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Spurious cross correlations see [1]: Sec 7.3

Time series of indices (strongly autocorrelated): large cross-correlation

Time series of returns (weakly or no autocorrelated): small cross-correlation

Autocorrelation may cause spurious cross-correlations

=⇒ prewhiten the time series to have zero autocorrelation.
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Example: Two independent AR(1) processes

Time series {xt}nt=1, {yt}nt=1 from two independent AR(1) processes:
Xt = 0.95Xt−1 + εXt Yt = 0.85Yt−1 + εYt

Prewhitening: 1) Fit AR(p) model to {xt}nt=1 and separately to {yt}nt=1

2) Take the residuals {ext }nt=1, {eyt }nt=1.
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Example: Two dependent AR(1) processes - 1
The first AR(1) process drives the second AR(1) process:
Xt = 0.95Xt−1 + εXt Yt = 0.5Xt−1 + 0.85Yt−1 + εYt

After prewhitening, rX ,Y (τ), τ = 1, 2, 3 is still statistically significant
=⇒ Xt is correlated to Yt+τ , but not the opposite
=⇒ direction of correlation =⇒ (Granger) causality
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Example: Two dependent AR(1) processes - 2
The two AR(1) processes are inter-dependent:
Xt = 1.2Xt−1−0.5Yt−1 + εXt Yt = 0.6Xt−1 + 0.3Yt−1 + εYt

After prewhitening, the statistically significant cross-correlations are for
both positive and negative delays
=⇒ Xt is correlated to Yt+|τ | and to Yt−|τ |, =⇒ interdependence
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Dynamic Regression and VAR modeling, order 1

Given time series {xt}nt=1, {yt}nt=1: see [1]: Chp 12, [2]: Chp 7

1. Explain Xt using only past samples from X (without using {yt}nt=1)
AR(1): Xt = φ0 + φ1Xt−1 + εt εt ∼WN(0, σ2ε )

2 Explain Xt using past samples from X and Y .

Dynamic regression model X at one lag for X and Y , DRX (1, 1):
Xt = a1,0 + a1,1Xt−1 + a1,2Yt−1 + ε1,t

Dynamic regression model Y at one lag for X and Y , DRY (1, 1):
Yt = a2,0 + a2,1Xt−1 + a2,2Yt−1 + ε2,t

3. Join the models for X and Y in one, vector variable Xt = [Xt ,Yt ]
′.

Vector autoregressive model for (X ,Y ) of order 1, VAR(1):[
Xt

Yt

]
=

[
a1,0
a2,0

]
+

[
a1,1 a1,2
a2,1 a2,2

] [
Xt−1
Yt−1

]
+

[
ε1,t
ε2,t

]
and in matrix form

Xt = A0 + A1Xt−1 + εt
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Given time series {xt}nt=1, {yt}nt=1: see [1]: Chp 12, [2]: Chp 7

1. Explain Xt using only past samples from X (without using {yt}nt=1)
AR(1): Xt = φ0 + φ1Xt−1 + εt εt ∼WN(0, σ2ε )

2 Explain Xt using past samples from X and Y .

Dynamic regression model X at one lag for X and Y , DRX (1, 1):
Xt = a1,0 + a1,1Xt−1 + a1,2Yt−1 + ε1,t

Dynamic regression model Y at one lag for X and Y , DRY (1, 1):
Yt = a2,0 + a2,1Xt−1 + a2,2Yt−1 + ε2,t

3. Join the models for X and Y in one, vector variable Xt = [Xt ,Yt ]
′.
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Dynamic Regression and VAR modeling, order p

1. AR(p): Xt = φ0 + φ1Xt−1 + · · ·+ φpXt−p + εt

2. DRX (p1, q1) for X :
Xt = a0 + a1,1Xt−1 + ...+ a1,p1Xt−p1 + b1,1Yt−1 + ...+ b1,q1Yt−q1 + ε1,t

and DRY (p2, q2) for Y :
Yt = b0 + a2,1Xt−1 + ...+ a2,p2Xt−p2 + b2,1Yt−1 + ...+ b2,q2Yt−q2 + ε2,t
p1, q1, p2, q2 can all be different

