Analysis of multi-variate time series by means of networks

Dimitris Kugiumtzis

January 28, 2015

Spurious cross correlations see [1]: Sec 7.3

Spurious cross correlations see [1]: Sec 7.3

Dimitris Kugiumtzis

Spurious cross correlations see [1]: Sec 7.3

Time series of indices (strongly autocorrelated): large cross-correlation

Spurious cross correlations see [1]: Sec 7.3

Time series of indices (strongly autocorrelated): large cross-correlation Time series of returns (weakly or no autocorrelated): small cross-correlation

Spurious cross correlations see [1]: Sec 7.3

Time series of indices (strongly autocorrelated): large cross-correlation Time series of returns (weakly or no autocorrelated): small cross-correlation

Autocorrelation may cause spurious cross-correlations

Spurious cross correlations see [1]: Sec 7.3

Time series of indices (strongly autocorrelated): large cross-correlation Time series of returns (weakly or no autocorrelated): small cross-correlation

Autocorrelation may cause spurious cross-correlations
\Longrightarrow prewhiten the time series to have zero autocorrelation.

Example: Two independent $A R(1)$ processes

Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$ from two independent $\operatorname{AR}(1)$ processes: $X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.85 Y_{t-1}+\epsilon_{t}^{Y}$

Example: Two independent $A R(1)$ processes

Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$ from two independent $\operatorname{AR}(1)$ processes: $X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.85 Y_{t-1}+\epsilon_{t}^{Y}$

Example: Two independent $A R(1)$ processes

Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$ from two independent $\operatorname{AR}(1)$ processes: $X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.85 Y_{t-1}+\epsilon_{t}^{Y}$

Example: Two independent $A R(1)$ processes

Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$ from two independent $\operatorname{AR}(1)$ processes: $X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.85 Y_{t-1}+\epsilon_{t}^{Y}$

Example: Two independent $A R(1)$ processes

Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$ from two independent $\operatorname{AR}(1)$ processes: $X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.85 Y_{t-1}+\epsilon_{t}^{Y}$

Prewhitening: 1) Fit $\operatorname{AR}(\mathrm{p})$ model to $\left\{x_{t}\right\}_{t=1}^{n}$ and separately to $\left\{y_{t}\right\}_{t=1}^{n}$

Example: Two independent $A R(1)$ processes

Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$ from two independent $\operatorname{AR}(1)$ processes: $X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.85 Y_{t-1}+\epsilon_{t}^{Y}$

Prewhitening: 1) Fit $\operatorname{AR}(\mathrm{p})$ model to $\left\{x_{t}\right\}_{t=1}^{n}$ and separately to $\left\{y_{t}\right\}_{t=1}^{n}$ 2) Take the residuals $\left\{e_{t}^{x}\right\}_{t=1}^{n},\left\{e_{t}^{y}\right\}_{t=1}^{n}$.

Example: Two independent AR(1) processes

Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$ from two independent $\operatorname{AR}(1)$ processes: $X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.85 Y_{t-1}+\epsilon_{t}^{Y}$

Prewhitening: 1) Fit $\operatorname{AR}(\mathrm{p})$ model to $\left\{x_{t}\right\}_{t=1}^{n}$ and separately to $\left\{y_{t}\right\}_{t=1}^{n}$ 2) Take the residuals $\left\{e_{t}^{x}\right\}_{t=1}^{n},\left\{e_{t}^{y}\right\}_{t=1}^{n}$.

Example: Two independent AR(1) processes

Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$ from two independent $\operatorname{AR}(1)$ processes: $X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.85 Y_{t-1}+\epsilon_{t}^{Y}$

Prewhitening: 1) Fit $\operatorname{AR}(\mathrm{p})$ model to $\left\{x_{t}\right\}_{t=1}^{n}$ and separately to $\left\{y_{t}\right\}_{t=1}^{n}$ 2) Take the residuals $\left\{e_{t}^{x}\right\}_{t=1}^{n},\left\{e_{t}^{y}\right\}_{t=1}^{n}$.

Example: Two independent AR(1) processes

Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$ from two independent $\operatorname{AR}(1)$ processes: $X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.85 Y_{t-1}+\epsilon_{t}^{Y}$

Prewhitening: 1) Fit $\operatorname{AR}(\mathrm{p})$ model to $\left\{x_{t}\right\}_{t=1}^{n}$ and separately to $\left\{y_{t}\right\}_{t=1}^{n}$ 2) Take the residuals $\left\{e_{t}^{x}\right\}_{t=1}^{n},\left\{e_{t}^{y}\right\}_{t=1}^{n}$.

