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Electroencephalogram (EEG)

http://en.wikipedia.org/wiki/File:EEG cap.jpg
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(auto)correlation r(Xt ;Xt−τ )

Are Xt and Xt−1 linearly correlated? r(Xt ;Xt−1) 6= 0?

Are Xt and Xt−2 linearly correlated? r(Xt ;Xt−2) 6= 0?
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(auto)correlation r(Xt ;Xt−τ )

Are Xt and Xt−1 linearly correlated? r(Xt ;Xt−1) 6= 0? Yes

Are Xt and Xt−2 linearly correlated? r(Xt ;Xt−2) 6= 0? Yes
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Are Xt and Xt−2 directly linearly correlated?
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Are Xt and Xt−2 directly linearly correlated?

Are Xt and Xt−2 linearly correlated given Xt−1?

r(Xt ;Xt−2|Xt−1) 6= 0?
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Are Xt and Xt−2 directly linearly correlated?

Are Xt and Xt−2 linearly correlated given Xt−1?

r(Xt ;Xt−2|Xt−1) 6= 0? No
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Are Xt and Xt−2 directly linearly correlated?

Are Xt and Xt−2 linearly correlated given Xt−1?

r(Xt ;Xt−2|Xt−1) 6= 0? No

Are Xt and Xt−2 linearly or/and nonlinearly correlated given Xt−1?

I (Xt ;Xt−2|Xt−1) 6= 0?
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correlation
?

r(Xt ;Yt)
Xt Yt
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r(Xt ;Yt+1) or better r(Xt ;Yt+1|Yt)
Xt Yt
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Correlation measures
X ∼ Y X ∼ Y |Z

Linear - Cross-Correlation
- Coherence

- Partial Correlation
- Partial Coherence

Nonlinear - Phase Synchronization
- Cross Mutual Information

?
?

Granger Causality measures
X → Y X → Y |Z

Linear - Granger Causality Index
(GCI)
- Directed Coherence (DC)
- Directed Transfer Function
(DTF)

- Conditional (Partial) GCI
(CGCI)
- Partial DC (PDC)
- direct DTF (dDTF)

Nonlinear - Directionality Index
- Mean Conditional Recurrence
- Transfer entropy (TE)
- Mutual Information from
Mixed Embedding (MIME)

?
?
- Partial TE (PTE)
- Partial MIME (PMIME)
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Correlation measures

Bivariate time series {xt , yt}nt=1

Linear correlation measures:

Estimate of cross-covariance

cXY (τ) = γ̂XY (τ) =
1

n − τ

n−τ∑
t=1

(xt − x̄)(yt+τ − ȳ)

x̄ and ȳ are sample means.

Estimate of cross-correlation:

rXY (τ) = r(Xt ,Yt+τ ) = ρ̂XY (τ) =
cXY (τ)

cXY (0)
=

cXY (τ)

sX sY

sX and sY are sample standard deviations.

|rXY (τ)| ≤ 1

rXY (τ) = rYX (−τ) but rXY (τ) 6= rXY (−τ)
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Noninear correlation measures:
Entropy: information from each sample of X (assume proper
discretization of X )

H(X ) =
∑
x

pX (x) log pX (x)

Mutual information: information for Y knowing X and vice versa

I (X ,Y ) = H(X )+H(Y )−H(X ,Y ) =
∑
x ,y

pXY (x , y) log
pXY (x , y)

pX (x)pY (y)

For X → Xt and Y → Yt+τ ,
cross-delayed mutual information:

IXY (τ) = I (Xt ,Yt+τ ) =
∑

xt ,yt+τ

pXtYt+τ (xt , yt+τ ) log
pXtYt+τ (xt , yt+τ )

pXt (xt)pYt+τ (yt+τ )

To compute IXY (τ) make a partition of {xt}nt=1, a partition of
{yt}nt=1 and compute probabilities for each cell from the relative
frequency.
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rXY (0) 6= 0:

=⇒ (linear) correlation of xt and yt

=⇒ systems X and Y are correlated, X ∼ Y

rXY (τ) 6= 0:

=⇒ (linear) correlation of xt and yt+τ

=⇒ X effects the future of Y

=⇒ X → Y

rXY (−τ) 6= 0 =⇒ Y → X

Thus rXY (τ) = r(Xt ,Yt+τ ) and IXY (τ) = I (Xt ,Yt+τ ) indicate the
direction of interaction.