3. VAR(p) model for (X ,Y ):[
Xt

Yt

]
=

[
a0
a0

]
+

[
a1,1 b1,1
a2,1 b2,1

] [
Xt−1
Yt−1

]
+· · ·+

[
a1,p b1,p
a2,p b2,p

] [
Xt−p
Yt−p

]
+

[
ε1,t
ε2,t

]
Xt = A0 + A1Xt−1 + . . .+ ApXt−p + εt
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Examples of DR and VAR
1. Time series {xt}nt=1, {yt}nt=1 from two independent AR(1) processes:

Xt = 0.95Xt−1 + εXt Yt = 0.85Yt−1 + εYt
DR form for (X ,Y ): DRX (1, 0) and DRY (0, 1)

VAR form for (X ,Y ): VAR(1), Xt = A0 + A1Xt−1 + εt ,

A0 = ∅ A1 =

[
0.95 0

0 0.85

]
2. The first AR(1) process drives the second AR(1) process:
Xt = 0.95Xt−1 + εXt Yt = 0.5Xt−1 + 0.85Yt−1 + εYt
DRX (1, 0) and DRY (1, 1)

VAR(1): A1 =

[
0.95 0
0.5 0.85

]
3. The two AR(1) processes are inter-dependent:
Xt = 1.2Xt−1−0.5Yt−1 + εXt Yt = 0.6Xt−1 + 0.3Yt−1 + εYt
DRX (1, 1) and DRY (1, 1)

VAR(1): A1 =

[
1.2 −0.5
0.6 0.3

]
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Nonlinear dynamical systems

see [1]: Chp 11, [2]: Sec 10.3

The DR and VAR models can be extended adding nonlinear terms, e.g.
X 2
t−1 or Xt−1Yt−1.

... such models get “complicated”!!!

They are “complicated” even when there is no random terms εt

=⇒ These are models for nonlinear dynamical systems ... and chaos

Henon map

Xt = 1.4− X 2
t−1 + Yt−1 Yt = 0.3Xt−1

Alternatively, it can be written as
Xt = 1.4− X 2

t−1 + 0.3Xt−2

... a nonlinear AR(2) model.
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=⇒ These are models for nonlinear dynamical systems

... and chaos

Henon map

Xt = 1.4− X 2
t−1 + Yt−1 Yt = 0.3Xt−1

Alternatively, it can be written as
Xt = 1.4− X 2

t−1 + 0.3Xt−2

... a nonlinear AR(2) model.
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Example: Two independent Henon maps, linear measures

Time series {xt}nt=1, {yt}nt=1, n = 300 from two independent Henon maps:
Xt = 1.4− X 2

t−1 + 0.3Xt−2 Yt = 1.4− Y 2
t−1 + 0.3Yt−2

Alternating autocorrelation, zero cross-correlation (correctly!)

After prewhitening, zero autocorrelation, zero cross-correlation

Dimitris Kugiumtzis Analysis of multi-variate time series by means of networks



Example: Two independent Henon maps, linear measures

Time series {xt}nt=1, {yt}nt=1, n = 300 from two independent Henon maps:
Xt = 1.4− X 2

t−1 + 0.3Xt−2 Yt = 1.4− Y 2
t−1 + 0.3Yt−2

Alternating autocorrelation, zero cross-correlation (correctly!)

After prewhitening, zero autocorrelation, zero cross-correlation

Dimitris Kugiumtzis Analysis of multi-variate time series by means of networks



Example: Two independent Henon maps, linear measures

Time series {xt}nt=1, {yt}nt=1, n = 300 from two independent Henon maps:
Xt = 1.4− X 2

t−1 + 0.3Xt−2 Yt = 1.4− Y 2
t−1 + 0.3Yt−2

Alternating autocorrelation, zero cross-correlation (correctly!)

After prewhitening, zero autocorrelation, zero cross-correlation

Dimitris Kugiumtzis Analysis of multi-variate time series by means of networks



Example: Two independent Henon maps, linear measures

Time series {xt}nt=1, {yt}nt=1, n = 300 from two independent Henon maps:
Xt = 1.4− X 2

t−1 + 0.3Xt−2 Yt = 1.4− Y 2
t−1 + 0.3Yt−2

Alternating autocorrelation, zero cross-correlation (correctly!)