Example: Two dependent AR(1) processes - 1

The first $\mathrm{AR}(1)$ process drives the second $\mathrm{AR}(1)$ process:
$X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.5 X_{t-1}+0.85 Y_{t-1}+\epsilon_{t}^{Y}$

Example: Two dependent AR(1) processes - 1

The first $\mathrm{AR}(1)$ process drives the second $\mathrm{AR}(1)$ process:

$$
X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.5 X_{t-1}+0.85 Y_{t-1}+\epsilon_{t}^{Y}
$$

Example: Two dependent AR(1) processes - 1

The first $\mathrm{AR}(1)$ process drives the second $\mathrm{AR}(1)$ process:

$$
X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.5 X_{t-1}+0.85 Y_{t-1}+\epsilon_{t}^{Y}
$$

Example: Two dependent AR(1) processes - 1

The first $\operatorname{AR}(1)$ process drives the second $\operatorname{AR}(1)$ process:
$X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X}$

$Y_{t}=0.5 X_{t-1}+0.85 Y_{t-1}+\epsilon_{t}^{Y}$

Example: Two dependent AR(1) processes - 1

The first $\operatorname{AR}(1)$ process drives the second $\operatorname{AR}(1)$ process:
$X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X}$
$Y_{t}=0.5 X_{t-1}+0.85 Y_{t-1}+\epsilon_{t}^{Y}$

Example: Two dependent AR(1) processes - 1

The first $\mathrm{AR}(1)$ process drives the second $\mathrm{AR}(1)$ process:
$X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.5 X_{t-1}+0.85 Y_{t-1}+\epsilon_{t}^{Y}$

Example: Two dependent AR(1) processes - 1

The first $\mathrm{AR}(1)$ process drives the second $\mathrm{AR}(1)$ process:
$X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.5 X_{t-1}+0.85 Y_{t-1}+\epsilon_{t}^{Y}$

The prewhitened time series X and Y

Example: Two dependent AR(1) processes - 1

The first $\mathrm{AR}(1)$ process drives the second $\mathrm{AR}(1)$ process:

$$
X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.5 X_{t-1}+0.85 Y_{t-1}+\epsilon_{t}^{Y}
$$

After prewhitening, $r_{X, Y}(\tau), \tau=1,2,3$ is still statistically significant

Example: Two dependent AR(1) processes - 1

The first $\mathrm{AR}(1)$ process drives the second $\mathrm{AR}(1)$ process:

$$
X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.5 X_{t-1}+0.85 Y_{t-1}+\epsilon_{t}^{Y}
$$

After prewhitening, $r_{X, Y}(\tau), \tau=1,2,3$ is still statistically significant $\Longrightarrow X_{t}$ is correlated to $Y_{t+\tau}$, but not the opposite

Example: Two dependent AR(1) processes - 1

The first $\mathrm{AR}(1)$ process drives the second $\mathrm{AR}(1)$ process:

$$
X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.5 X_{t-1}+0.85 Y_{t-1}+\epsilon_{t}^{Y}
$$

After prewhitening, $r_{X, Y}(\tau), \tau=1,2,3$ is still statistically significant $\Longrightarrow X_{t}$ is correlated to $Y_{t+\tau}$, but not the opposite \Longrightarrow direction of correlation

Example: Two dependent AR(1) processes - 1

The first $\mathrm{AR}(1)$ process drives the second $\mathrm{AR}(1)$ process:

$$
X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.5 X_{t-1}+0.85 Y_{t-1}+\epsilon_{t}^{Y}
$$

After prewhitening, $r_{X, Y}(\tau), \tau=1,2,3$ is still statistically significant $\Longrightarrow X_{t}$ is correlated to $Y_{t+\tau}$, but not the opposite \Longrightarrow direction of correlation \Longrightarrow (Granger) causality

Example: Two dependent AR(1) processes - 2

The two $A R(1)$ processes are inter-dependent:

$$
X_{t}=1.2 X_{t-1}-0.5 Y_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.6 X_{t-1}+0.3 Y_{t-1}+\epsilon_{t}^{Y}
$$

Example: Two dependent AR(1) processes - 2

The two $A R(1)$ processes are inter-dependent:

$$
X_{t}=1.2 X_{t-1}-0.5 Y_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.6 X_{t-1}+0.3 Y_{t-1}+\epsilon_{t}^{Y}
$$

Example: Two dependent AR(1) processes - 2

The two $A R(1)$ processes are inter-dependent:

$$
X_{t}=1.2 X_{t-1}-0.5 Y_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.6 X_{t-1}+0.3 Y_{t-1}+\epsilon_{t}^{Y}
$$

Example: Two dependent AR(1) processes - 2

The two $A R(1)$ processes are inter-dependent:
$X_{t}=1.2 X_{t-1}-0.5 Y_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.6 X_{t-1}+0.3 Y_{t-1}+\epsilon_{t}^{Y}$

Example: Two dependent AR(1) processes - 2

The two $A R(1)$ processes are inter-dependent:

$$
X_{t}=1.2 X_{t-1}-0.5 Y_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.6 X_{t-1}+0.3 Y_{t-1}+\epsilon_{t}^{Y}
$$

Example: Two dependent AR(1) processes - 2

The two $\mathrm{AR}(1)$ processes are inter-dependent:

$$
X_{t}=1.2 X_{t-1}-0.5 Y_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.6 X_{t-1}+0.3 Y_{t-1}+\epsilon_{t}^{Y}
$$

Example: Two dependent AR(1) processes - 2

The two $A R(1)$ processes are inter-dependent:

Example: Two dependent AR(1) processes - 2

The two $A R(1)$ processes are inter-dependent:

$$
X_{t}=1.2 X_{t-1}-0.5 Y_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.6 X_{t-1}+0.3 Y_{t-1}+\epsilon_{t}^{Y}
$$

After prewhitening, the statistically significant cross-correlations are for both positive and negative delays

Example: Two dependent AR(1) processes - 2

The two $A R(1)$ processes are inter-dependent:

$$
X_{t}=1.2 X_{t-1}-0.5 Y_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.6 X_{t-1}+0.3 Y_{t-1}+\epsilon_{t}^{Y}
$$