Can they also be used as causality measures?

How can we approximate: r(Xt ;Yt+1|Yt), r(Xt ;Yt+1|Yt)?

...or even r(Xt ;Yt+1|Yt ,Zt), r(Xt ;Yt+1|Yt ,Zt)?

Dimitris Kugiumtzis Connectivity networks and applications



rXY (0) 6= 0:

=⇒ (linear) correlation of xt and yt

=⇒ systems X and Y are correlated, X ∼ Y

rXY (τ) 6= 0:

=⇒ (linear) correlation of xt and yt+τ

=⇒ X effects the future of Y

=⇒ X → Y

rXY (−τ) 6= 0 =⇒ Y → X

Thus rXY (τ) = r(Xt ,Yt+τ ) and IXY (τ) = I (Xt ,Yt+τ ) indicate the
direction of interaction.

Can they also be used as causality measures?

How can we approximate: r(Xt ;Yt+1|Yt), r(Xt ;Yt+1|Yt)?

...or even r(Xt ;Yt+1|Yt ,Zt), r(Xt ;Yt+1|Yt ,Zt)?

Dimitris Kugiumtzis Connectivity networks and applications



rXY (0) 6= 0:

=⇒ (linear) correlation of xt and yt

=⇒ systems X and Y are correlated, X ∼ Y

rXY (τ) 6= 0:

=⇒ (linear) correlation of xt and yt+τ

=⇒ X effects the future of Y

=⇒ X → Y

rXY (−τ) 6= 0 =⇒ Y → X

Thus rXY (τ) = r(Xt ,Yt+τ ) and IXY (τ) = I (Xt ,Yt+τ ) indicate the
direction of interaction.

Can they also be used as causality measures?

How can we approximate: r(Xt ;Yt+1|Yt), r(Xt ;Yt+1|Yt)?

...or even r(Xt ;Yt+1|Yt ,Zt), r(Xt ;Yt+1|Yt ,Zt)?

Dimitris Kugiumtzis Connectivity networks and applications



rXY (0) 6= 0:

=⇒ (linear) correlation of xt and yt

=⇒ systems X and Y are correlated, X ∼ Y

rXY (τ) 6= 0:

=⇒ (linear) correlation of xt and yt+τ

=⇒ X effects the future of Y

=⇒ X → Y

rXY (−τ) 6= 0 =⇒ Y → X

Thus rXY (τ) = r(Xt ,Yt+τ ) and IXY (τ) = I (Xt ,Yt+τ ) indicate the
direction of interaction.

Can they also be used as causality measures?

How can we approximate: r(Xt ;Yt+1|Yt), r(Xt ;Yt+1|Yt)?

...or even r(Xt ;Yt+1|Yt ,Zt), r(Xt ;Yt+1|Yt ,Zt)?

Dimitris Kugiumtzis Connectivity networks and applications



rXY (0) 6= 0:

=⇒ (linear) correlation of xt and yt

=⇒ systems X and Y are correlated, X ∼ Y

rXY (τ) 6= 0:

=⇒ (linear) correlation of xt and yt+τ

=⇒ X effects the future of Y

=⇒ X → Y

rXY (−τ) 6= 0 =⇒ Y → X

Thus rXY (τ) = r(Xt ,Yt+τ ) and IXY (τ) = I (Xt ,Yt+τ ) indicate the
direction of interaction.

Can they also be used as causality measures?

How can we approximate: r(Xt ;Yt+1|Yt), r(Xt ;Yt+1|Yt)?

...or even r(Xt ;Yt+1|Yt ,Zt), r(Xt ;Yt+1|Yt ,Zt)?

Dimitris Kugiumtzis Connectivity networks and applications



rXY (0) 6= 0:

=⇒ (linear) correlation of xt and yt

=⇒ systems X and Y are correlated, X ∼ Y

rXY (τ) 6= 0:

=⇒ (linear) correlation of xt and yt+τ

=⇒ X effects the future of Y

=⇒ X → Y

rXY (−τ) 6= 0 =⇒ Y → X

Thus rXY (τ) = r(Xt ,Yt+τ ) and IXY (τ) = I (Xt ,Yt+τ ) indicate the
direction of interaction.

Can they also be used as causality measures?

How can we approximate: r(Xt ;Yt+1|Yt), r(Xt ;Yt+1|Yt)?

