Granger causality measures are good candidates to detect structural changes.

• Granger causality measures can capture the inter-dependence structure of a multivariate complex system / stochastic process.

- Granger causality measures are good candidates to detect structural changes.
- Many measures of causality:

• Granger causality measures can capture the inter-dependence structure of a multivariate complex system / stochastic process.

- Granger causality measures are good candidates to detect structural changes.
- Many measures of causality:

best: these that can capture also nonlinear and direct causal effects at the presence of many variables...

• Granger causality measures can capture the inter-dependence structure of a multivariate complex system / stochastic process.

- Granger causality measures are good candidates to detect structural changes.
- Many measures of causality:

best: these that can capture also nonlinear and direct causal effects at the presence of many variables... but practically hard to estimate reliably.

• Granger causality measures can capture the inter-dependence structure of a multivariate complex system / stochastic process.

- Granger causality measures are good candidates to detect structural changes.
- Many measures of causality:

best: these that can capture also nonlinear and direct causal effects at the presence of many variables... but practically hard to estimate reliably.

- More advanced measures (nonlinear, direct effects) involve more (and depend more on) free parameters.
- Harder to establish statistical significance of the measures when many variables are present (many nodes in the network). Correction for multiple testing requires many many surrogates.
- Statistical accuracy of the direct causality measures decreases with the number of confounding variables.

Brandt PT & Williams JT (2007) Multiple Time Series Models, Sage Publications

Dehling H, Vogel D, Wendler M, Wied D (2013) "An efficient and robust test for a change-point in correlation, arXiv:1203.4871

Kimiskidis V K, Kugiumtzis D, Papagiannopoulos S, Vlaikidis N (2013) "Transcranial Magnetic Stimulation (TMS) Modulates Epileptiform Discharges in Patients with Frontal Lobe Epilepsy: a Preliminary EEGTMS Study", International Journal of Neural Systems, 23, 1250035

Kraskov A, Stögbauer H & Grassberger P (2004) "Estimating Mutual Information", *Physical Review E*, 69(6): 066138

Kugiumtzis D (2013) "Direct Coupling Information Measure from Non-uniform Embedding", *Physical Review E*, 87: 062918

Papana A, Kugiumtzis D & Larsson PG (2011) "Reducing the bias of causality measures", *Physical Review E*, 83: 036207

Papana A, Kugiumtzis D & Larsson PG (2012) "Detection of direct causal effects and application in the analysis of electroencephalograms from patients with epilepsy", *International Journal of Bifurcation and Chaos*, to be published

Schreiber T (2000) "Measuring Information Transfer", Physical Review Letters, 85(2): 461-464

Vlachos I & Kugiumtzis D (2010) "Non-uniform state space reconstruction and coupling detection", *Physical Review E*, 82: 016207

イロン イヨン イヨン イヨン

크