After prewhitening, the statistically significant cross-correlations are for both positive and negative delays
$\Longrightarrow X_{t}$ is correlated to $Y_{t+|\tau|}$ and to $Y_{t-|\tau|}$,

Example: Two dependent AR(1) processes - 2

The two $A R(1)$ processes are inter-dependent:

$$
X_{t}=1.2 X_{t-1}-0.5 Y_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.6 X_{t-1}+0.3 Y_{t-1}+\epsilon_{t}^{Y}
$$

After prewhitening, the statistically significant cross-correlations are for both positive and negative delays
$\Longrightarrow X_{t}$ is correlated to $Y_{t+|\tau|}$ and to $Y_{t-|\tau|} \Longrightarrow$ interdependence

Dynamic Regression and VAR modeling, order 1

Given time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$:
see [1]: Chp 12, [2]: Chp 7

Dynamic Regression and VAR modeling, order 1

Given time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$: see [1]: Chp 12, [2]: Chp 7 1. Explain X_{t} using only past samples from X (without using $\left\{y_{t}\right\}_{t=1}^{n}$)

Dynamic Regression and VAR modeling, order 1

Given time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$: see [1]: Chp 12, [2]: Chp 7 1. Explain X_{t} using only past samples from X (without using $\left\{y_{t}\right\}_{t=1}^{n}$)
$\operatorname{AR}(1): X_{t}=\phi_{0}+\phi_{1} X_{t-1}+\epsilon_{t} \quad \epsilon_{t} \sim \mathrm{WN}\left(0, \sigma_{\epsilon}^{2}\right)$

Dynamic Regression and VAR modeling, order 1

Given time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$: see [1]: Chp 12, [2]: Chp 7 1. Explain X_{t} using only past samples from X (without using $\left\{y_{t}\right\}_{t=1}^{n}$)
$\operatorname{AR}(1): X_{t}=\phi_{0}+\phi_{1} X_{t-1}+\epsilon_{t} \quad \epsilon_{t} \sim \mathrm{WN}\left(0, \sigma_{\epsilon}^{2}\right)$
2 Explain X_{t} using past samples from X and Y.

Dynamic Regression and VAR modeling, order 1

Given time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$:
see [1]: Chp 12, [2]: Chp 7

1. Explain X_{t} using only past samples from X (without using $\left\{y_{t}\right\}_{t=1}^{n}$)
$\operatorname{AR}(1): X_{t}=\phi_{0}+\phi_{1} X_{t-1}+\epsilon_{t} \quad \epsilon_{t} \sim \operatorname{WN}\left(0, \sigma_{\epsilon}^{2}\right)$
2 Explain X_{t} using past samples from X and Y.
Dynamic regression model X at one lag for X and $Y, \operatorname{DR}_{X}(1,1)$: $X_{t}=a_{1,0}+a_{1,1} X_{t-1}+a_{1,2} Y_{t-1}+\epsilon_{1, t}$

Dynamic Regression and VAR modeling, order 1

Given time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$:
see [1]: Chp 12, [2]: Chp 7

1. Explain X_{t} using only past samples from X (without using $\left\{y_{t}\right\}_{t=1}^{n}$)
$\operatorname{AR}(1): X_{t}=\phi_{0}+\phi_{1} X_{t-1}+\epsilon_{t} \quad \epsilon_{t} \sim \mathrm{WN}\left(0, \sigma_{\epsilon}^{2}\right)$
2 Explain X_{t} using past samples from X and Y.
Dynamic regression model X at one lag for X and $Y, \operatorname{DR}_{X}(1,1)$:
$X_{t}=a_{1,0}+a_{1,1} X_{t-1}+a_{1,2} Y_{t-1}+\epsilon_{1, t}$
Dynamic regression model Y at one lag for X and $Y, \operatorname{DR}_{Y}(1,1)$: $Y_{t}=a_{2,0}+a_{2,1} X_{t-1}+a_{2,2} Y_{t-1}+\epsilon_{2, t}$

Dynamic Regression and VAR modeling, order 1

Given time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$:
see [1]: Chp 12, [2]: Chp 7

1. Explain X_{t} using only past samples from X (without using $\left\{y_{t}\right\}_{t=1}^{n}$)
$\operatorname{AR}(1): X_{t}=\phi_{0}+\phi_{1} X_{t-1}+\epsilon_{t} \quad \epsilon_{t} \sim \mathrm{WN}\left(0, \sigma_{\epsilon}^{2}\right)$
2 Explain X_{t} using past samples from X and Y.
Dynamic regression model X at one lag for X and $Y, \operatorname{DR}_{X}(1,1)$:
$X_{t}=a_{1,0}+a_{1,1} X_{t-1}+a_{1,2} Y_{t-1}+\epsilon_{1, t}$
Dynamic regression model Y at one lag for X and $Y, \operatorname{DR}_{Y}(1,1)$: $Y_{t}=a_{2,0}+a_{2,1} X_{t-1}+a_{2,2} Y_{t-1}+\epsilon_{2, t}$
2. Join the models for X and Y in one, vector variable $\mathbf{X}_{t}=\left[X_{t}, Y_{t}\right]^{\prime}$.