...or even r(Xt ;Yt+1|Yt ,Zt), r(Xt ;Yt+1|Yt ,Zt)?

Dimitris Kugiumtzis Connectivity networks and applications



Example: Returns for USA, UnitedKingdom, Greece and Australia.

returns:
xt = log(yt)− log(yt−1)

X :AUS, Y :GRE

rXY (0) = 0.58

�rXY (−1) = 0.19

-rXY (1) = 0.02

Is the measure significant?
Can I draw a link? (directed / undirected)
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Significance test for a correlation / causality measure q,
H0 : q = 0 H1 : q 6= 0

Randomization test

1 Generate M resampled (surrogate) time series, each by
shifting the original observations with a random time step w :
original time series: {xt} = {x1, x2, . . . , xn}
i-th surrogate time series:
{x∗it } = {xw+1, xw+2, . . . , xn, x1, . . . , xw−1, xw}

2 Compute the statistic q on the original pair, q0, and on the M
surrogate pairs, q1, . . . , qM ,
e.g. q0 ≡ rXY (τ) = Corr(xt , yt+τ ) and qi ≡ Corr(x∗it , y

∗i
t+τ )

3 If q0 is at the tails of the empirical null distribution formed by
q1, . . . , qM , reject H0.
We use rank ordering: for a two-sided test, the p-value of the
test is [Yu and Huang, 2001]

2
rq0−0.326

M+1+0.348 if rq0 <
M+1

2

2(1− rq0−0.326
M+1+0.348 ) if rq0 ≥ M+1

2
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Example: Returns for USA, UnitedKingdom, Greece and Australia.
Correlation matrix for delay 1, rXY (1)

R(1) =


0.382 0.333 0.596

0.049 0.039 0.303
0.096 0.001 0.190
0.031 −0.001 −0.021


Randomization significance test for rXY (1) (M = 1000)

Matrix of p-values

P(R(1)) =


0.0013 0.0013 0.0033

0.0732 0.1991 0.0013
0.0073 0.8901 0.0033
0.2450 0.9760 0.4028


Adjacency matrix

A =


1 1 1

0 0 1
1 0 1
0 0 0


For significance level, say α = 0.05, there may be p < α more
often than it should be due to multiple testing.
Correction with e.g. False Discovery Rate
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Network for World Financial Markets

index market
1 Austria
2 Belgium
3 Denmark
4 Finland
5 France
6 Germany
7 Greece
8 Ireland
9 Italy
10 Netherlands
11 Norway
12 Portugal
13 Spain
14 Sweden
15 Switzerland
16 UnitedKingdom
17 USA
18 Canada
19 Australia
20 HongKong
21 Japan
22 NewZealand
23 Singapore

rXY (0) Adjacency matrix rXY (1)

IXY (0) Adjacency matrix IXY (1)
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Correlation network, nodes: 23 financial markets, directed links: rXY (1)
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rXY (0) 6= 0:

=⇒ (linear) correlation of xt and yt

=⇒ systems X and Y are correlated, X ∼ Y

rXY (τ) 6= 0:

=⇒ (linear) correlation of xt and yt+τ

=⇒ X effects the future of Y

=⇒ X → Y

rXY (−τ) 6= 0 =⇒ Y → X

Thus rXY (τ) = r(Xt ,Yt+τ ) and IXY (τ) = I (Xt ,Yt+τ ) indicate the
direction of interaction.

Can they also be used as causality measures?

How can we approximate: r(Xt ;Yt+1|Yt), r(Xt ;Yt+1|Yt)?

...or even r(Xt ;Yt+1|Yt ,Zt), r(Xt ;Yt+1|Yt ,Zt)?
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Linear causality measures (direct and indirect)

Idea of Granger causality X → Y : [Brandt & Williams, 2007, Chp 2]

predict Y better when including X in the regression model.