After prewhitening, zero autocorrelation, zero cross-correlation

Dimitris Kugiumtzis Analysis of multi-variate time series by means of networks



Example: Two independent Henon maps, linear measures

Time series {xt}nt=1, {yt}nt=1, n = 300 from two independent Henon maps:
Xt = 1.4− X 2

t−1 + 0.3Xt−2 Yt = 1.4− Y 2
t−1 + 0.3Yt−2

Alternating autocorrelation, zero cross-correlation (correctly!)

After prewhitening, zero autocorrelation, zero cross-correlation

Dimitris Kugiumtzis Analysis of multi-variate time series by means of networks



Example: Two independent Henon maps, linear measures

Time series {xt}nt=1, {yt}nt=1, n = 300 from two independent Henon maps:
Xt = 1.4− X 2

t−1 + 0.3Xt−2 Yt = 1.4− Y 2
t−1 + 0.3Yt−2

Alternating autocorrelation, zero cross-correlation (correctly!)

After prewhitening, zero autocorrelation, zero cross-correlation

Dimitris Kugiumtzis Analysis of multi-variate time series by means of networks



Example: Two independent Henon maps, linear measures

Time series {xt}nt=1, {yt}nt=1, n = 300 from two independent Henon maps:
Xt = 1.4− X 2

t−1 + 0.3Xt−2 Yt = 1.4− Y 2
t−1 + 0.3Yt−2

Alternating autocorrelation, zero cross-correlation (correctly!)

After prewhitening, zero autocorrelation, zero cross-correlation

Dimitris Kugiumtzis Analysis of multi-variate time series by means of networks



Example: Two independent Henon maps, linear measures

Time series {xt}nt=1, {yt}nt=1, n = 300 from two independent Henon maps:
Xt = 1.4− X 2

t−1 + 0.3Xt−2 Yt = 1.4− Y 2
t−1 + 0.3Yt−2

Alternating autocorrelation, zero cross-correlation (correctly!)

After prewhitening, zero autocorrelation, zero cross-correlation

Dimitris Kugiumtzis Analysis of multi-variate time series by means of networks



Example: Two independent Henon maps, linear measures

Time series {xt}nt=1, {yt}nt=1, n = 300 from two independent Henon maps:
Xt = 1.4− X 2

t−1 + 0.3Xt−2 Yt = 1.4− Y 2
t−1 + 0.3Yt−2

Alternating autocorrelation, zero cross-correlation (correctly!)

After prewhitening, zero autocorrelation, zero cross-correlation
Dimitris Kugiumtzis Analysis of multi-variate time series by means of networks



Example: Independent Henon maps, nonlinear measures

Delayed mutual
information IX (τ)
and IY (τ) and
cross mutual
information
IXY (τ)

Significant delayed mutual information (for small lags),
Insignificant cross mutual information ?

IX (τ), IY (τ) and
IXY (τ) after
prewhitening

Smaller but still significant delayed mutual information (for small lags),
Insignificant cross mutual information ?
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Example: Two dependent Henon maps - 1

Xt = 1.4− X 2
t−1 + 0.3Xt−2

Yt = 1.4− Y 2
t−1 + 0.3Yt−2 + 0.2(Y 2

t−1 − X 2
t−1)

Alternating autocorrelation, significant cross-correlation at τ = 0

After prewhitening, zero autocorrelation, significant cross-correlation at
τ = 0
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Example: Two dependent Henon maps - 1

Significant IX (τ), IY (τ),
Significant IXY (τ) for τ ≥ 0, Xt is “correlated” to Yt+τ

Significant IX (τ), IY (τ),
Small IXY (τ) for τ ≥ 0, is it significant?
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Example: Two dependent Henon maps - 2

Xt = 1.4− X 2
t−1 + 0.3Xt−2 + 0.14(X 2

t−1 − Y 2
t−1)

Yt = 1.4− Y 2
t−1 + 0.3Yt−2 + 0.08(Y 2

t−1 − X 2
t−1)

Alternating autocorrelation, alternating cross-correlation

After prewhitening, zero autocorrelation, significant cross-correlation at
τ = 0
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Example: Two dependent Henon maps - 2