Dynamic Regression and VAR modeling, order 1

Given time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$:
see [1]: Chp 12, [2]: Chp 7

1. Explain X_{t} using only past samples from X (without using $\left\{y_{t}\right\}_{t=1}^{n}$)
$\operatorname{AR}(1): X_{t}=\phi_{0}+\phi_{1} X_{t-1}+\epsilon_{t} \quad \epsilon_{t} \sim \operatorname{WN}\left(0, \sigma_{\epsilon}^{2}\right)$
2 Explain X_{t} using past samples from X and Y.
Dynamic regression model X at one lag for X and $Y, \operatorname{DR}_{X}(1,1)$:
$X_{t}=a_{1,0}+a_{1,1} X_{t-1}+a_{1,2} Y_{t-1}+\epsilon_{1, t}$
Dynamic regression model Y at one lag for X and $Y, \operatorname{DR}_{Y}(1,1)$: $Y_{t}=a_{2,0}+a_{2,1} X_{t-1}+a_{2,2} Y_{t-1}+\epsilon_{2, t}$
2. Join the models for X and Y in one, vector variable $\mathbf{X}_{t}=\left[X_{t}, Y_{t}\right]^{\prime}$. Vector autoregressive model for (X, Y) of order $1, \operatorname{VAR}(1)$:

$$
\left[\begin{array}{l}
Y_{t} \\
Y_{t}
\end{array}\right]=\left[\begin{array}{l}
a_{1,0} \\
a_{2,0}
\end{array}\right]+\left[\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2}
\end{array}\right]\left[\begin{array}{l}
Y_{t-1} \\
Y_{t-1}
\end{array}\right]+\left[\begin{array}{l}
\epsilon_{1, t} \\
\epsilon_{2, t}
\end{array}\right]
$$

Dynamic Regression and VAR modeling, order 1

Given time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$:
see [1]: Chp 12, [2]: Chp 7

1. Explain X_{t} using only past samples from X (without using $\left\{y_{t}\right\}_{t=1}^{n}$)
$\operatorname{AR}(1): X_{t}=\phi_{0}+\phi_{1} X_{t-1}+\epsilon_{t} \quad \epsilon_{t} \sim \mathrm{WN}\left(0, \sigma_{\epsilon}^{2}\right)$
2 Explain X_{t} using past samples from X and Y.
Dynamic regression model X at one lag for X and $Y, \operatorname{DR}_{X}(1,1)$:
$X_{t}=a_{1,0}+a_{1,1} X_{t-1}+a_{1,2} Y_{t-1}+\epsilon_{1, t}$
Dynamic regression model Y at one lag for X and $Y, \operatorname{DR}_{Y}(1,1)$: $Y_{t}=a_{2,0}+a_{2,1} X_{t-1}+a_{2,2} Y_{t-1}+\epsilon_{2, t}$
2. Join the models for X and Y in one, vector variable $\mathbf{X}_{t}=\left[X_{t}, Y_{t}\right]^{\prime}$. Vector autoregressive model for (X, Y) of order $1, \operatorname{VAR}(1)$:

$$
\left[\begin{array}{l}
X_{t} \\
Y_{t}
\end{array}\right]=\left[\begin{array}{l}
a_{1,0} \\
a_{2,0}
\end{array}\right]+\left[\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2}
\end{array}\right]\left[\begin{array}{l}
X_{t-1} \\
Y_{t-1}
\end{array}\right]+\left[\begin{array}{l}
\epsilon_{1, t} \\
\epsilon_{2, t}
\end{array}\right]
$$

and in matrix form

$$
\mathbf{X}_{t}=A_{0}+A_{1} \mathbf{X}_{t-1}+\epsilon_{t}
$$

Dynamic Regression and VAR modeling, order p

1. $\operatorname{AR}(p): X_{t}=\phi_{0}+\phi_{1} X_{t-1}+\cdots+\phi_{p} X_{t-p}+\epsilon_{t}$

Dynamic Regression and VAR modeling, order p

1. $\operatorname{AR}(p): X_{t}=\phi_{0}+\phi_{1} X_{t-1}+\cdots+\phi_{p} X_{t-p}+\epsilon_{t}$
2. $\mathrm{DR}_{X}\left(p_{1}, q_{1}\right)$ for X :
$X_{t}=a_{0}+a_{1,1} X_{t-1}+\ldots+a_{1, p_{1}} X_{t-p_{1}}+b_{1,1} Y_{t-1}+\ldots+b_{1, q_{1}} Y_{t-q_{1}}+\epsilon_{1, t}$

Dynamic Regression and VAR modeling, order p

1. $\operatorname{AR}(p): X_{t}=\phi_{0}+\phi_{1} X_{t-1}+\cdots+\phi_{p} X_{t-p}+\epsilon_{t}$
2. $\mathrm{DR}_{X}\left(p_{1}, q_{1}\right)$ for X :
$X_{t}=a_{0}+a_{1,1} X_{t-1}+\ldots+a_{1, p_{1}} X_{t-p_{1}}+b_{1,1} Y_{t-1}+\ldots+b_{1, q_{1}} Y_{t-q_{1}}+\epsilon_{1, t}$ and $\operatorname{DR}_{Y}\left(p_{2}, q_{2}\right)$ for Y :
$Y_{t}=b_{0}+a_{2,1} X_{t-1}+\ldots+a_{2, p_{2}} X_{t-p_{2}}+b_{2,1} Y_{t-1}+\ldots+b_{2, q_{2}} Y_{t-q_{2}}+\epsilon_{2, t}$