Measure 1a: Granger Causality Index (GCI)

Bivariate time series {xt , yt}nt=1

driving system: X , response system: Y

Model 1 (restricted, R, X absent in the model):

yt =

p∑
i=1

aiyt−i + eR,t

Model 2 (unrestricted, U, X present in the model):

yt =

p∑
i=1

aiyt−i +

p∑
i=1

bixt−i + eU,t

GCIX→Y = ln
Var(êR,t)

Var(êU,t)
GCIX→Y > 0⇒ X → Y holds
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Parametric significance test for GCI

GCIX→Y > 0 ? ⇒ Significance test

If X does not Granger causes Y then the contribution of X -lags in
the unrestricted model should be insignificant ⇒

the terms of X should be insignificant

H0: bi = 0, for all i = 1, . . . , p
H1: bi 6= 0, for any of i = 1, . . . , p

Snedecor-Fisher test (F-test):

F =
(SSER − SSEU)/p

SSEU/ndf

SSE: sum of squared errors
ndf: number of degrees of freedoms, ndf = (n − p)− 2p,
n − p: number of equations,
2p: number of coefficients in the U-model.
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Linear causality measures (direct and indirect)

Measure 1b: Conditional Granger Causality Index (CGCI)

K time series {xt , yt}nt=1 and {zt}nt=1 = {z1,t , z2,t , . . . , zK−2,t}nt=1

driving system: X , response system: Y ,
conditioning on system Z , Z = {Z1,Z2, . . . ,ZK−2}

Model 1 (restricted, R, X absent in the model):

yt =

p∑
i=1

aiyt−i +

p∑
i=1

Aizt−i + eR,t

Model 2 (unrestricted, U, X present in the model):

yt =

p∑
i=1

aiyt−i +

p∑
i=1

bixt−i +

p∑
i=1

Aizt−i + eU,t

CGCIX→Y |Z = ln
Var(êR,t)

Var(êU,t)
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Parametric significance test for CGCI

CGCIX→Y |Z > 0 ? ⇒ Significance test as for GCI

H0: bi = 0, for all i = 1, . . . , p
H1: bi 6= 0, for any of i = 1, . . . , p

F =
(SSER − SSEU)/p

SSEU/ndf

ndf = (n − p)− Kp,
n − p: number of equations,
Kp: number of coefficients in the U-model.
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Model order and embedding parameters

VAR model for Y

yt =

p∑
i=1

aiyt−i +

p∑
i=1

bixt−i + eU,t

yt+1 =

p∑
i=1

aiyt−i+1 +

p∑
i=1

bixt−i+1 + eU,t+1

yt+1 is given in terms of yt = [yt , yt−1, . . . , yt−p+1] and
xt = [xt , xt−1, . . . , xt−p+1], yt+1 = F(yt , xt) + et+1

Let the lag step be τ ≥ 1 ⇒ yt = [yt , yt−τ , . . . , yt−(p−1)τ ]:

τ , p: embedding parameters (generally different for X and Y )

State space reconstruction:
xt = [xt , xt−τx , . . . , xt−(mx−1)τx ]′, embedding parameters: mx ,τx
yt = [yt , yt−τy , . . . , yt−(my−1)τy ]′, embedding parameters: my ,τy

yt+1: future state of Y
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Nonlinear causality measures (direct and indirect)

(Shannon) Entropy: H(X ) = −
∑

x p(x) log p(x)
Mutual Information of X and Y :
I (X ;Y ) = H(X ) + H(Y )− H(X ,Y )

Transfer Entropy (TE) [Schreiber, 2000]

Measure the effect of X on Y at one time step ahead, accounting
(conditioning) for the effect from its own current state

TEX→Y = I (yt+1; xt |yt)
= H(xt , yt)− H(yt+1, xt , yt) + H(yt+1, yt)− H(yt)

=
∑

p(yt+1, xt , yt) log
p(yt+1|xt , yt)
p(yt+1|yt)

Joint entropies (and distributions) can have high dimension!

Entropy estimates from nearest neighbors [Kraskov et al, 2004]

TE is equivalent to GCI when the stochastic process of (X ,Y ) is
Gaussian [Barnett et al, PRE 2009]
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Entropy estimates from nearest neighbors [Kraskov et al, 2004]

What are the appropriate embedding parameters?
Example: Unidirectionally coupled Mackey-Glass system

ẋ(t) = 0.2x(t−∆x )
1+x(t−∆x )10 − 0.1x(t)

ẏ(t) =
0.2y(t−∆y )

1+y(t−∆y )10 − 0.1y(t) + C x(t−∆x )
1+x(t−∆x )10 .
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Nonlinear causality measures (direct)

driving system: X , response system: Y ,
conditioning on system Z , Z = {Z1,Z2, . . . ,ZK−2}
join all K − 2 z-reconstructed vectors: Zt = [z1,t , . . . , zK−2,t ]

Partial Transfer Entropy (PTE) [Vakorin et al, 2009; Papana et al, 2012]

Measure the effect of X on Y at T times ahead, accounting
(conditioning) for the effect from its own current state and the
current state of the other variables except X .