Significant IX (τ), IY (τ),
Significant IXY (τ) for τ < 0, τ ≥ 0, Xt is “correlated” to Yt+|τ | and Yt−|τ |

Significant IX (τ), IY (τ),
Small IXY (τ) for τ ≥ 0, is it significant?
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Example: Two dependent Henon maps - 2, large n

The same but for n = 4000

Significant IX (τ), IY (τ),
Significant IXY (τ) for τ < 0, τ ≥ 0, Xt is “correlated” to Yt+|τ | and Yt−|τ |

Significant IX (τ), IY (τ),

Small IXY (τ) for τ ≥ 0 ... but also for τ < 0
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Similarity measure for time series network

N variables (nodes) X1,X2, . . . ,XN

and N time series {x1,t , x2,t , . . . , xN,t}nt=1

Candidate similarity measures sim(i , j) for any observed Xi ,Xj (without or
after prewhitening):

1 delayed cross correlation rXiXj
(τ)

2 delayed cross mutual information IXiXj
(τ)

What τ to choose?

1 τ = 0 correlation of Xi ,t and Xj ,t

2 τ > 0 correlation of Xi ,t and Xj ,t+τ , Xi influences the evolution of Xj

3 τ < 0 correlation of Xi ,t and Xj ,t−|τ |, Xj influences the evolution of Xi

Xi influences the evolution of Xj =⇒ Xi (Granger) causes Xj

There are other measures more appropriate to measure Granger causality.
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Example: VAR model, K = 3 X1,t

X2,t

X3,t

 =

 0.95 −0.5 −0.3
0 0.85 0.3
0 0 0.9

 X1,t−1
X2,t−1
X3,t−1

+ · · ·+

 ε1,tε2,t
ε3,t


Xt = [X1,t ,X2,t ,X3,t ]

′ Xt = A1Xt−1 + εt

Cross correlation matrix R(τ)

R(0) =

 −0.00 0.01
−0.00 0.11
0.01 0.11


R(1) =

 0.05 −0.05
−0.39 0.01
−0.40 0.20


R(2) =

 −0.09 0.04
−0.20 −0.03
−0.12 −0.02



Adjacency matrix
threshold ±2/

√
n = ±0.11

A(0) =

 0 0
0 0
0 0


A(1) =

 0 0
1 0
1 1


A(2) =

 0 0
1 0
1 0


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−0.39 0.01
−0.40 0.20


R(2) =

 −0.09 0.04
−0.20 −0.03
−0.12 −0.02



Adjacency matrix
threshold ±2/

√
n = ±0.11

A(0) =

 0 0
0 0
0 0


A(1) =

 0 0
1 0
1 1



A(2) =

 0 0
1 0
1 0


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Example: VAR model, K = 5

Xt = [X1,t ,X2,t ,X3,t ,X4,t ,X5,t ]
′ Xt = A1Xt−1 + εt

A1 =


−0.95 0.2 −0.3 0.4 −0.8

0 −0.2 −0.3 −0.4 0.9
0 0 −0.1 −0.1 0.8
0 0 0 −0.8 −0.9
0 0 0 0 0.8



R(0) =
−0.62 −0.47 0.40 0.07

−0.62 0.58 −0.36 0.05
−0.47 0.58 −0.42 0.04
0.40 −0.36 −0.42 −0.04
0.07 0.05 0.04 −0.04


R(1) =

−0.01 0.03 −0.04 0.02
0.04 −0.12 0.09 0.02
0.29 −0.12 0.20 0.02
−0.53 0.48 0.26 0.06
0.49 −0.53 −0.62 0.65



A(0) =


1 1 1 0

1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0



A(1) =


0 0 0 0

0 1 0 0
1 1 1 0
1 1 1 0
1 1 1 1


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Example: World market indices see [3]: Chp14, [4]

Detect information flow between stock indices

A linear measure: cross correlation for τ = 0 (correlation coefficient)

A nonlinear measure: transfer entropy (in essence it is the conditional
cross mutual information).

Indices correlation coefficient transfer entropy
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Example: World market indices

Draw the network of “outgoing” transfer entropy and “incoming” transfer
entropy.

GSPC (Standard and Poor 500) is the information source of the system

AORD (Australian index) is the information receiver
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