Dynamic Regression and VAR modeling, order p

1. $\operatorname{AR}(p): X_{t}=\phi_{0}+\phi_{1} X_{t-1}+\cdots+\phi_{p} X_{t-p}+\epsilon_{t}$
2. $\mathrm{DR}_{X}\left(p_{1}, q_{1}\right)$ for X :
$X_{t}=a_{0}+a_{1,1} X_{t-1}+\ldots+a_{1, p_{1}} X_{t-p_{1}}+b_{1,1} Y_{t-1}+\ldots+b_{1, q_{1}} Y_{t-q_{1}}+\epsilon_{1, t}$ and $\operatorname{DR}_{Y}\left(p_{2}, q_{2}\right)$ for Y :
$Y_{t}=b_{0}+a_{2,1} X_{t-1}+\ldots+a_{2, p_{2}} X_{t-p_{2}}+b_{2,1} Y_{t-1}+\ldots+b_{2, q_{2}} Y_{t-q_{2}}+\epsilon_{2, t}$ $p_{1}, q_{1}, p_{2}, q_{2}$ can all be different

Dynamic Regression and VAR modeling, order p

1. $\operatorname{AR}(p): X_{t}=\phi_{0}+\phi_{1} X_{t-1}+\cdots+\phi_{p} X_{t-p}+\epsilon_{t}$
2. $\mathrm{DR}_{X}\left(p_{1}, q_{1}\right)$ for X :
$X_{t}=a_{0}+a_{1,1} X_{t-1}+\ldots+a_{1, p_{1}} X_{t-p_{1}}+b_{1,1} Y_{t-1}+\ldots+b_{1, q_{1}} Y_{t-q_{1}}+\epsilon_{1, t}$ and $\operatorname{DR}_{Y}\left(p_{2}, q_{2}\right)$ for Y :
$Y_{t}=b_{0}+a_{2,1} X_{t-1}+\ldots+a_{2, p_{2}} X_{t-p_{2}}+b_{2,1} Y_{t-1}+\ldots+b_{2, q_{2}} Y_{t-q_{2}}+\epsilon_{2, t}$ $p_{1}, q_{1}, p_{2}, q_{2}$ can all be different
3. $\operatorname{VAR}(p)$ model for (X, Y) :
$\left[\begin{array}{l}X_{t} \\ Y_{t}\end{array}\right]=\left[\begin{array}{c}a_{0} \\ a_{0}\end{array}\right]+\left[\begin{array}{ll}a_{1,1} & b_{1,1} \\ a_{2,1} & b_{2,1}\end{array}\right]\left[\begin{array}{l}X_{t-1} \\ Y_{t-1}\end{array}\right]+\cdots+\left[\begin{array}{ll}a_{1, p} & b_{1, p} \\ a_{2, p} & b_{2, p}\end{array}\right]\left[\begin{array}{l}X_{t-p} \\ Y_{t-p}\end{array}\right]+\left[\begin{array}{l}\epsilon_{1, t} \\ \epsilon_{2, t}\end{array}\right.$.

$$
\mathbf{X}_{t}=A_{0}+A_{1} \mathbf{X}_{t-1}+\ldots+A_{p} \mathbf{X}_{t-p}+\epsilon_{t}
$$

Examples of DR and VAR

1. Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$ from two independent $\operatorname{AR}(1)$ processes:

Examples of DR and VAR

1. Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$ from two independent $\operatorname{AR}(1)$ processes:
$X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.85 Y_{t-1}+\epsilon_{t}^{Y}$

Examples of DR and VAR

1. Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$ from two independent $\operatorname{AR}(1)$ processes:
$X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.85 Y_{t-1}+\epsilon_{t}^{Y}$
DR form for $(X, Y): \operatorname{DR}_{X}(1,0)$ and

Examples of DR and VAR

1. Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$ from two independent $\operatorname{AR}(1)$ processes:
$X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.85 Y_{t-1}+\epsilon_{t}^{Y}$
DR form for $(X, Y): \operatorname{DR}_{X}(1,0)$ and $\operatorname{DR}_{Y}(0,1)$

Examples of DR and VAR

1. Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$ from two independent $\operatorname{AR}(1)$ processes:
$X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.85 Y_{t-1}+\epsilon_{t}^{Y}$
DR form for $(X, Y): \operatorname{DR}_{X}(1,0)$ and $\operatorname{DR}_{Y}(0,1)$
VAR form for $(X, Y): \operatorname{VAR}(1), \mathbf{X}_{t}=A_{0}+A_{1} \mathbf{X}_{t-1}+\epsilon_{t}$,
$A_{0}=\emptyset \quad A_{1}=\left[\begin{array}{cc}0.95 & 0 \\ 0 & 0.85\end{array}\right]$

Examples of DR and VAR

1. Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$ from two independent $\operatorname{AR}(1)$ processes:
$X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.85 Y_{t-1}+\epsilon_{t}^{Y}$
DR form for $(X, Y): \operatorname{DR}_{X}(1,0)$ and $\operatorname{DR}_{Y}(0,1)$
VAR form for $(X, Y): \operatorname{VAR}(1), \mathbf{X}_{t}=A_{0}+A_{1} \mathbf{X}_{t-1}+\epsilon_{t}$,
$A_{0}=\emptyset \quad A_{1}=\left[\begin{array}{cc}0.95 & 0 \\ 0 & 0.85\end{array}\right]$
2. The first $A R(1)$ process drives the second $A R(1)$ process:

Examples of DR and VAR

1. Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$ from two independent $\operatorname{AR}(1)$ processes:
$X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.85 Y_{t-1}+\epsilon_{t}^{Y}$
DR form for $(X, Y): \operatorname{DR}_{X}(1,0)$ and $\operatorname{DR}_{Y}(0,1)$
VAR form for $(X, Y): \operatorname{VAR}(1), \mathbf{X}_{t}=A_{0}+A_{1} \mathbf{X}_{t-1}+\epsilon_{t}$,
$A_{0}=\emptyset \quad A_{1}=\left[\begin{array}{cc}0.95 & 0 \\ 0 & 0.85\end{array}\right]$
2. The first $\operatorname{AR}(1)$ process drives the second $\operatorname{AR}(1)$ process:
$X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.5 X_{t-1}+0.85 Y_{t-1}+\epsilon_{t}^{Y}$

Examples of DR and VAR

1. Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$ from two independent $\operatorname{AR}(1)$ processes:
$X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.85 Y_{t-1}+\epsilon_{t}^{Y}$
DR form for $(X, Y): \operatorname{DR}_{X}(1,0)$ and $\operatorname{DR}_{Y}(0,1)$
VAR form for $(X, Y): \operatorname{VAR}(1), \mathbf{X}_{t}=A_{0}+A_{1} \mathbf{X}_{t-1}+\epsilon_{t}$,
$A_{0}=\emptyset \quad A_{1}=\left[\begin{array}{cc}0.95 & 0 \\ 0 & 0.85\end{array}\right]$
2. The first $\operatorname{AR}(1)$ process drives the second $\operatorname{AR}(1)$ process:
$X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.5 X_{t-1}+0.85 Y_{t-1}+\epsilon_{t}^{Y}$
$\mathrm{DR}_{X}(1,0)$ and $\mathrm{DR}_{Y}(1,1)$

Examples of DR and VAR

1. Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$ from two independent $\operatorname{AR}(1)$ processes:
$X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.85 Y_{t-1}+\epsilon_{t}^{Y}$
DR form for $(X, Y): \operatorname{DR}_{X}(1,0)$ and $\operatorname{DR}_{Y}(0,1)$
VAR form for $(X, Y): \operatorname{VAR}(1), \mathbf{X}_{t}=A_{0}+A_{1} \mathbf{X}_{t-1}+\epsilon_{t}$,
$A_{0}=\emptyset \quad A_{1}=\left[\begin{array}{cc}0.95 & 0 \\ 0 & 0.85\end{array}\right]$
2. The first $\operatorname{AR}(1)$ process drives the second $\operatorname{AR}(1)$ process:
$X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.5 X_{t-1}+0.85 Y_{t-1}+\epsilon_{t}^{Y}$
$\mathrm{DR}_{X}(1,0)$ and $\mathrm{DR}_{Y}(1,1)$
$\operatorname{VAR}(1): A_{1}=\left[\begin{array}{cc}0.95 & 0 \\ 0.5 & 0.85\end{array}\right]$

Examples of DR and VAR

1. Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$ from two independent $\operatorname{AR}(1)$ processes:
$X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.85 Y_{t-1}+\epsilon_{t}^{Y}$
DR form for $(X, Y): \operatorname{DR}_{X}(1,0)$ and $\operatorname{DR}_{Y}(0,1)$
VAR form for $(X, Y): \operatorname{VAR}(1), \mathbf{X}_{t}=A_{0}+A_{1} \mathbf{X}_{t-1}+\epsilon_{t}$,
$A_{0}=\emptyset \quad A_{1}=\left[\begin{array}{cc}0.95 & 0 \\ 0 & 0.85\end{array}\right]$
2. The first $\operatorname{AR}(1)$ process drives the second $\operatorname{AR}(1)$ process:
$X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.5 X_{t-1}+0.85 Y_{t-1}+\epsilon_{t}^{Y}$
$\mathrm{DR}_{X}(1,0)$ and $\mathrm{DR}_{Y}(1,1)$
$\operatorname{VAR}(1): A_{1}=\left[\begin{array}{cc}0.95 & 0 \\ 0.5 & 0.85\end{array}\right]$
3. The two $\operatorname{AR}(1)$ processes are inter-dependent:
$X_{t}=1.2 X_{t-1}-0.5 Y_{t-1}+\epsilon_{t}^{X}$

$$
Y_{t}=0.6 X_{t-1}+0.3 Y_{t-1}+\epsilon_{t}^{Y}
$$

Examples of DR and VAR

1. Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$ from two independent $\operatorname{AR}(1)$ processes:
$X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.85 Y_{t-1}+\epsilon_{t}^{Y}$
DR form for $(X, Y): \operatorname{DR}_{X}(1,0)$ and $\operatorname{DR}_{Y}(0,1)$
VAR form for $(X, Y): \operatorname{VAR}(1), \mathbf{X}_{t}=A_{0}+A_{1} \mathbf{X}_{t-1}+\epsilon_{t}$,
$A_{0}=\emptyset \quad A_{1}=\left[\begin{array}{cc}0.95 & 0 \\ 0 & 0.85\end{array}\right]$
2. The first $\operatorname{AR}(1)$ process drives the second $\operatorname{AR}(1)$ process:
$X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.5 X_{t-1}+0.85 Y_{t-1}+\epsilon_{t}^{Y}$
$\mathrm{DR}_{X}(1,0)$ and $\mathrm{DR}_{Y}(1,1)$
$\operatorname{VAR}(1): A_{1}=\left[\begin{array}{cc}0.95 & 0 \\ 0.5 & 0.85\end{array}\right]$
3. The two $\operatorname{AR}(1)$ processes are inter-dependent:
$X_{t}=1.2 X_{t-1}-0.5 Y_{t-1}+\epsilon_{t}^{X}$