PTEX→Y |Z = I (yt+1; xt |yt ,Zt)

= H(xt , yt |Zt)− H(yt+1, xt , yt |Zt) + H(yt+1, yt |Zt)− H(yt |Zt)

Joint entropies (and distributions) can have very high dimension!
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Example: Global financial market

Data source: https://www.msci.com/market-cap-weighted-indexes Network ?
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Example: Brain dynamical system

Data source: https://physionet.org/pn6/chbmit/chb08/ Network ?
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How to assess the presence of a connection?

Three possible ways to convert a network of weighted connections
(the Granger causality measure) to a network of binary
connections:

1 Threshold on the measure magnitude, q(i → j) > thr.
2 Threshold on the network density, only the d% largest

q(i → j).
3 Significance test on each q(i → j). Threshold, e.g. α = 0.05

on the p-value of the test.
Parametric or resampling test (resampling test for a nonlinear
causality measure).
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Example: coupled Henon maps

x1,t+1 = 1.4− x2
1,t + 0.3x1,t−1

xi,t+1 = 1.4− (0.5C (xi−1,t + xi+1,t) + (1− C )xi,t)
2 + 0.3xi,t−1

xK ,t+1 = 1.4− x2
K ,t + 0.3xK ,t−1

C : coupling strength [Politi & Torcini, 1992]

Network structure
for K = 5
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Example, TE, K = 5
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Example, TE, K = 10
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Example, TE, K = 20
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Example, PTE, K = 4
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Example, PTE, K = 8
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Mutual Information from Mixed Embedding - 1

MIME applies dimension reduction and then uses conditional
mutual information. The idea: [Vlachos & Kugiumtzis, PRE, 2010]

1 Find a subset wt of lagged variables from X and Y that
explains best the future of Y , yt+1.

2 Quantify the information on Y ahead that is explained by the
X -components in this subset.

If there are no components of X in wt , then MIME = 0.
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Mutual Information from Mixed Embedding - 2

wt = (xt−τx1 , xt−τx2 , . . . , xt−τxmx︸ ︷︷ ︸
wx
t

, yt−τy1 , yt−τy2 , . . . , yt−τymy︸ ︷︷ ︸
wy
t

)

Measure 3a: The causality measure MIME

RX→Y =
I (yTt ; wx

t | w
y
t )

I (yTt ; wt)

RX→Y : information of Y explained only by X -components of
the embedding vectors, normalized against the total mutual
information (in order to give a value between 0 and 1).

If wt contains no components from X , then RX→Y = 0 and X
has no effect on the future of Y .
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Example: Embedding from X and Z variables of the chaotic
Lorenz system to explain X , Wt = {xt , . . . , xt−24, zt , . . . , zt−24}
yTt = (xt+1, . . . , xt+5), N = 10000, sampling time τs = 0.05

xt = arg max
{
I
(
yT
t ;wt

)}
,

wt ∈Wt
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Embedding vector:
wt = (xt , zt−1, zt−11)
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Example: Coupled Mackey-Glass system
∆ = 17, 30, 100, N = 4096
yTt = {yt+1, yt+τ1 , yt+τ2}, Lx = Ly = 50
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Partial Mutual Information from Mixed Embedding - 1

driving system: X , response system: Y ,
conditioning on system Z , Z = {Z1,Z2, . . . ,ZK−2}

The same non-uniform embedding scheme for explaining yTt from
vector of lags of all X ,Y ,Z1,Z2, . . . ,ZK−2,

Wt =
{xt , . . . , xt−Lx−1, yt , . . . , yt−Ly−1, z1,t , . . . , z1,t−Lz−1, . . . , zK−2,t−Lz−1}
e.g., for K = 3, X ,Y ,Z :

wt = (xt−τx1 , . . . , xt−τxmx︸ ︷︷ ︸
wx
t

, yt−τy1 , . . . , yt−τymy︸ ︷︷ ︸
wy
t

, zt−τz1 , . . . , zt−τzmz︸ ︷︷ ︸
wz
t

)
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Partial Mutual Information from Mixed Embedding - 2

The non-uniform embedding vector of lags of all X ,Y ,Z for
explaining yt+1:

wt = (xt−τx1 , . . . , xt−τxmx︸ ︷︷ ︸
wx
t

, yt−τy1 , . . . , yt−τymy︸ ︷︷ ︸
wy
t

, zt−τz1 , . . . , zt−τzmz︸ ︷︷ ︸
wz
t

)

The causality measure PMIME

RX→Y |Z =
I (yt+1; wx

t | w
y
t ,w

Z
t )

I (yt+1; wt)

RX→Y |Z : information on the future of Y explained only by
X -components of the embedding vector (given the
components of Y and Z ), normalized with the mutual
information of the future of Y and the embedding vector.