$$
Y_{t}=0.6 X_{t-1}+0.3 Y_{t-1}+\epsilon_{t}^{Y}
$$

$\mathrm{DR}_{X}(1,1)$ and $\mathrm{DR}_{Y}(1,1)$

Examples of DR and VAR

1. Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}$ from two independent $\operatorname{AR}(1)$ processes:
$X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.85 Y_{t-1}+\epsilon_{t}^{Y}$
DR form for $(X, Y): \operatorname{DR}_{X}(1,0)$ and $\operatorname{DR}_{Y}(0,1)$
VAR form for $(X, Y): \operatorname{VAR}(1), \mathbf{X}_{t}=A_{0}+A_{1} \mathbf{X}_{t-1}+\epsilon_{t}$,
$A_{0}=\emptyset \quad A_{1}=\left[\begin{array}{cc}0.95 & 0 \\ 0 & 0.85\end{array}\right]$
2. The first $\operatorname{AR}(1)$ process drives the second $\operatorname{AR}(1)$ process:
$X_{t}=0.95 X_{t-1}+\epsilon_{t}^{X} \quad Y_{t}=0.5 X_{t-1}+0.85 Y_{t-1}+\epsilon_{t}^{Y}$
$\mathrm{DR}_{X}(1,0)$ and $\mathrm{DR}_{Y}(1,1)$
$\operatorname{VAR}(1): A_{1}=\left[\begin{array}{cc}0.95 & 0 \\ 0.5 & 0.85\end{array}\right]$
3. The two $\operatorname{AR}(1)$ processes are inter-dependent:
$X_{t}=1.2 X_{t-1}-0.5 Y_{t-1}+\epsilon_{t}^{X}$
$Y_{t}=0.6 X_{t-1}+0.3 Y_{t-1}+\epsilon_{t}^{Y}$
$\mathrm{DR}_{X}(1,1)$ and $\mathrm{DR}_{Y}(1,1)$
$\operatorname{VAR}(1): A_{1}=\left[\begin{array}{cc}1.2 & -0.5 \\ 0.6 & 0.3\end{array}\right]$

Nonlinear dynamical systems

The DR and VAR models can be extended adding nonlinear terms, e.g. X_{t-1}^{2} or $X_{t-1} Y_{t-1}$.

Nonlinear dynamical systems

The DR and VAR models can be extended adding nonlinear terms, e.g. X_{t-1}^{2} or $X_{t-1} Y_{t-1}$.
... such models get "complicated"!!!

Nonlinear dynamical systems

The DR and VAR models can be extended adding nonlinear terms, e.g. X_{t-1}^{2} or $X_{t-1} Y_{t-1}$.
... such models get "complicated"!!!
They are "complicated" even when there is no random terms ϵ_{t}

Nonlinear dynamical systems

The DR and VAR models can be extended adding nonlinear terms, e.g. X_{t-1}^{2} or $X_{t-1} Y_{t-1}$.
... such models get "complicated"!!!
They are "complicated" even when there is no random terms ϵ_{t} \Longrightarrow These are models for nonlinear dynamical systems

Nonlinear dynamical systems

The DR and VAR models can be extended adding nonlinear terms, e.g. X_{t-1}^{2} or $X_{t-1} Y_{t-1}$.
... such models get "complicated"!!!
They are "complicated" even when there is no random terms ϵ_{t} \Longrightarrow These are models for nonlinear dynamical systems ... and chaos

Nonlinear dynamical systems

The DR and VAR models can be extended adding nonlinear terms, e.g.
X_{t-1}^{2} or $X_{t-1} Y_{t-1}$.
... such models get "complicated"!!!
They are "complicated" even when there is no random terms ϵ_{t} \Longrightarrow These are models for nonlinear dynamical systems ... and chaos

Henon map

$X_{t}=1.4-X_{t-1}^{2}+Y_{t-1} \quad Y_{t}=0.3 X_{t-1}$

Nonlinear dynamical systems

The DR and VAR models can be extended adding nonlinear terms, e.g.
X_{t-1}^{2} or $X_{t-1} Y_{t-1}$.
... such models get "complicated"!!!
They are "complicated" even when there is no random terms ϵ_{t} \Longrightarrow These are models for nonlinear dynamical systems ... and chaos

Henon map

$X_{t}=1.4-X_{t-1}^{2}+Y_{t-1} \quad Y_{t}=0.3 X_{t-1}$
Alternatively, it can be written as
$X_{t}=1.4-X_{t-1}^{2}+0.3 X_{t-2}$

Nonlinear dynamical systems

The DR and VAR models can be extended adding nonlinear terms, e.g.
X_{t-1}^{2} or $X_{t-1} Y_{t-1}$.
... such models get "complicated"!!!
They are "complicated" even when there is no random terms ϵ_{t} \Longrightarrow These are models for nonlinear dynamical systems ... and chaos

Henon map

$X_{t}=1.4-X_{t-1}^{2}+Y_{t-1} \quad Y_{t}=0.3 X_{t-1}$
Alternatively, it can be written as
$X_{t}=1.4-X_{t-1}^{2}+0.3 X_{t-2}$
... a nonlinear $\operatorname{AR}(2)$ model.