If wZ
t = ∅, then RX→Y |Z = RX→Y .

If wt contains no components from X , then RX→Y |Z = 0 and
X has no direct effect on the future of Y .
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Partial Mutual Information from Mixed Embedding - 3

Three main advantages of PMIME

RX→Y |Z = 0 when no significant causality is present, and
RX→Y |Z > 0 when it is present
[no significance test, no issues with multiple testing!]

mixed embedding for all variables is formed as part of the
measure [it does not require the determination of embedding
parameters for each variable]

inclusion of more confounding variables only slows the
computation and has no effect on statistical accuracy
[no “curse of dimensionality” for any dimension of Z ,
only slow computation time]

⇒ good candidate for causality analysis with many variables
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Example: linear coupled system

K = 5 linear Vector Autoregressive process, VAR(4) in 5 variables

x1,t = 0.4x1,t−1 − 0.5x1,t−2 + 0.4x5,t−1 + e1,t

x2,t = 0.4x2,t−1 − 0.3x1,t−4 + 0.4x5,t−2 + e2,t

x3,t = 0.5x3,t−1 − 0.7x3,t−2 − 0.3x5,t−3 + e3,t

x4,t = 0.8x4,t−3 + 0.4x1,t−2 + 0.3x2,t−2 + e4,t

x5,t = 0.7x5,t−1 − 0.5x5,t−2 − 0.4x4,t−1 + e5,t

[Schelter et al, 2006]

Network with directed links
Causality matrix
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Linear VAR(4) in 5 variables
n = 1000, p = m = Lx = Ly = 5, T = 1

GCI TE MIME
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Nonlinear stochastic map:

x1,t = 3.4x1,t−1(1− x2
1,t−1)e−x

2
1,t−1 + 0.4e1,t

x2,t = 3.4x2,t−1(1− x2
2,t−1)e−x

2
2,t−1 + 0.5x1,t−1x2,t−1 + 0.4e2,t

x3,t = 3.4x3,t−1(1− x2
3,t−1)e−x

2
3,t−1 + 0.3x2,t−1 + 0.5x2

1,t−1 + 0.4e3,t

n = 512 [Model 7, Gourevich et al, 2006]
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Nonlinear stochastic map
n = 512, p = m = 5, Lx = Ly = 5, T = 1

GCI TE MIME

CGCI PTE PMIME
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K = 5 Henon coupled maps

x1,t+1 = 1.4− x2
1,t + 0.3x1,t−1

xi,t+1 = 1.4− (0.5C (xi−1,t + xi+1,t) + (1− C )xi,t)
2 + 0.3xi,t−1

xK ,t+1 = 1.4− x2
K ,t + 0.3xK ,t−1

coupling strength: C = 0, . . . , 0.9, n = 4096

Network with
directed links

Causality matrix
(not symmetric)
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N = 4096, M = 100 weak coupling C = 0.2
TEX→Y , m = 2

matrix of p-values from the randomization test

p(TEX→Y ) =


0.0133 0.0133 0.2106 0.3093

0.1317 0.0133 0.0133 0.3685
0.7237 0.0133 0.0133 0.7040
0.7632 0.0133 0.0133 0.5264
0.3685 0.4080 0.0133 0.0133
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N = 4096, M = 100
TE for mx = my = 2 and mx = my = 4
MIME for Lx = Ly = 5

C = 0.0
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N = 4096, M = 100
TE for mx = my = 2 and mx = my = 4
MIME for Lx = Ly = 5

C = 0.1
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N = 4096, M = 100
TE for mx = my = 2 and mx = my = 4
MIME for Lx = Ly = 5

C = 0.2
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N = 4096, M = 100
TE for mx = my = 2 and mx = my = 4
MIME for Lx = Ly = 5

C = 0.4
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N = 4096, M = 100
TE for mx = my = 2 and mx = my = 4
MIME for Lx = Ly = 5

C = 0.6
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N = 4096, M = 100
TE for mx = my = 2 and mx = my = 4
MIME for Lx = Ly = 5

C = 0.9

MIME: no false driving detectionDimitris Kugiumtzis Connectivity networks and applications



C = 0.0 n = 1024, p = 5, m = 2, L = 5, T = 1

GCI TE MIME

CGCI PTE PMIME
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C = 0.1 n = 1024, p = 5, m = 2, L = 5, T = 1

GCI TE MIME

CGCI PTE PMIME
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C = 0.2 n = 1024, p = 5, m = 2, L = 5, T = 1

GCI TE MIME

CGCI PTE PMIME
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C = 0.4 n = 1024, p = 5, m = 2, L = 5, T = 1

GCI TE MIME

CGCI PTE PMIME
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C = 0.6 n = 1024, p = 5, m = 2, L = 5, T = 1

GCI TE MIME

CGCI PTE PMIME
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C = 0.7 n = 1024, p = 5, m = 2, L = 5, T = 1

GCI TE MIME

CGCI PTE PMIME
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C = 0.8 n = 1024, p = 5, m = 2, L = 5, T = 1

GCI TE MIME

CGCI PTE PMIME
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C = 0.9 n = 1024, p = 5, m = 2, L = 5, T = 1

GCI TE MIME

CGCI PTE PMIME
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Example: coupled Mackey-Glass

Coupled identical Mackey-Glass delayed differential equations

ẋi (t) = −0.1xi (t) +
K∑
j=1

Cijxj(t −∆)

1 + xj(t −∆)10
for i = 1, . . . ,K

K = 5
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Mackey-Glass, C = 0.2

∆ = 20

∆ = 100
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Mackey-Glass, C = 0.2

∆ = 20 ∆ = 100
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Mackey-Glass: true/estimated network [Kugiumtzis and Kimiskidis, IJNS 2015]

K = 5 True from PMIME (∆ = 20) from PMIME (∆ = 100)

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

K = 15 True from PMIME (∆ = 20) from PMIME (∆ = 100)

1 

2 

3 

4 5 
6 

7 

8 

9 

10

11
12 13

14

15

1 

2 

3 

4 5 
6 

7 

8 

9 

10

11
12 13

14

15

1 

2 

3 

4 5 
6 

7 

8 

9 

10

11
12 13

14

15

Dimitris Kugiumtzis Connectivity networks and applications



Mackey-Glass: true/estimated network [Kugiumtzis and Kimiskidis, IJNS 2015]

K = 5 True from PMIME (∆ = 20) from PMIME (∆ = 100)
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Network indices
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Simulation: Random, Small-World, Scale-Free networks

Simulation example:

coupled Mackey-Glass system, K = 25, ∆ = 100, C = 0.2

Three network types: Random (RAND), Small-World (SW),
Scale-Free(SCF)

Different realizations of the same network type

Mutivariate time series record with structural changes

Estimation of networks with PMIME at sliding windows

Estimation of network characteristics on the PMIME networks

Structural change detection [Slow]
[Middle]
[Fast]
[Very fast]
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Analysis of EEG

Practical problems to overcome:

Application on small time windows ⇒ limited data size

scalp EEG ⇒ many channels ⇒ many variables in Z to
account for

Brain system is complex: the connectivity measure has to deal

with


high dimensionality
nonlinearity?
sensitivity on free parameters?
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Analysis of epileptic EEG

Scalp EEG from
Rikshospital, Norway.
Use 8 channels:
C3, C4, T7, T8, F3, F4,
P3, P4

Subtract the average
value of the four
neighboring channels.

Non-overlapping
segments of 20 sec.

TE for mx = my = 5
MIME for Lx = Ly = 15

Recording: 19h 45min of scalp multi-channel EEG.
No 1 No 2 No 3 No 4 No 5 No 6 No 7
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EEG, cumulative driving

Cumulative driving for channel i (e.g.,
∑

j 6=i TEi→j)
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EEG, cumulative response

Cumulative response for channel i : (e.g.,
∑

j 6=i TEj→i )
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EEG, driving and response

Recording: 4h 35min of scalp multi-channel EEG.
No 1 No 2
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EEG, cumulative driving
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EEG, cumulative response
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Transcranial Magnetic Stimulation (TMS)
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EEG - TMS: brain connectivity analysis

Many issues related to processing of EEG-TMS data:

1 Rejection of corrupted EEG channels [by visual inspection,
initially 60 channels]

2 Elimination of TMS artifact [forward-backward nearest
neighbor smoothing]

3 Removal of artifacts [ICA]

4 Filtering [FIR, lowpass 0.3Hz, highpass 40Hz, order 60]

5 Re-referencing [from mastoid to infinite reference, REST]

6 Sampling frequency [downsampling from 1450 Hz to 200 Hz]

TMS was administered in blocks of 5 at frequency 3Hz after
epileptic discharges were visually detected.

Computation of PMIME was done on sliding windows
(length: 2 sec, sliding step: 1 sec).
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Connectivity is reduced during ED and is regained by the end of
ED

ED no TMS 1
ED no TMS 2

TMS terminates ED and regains connectivity
ED with TMS 1
ED with TMS 2
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Network measure: Average Strength
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Network measure: Average Strength

Strength of connection is reduced at ED and regained by TMS
after the termination of EDDimitris Kugiumtzis Connectivity networks and applications



Financial markets

5 top stocks for each of the 8 sectors of the US economy
Daily closing index in the period 30/12/2002 - 28/9/2012

Sector Symbol Name

basic
materials

XOM
CVX
SLB
COP
OXY

Exxon Mobil Corp
Chevron corporation
Schlumberger N.V.
ConocoPhillips Co.
Occidental Petrol

Conglomerates UTX
MMM
CAT
DOW
MGT

United Technological
3M
Caterpillar Inc.
Dow Chemical Company
MGT Capital Investments

Consumer PG
KO
PM
PEP
MO

Proctor & Gamble
Coca Cola
Phillip Morris Int
Pepsico Inc.
Altria Group Inc.

Financials BRK-B
WFC
JPM
C
BAC

Berkshire Hathaway
Wells Fargo
JP Morgan Chase
Citigroup
Bank of America

Sector Symbol Name

Healthcare JNJ
PFE
MRK
BMY
AMGN

Johnson & Johnson
Pfizer Inc.
Merck & Company
Bristol-Myers
Amgen Inc.

Industrials GE
HON
CAT
EMR
LMT

General Electric
Honeywell
Caterpillar Inc.
Emerson
Lockheed Martin

Services WMT
AMZN
DIS
HD
CMCSA

Wal-Mart Stores
Amazon.com
Walt Disney Company
Home Depot
Comcast Corporation

Technology AAPL
GOOG
MSFT
IBM
T

Apple Inc.
Google
Microsoft
IBM
AT&T

Excluded:
CAT (Caterpillar Inc.): doubled (Conglomerates and Industrials)
PM (Phillip Morris Int): index starts 31/3/2008
GOOG (Google): index starts 19/8/2004
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Structural change in
2008,
e.g. change point on
22/2/2008
[Dehling et al, 2013]

causality measure
computed on log-returns
at
windows of 300 days,
sliding step 100 days
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Structural change in
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Network from CGCI(m = 5)
In-Strength Out-Strength

In-Out-Strength Average strength
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Network from PMIME
In-Strength Out-Strength

In-Out-Strength Average strength
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Network from PMIME
Average strength of PMIME / CGCI

Average strength of autocorrelation

Average strength of cross-correlation
Average strength of partial
correlation
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Network from PMIME
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Average strength of cross-correlation
Average strength of partial
correlation
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Network from PMIME
Average strength of PMIME / CGCI Average strength of autocorrelation

Average strength of cross-correlation
Average strength of partial
correlation
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Summary

• Granger causality measures can capture the inter-dependence
structure of a multivariate complex system / stochastic process.

• Granger causality measures are good candidates to detect
structural changes.

• Many measures of causality:

best: these that can capture also nonlinear and direct causal
effects at the presence of many variables... but practically hard to
estimate reliably.

1 More advanced measures (nonlinear, direct effects) involve
more (and depend more on) free parameters.

2 Harder to establish statistical significance of the measures
when many variables are present (many nodes in the network).
Correction for multiple testing requires many many surrogates.

3 Statistical accuracy of the direct causality measures decreases
with the number of confounding variables.
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more (and depend more on) free parameters.

2 Harder to establish statistical significance of the measures
when many variables are present (many nodes in the network).
Correction for multiple testing requires many many surrogates.

3 Statistical accuracy of the direct causality measures decreases
with the number of confounding variables.
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