Example: Two independent Henon maps, linear measures

Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}, n=300$ from two independent Henon maps:
$X_{t}=1.4-X_{t-1}^{2}+0.3 X_{t-2} \quad Y_{t}=1.4-Y_{t-1}^{2}+0.3 Y_{t-2}$

Example: Two independent Henon maps, linear measures

Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}, n=300$ from two independent Henon maps: $X_{t}=1.4-X_{t-1}^{2}+0.3 X_{t-2} \quad Y_{t}=1.4-Y_{t-1}^{2}+0.3 Y_{t-2}$

Example: Two independent Henon maps, linear measures

Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}, n=300$ from two independent Henon maps: $X_{t}=1.4-X_{t-1}^{2}+0.3 X_{t-2} \quad Y_{t}=1.4-Y_{t-1}^{2}+0.3 Y_{t-2}$

Example: Two independent Henon maps, linear measures

Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}, n=300$ from two independent Henon maps: $X_{t}=1.4-X_{t-1}^{2}+0.3 X_{t-2} \quad Y_{t}=1.4-Y_{t-1}^{2}+0.3 Y_{t-2}$

Example: Two independent Henon maps, linear measures

Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}, n=300$ from two independent Henon maps: $X_{t}=1.4-X_{t-1}^{2}+0.3 X_{t-2} \quad Y_{t}=1.4-Y_{t-1}^{2}+0.3 Y_{t-2}$

Alternating autocorrelation, zero cross-correlation (correctly!)

Example: Two independent Henon maps, linear measures

Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}, n=300$ from two independent Henon maps: $X_{t}=1.4-X_{t-1}^{2}+0.3 X_{t-2} \quad Y_{t}=1.4-Y_{t-1}^{2}+0.3 Y_{t-2}$

Alternating autocorrelation, zero cross-correlation (correctly!)

Example: Two independent Henon maps, linear measures

Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}, n=300$ from two independent Henon maps: $X_{t}=1.4-X_{t-1}^{2}+0.3 X_{t-2} \quad Y_{t}=1.4-Y_{t-1}^{2}+0.3 Y_{t-2}$

Alternating autocorrelation, zero cross-correlation (correctly!)

Example: Two independent Henon maps, linear measures

Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}, n=300$ from two independent Henon maps: $X_{t}=1.4-X_{t-1}^{2}+0.3 X_{t-2} \quad Y_{t}=1.4-Y_{t-1}^{2}+0.3 Y_{t-2}$

Alternating autocorrelation, zero cross-correlation (correctly!)

Example: Two independent Henon maps, linear measures

Time series $\left\{x_{t}\right\}_{t=1}^{n},\left\{y_{t}\right\}_{t=1}^{n}, n=300$ from two independent Henon maps: $X_{t}=1.4-X_{t-1}^{2}+0.3 X_{t-2} \quad Y_{t}=1.4-Y_{t-1}^{2}+0.3 Y_{t-2}$

Alternating autocorrelation, zero cross-correlation (correctly!)

After prewhitening, zero autocorrelation, zero cross-correlation

Example: Independent Henon maps, nonlinear measures

Delayed mutual
information $I_{X}(\tau)$
and $I_{Y}(\tau)$ and
cross mutual
information
$I_{X Y}(\tau)$

Example: Independent Henon maps, nonlinear measures

Delayed mutual information $I_{X}(\tau)$ and $I_{Y}(\tau)$ and cross mutual information
$I_{X Y}(\tau)$

Example: Independent Henon maps, nonlinear measures

Delayed mutual information $I_{X}(\tau)$ and $I_{Y}(\tau)$ and cross mutual information
$I_{X Y}(\tau)$

Example: Independent Henon maps, nonlinear measures

Delayed mutual information $I_{X}(\tau)$ and $I_{Y}(\tau)$ and cross mutual information $I_{X Y}(\tau)$

Significant delayed mutual information (for small lags),

Example: Independent Henon maps, nonlinear measures

Delayed mutual information $I_{X}(\tau)$ and $I_{Y}(\tau)$ and cross mutual information $I_{X Y}(\tau)$

Significant delayed mutual information (for small lags), Insignificant cross mutual information ?

Example: Independent Henon maps, nonlinear measures

Delayed mutual information $I_{X}(\tau)$ and $I_{Y}(\tau)$ and cross mutual information $I_{X Y}(\tau)$

Significant delayed mutual information (for small lags), Insignificant cross mutual information ?
$I_{X}(\tau), I_{Y}(\tau)$ and $I_{X Y}(\tau)$ after prewhitening

Example: Independent Henon maps, nonlinear measures

Delayed mutual information $I_{X}(\tau)$ and $I_{Y}(\tau)$ and cross mutual information
$I_{X Y}(\tau)$

Significant delayed mutual information (for small lags), Insignificant cross mutual information ?

Example: Independent Henon maps, nonlinear measures

Delayed mutual information $I_{X}(\tau)$ and $I_{Y}(\tau)$ and cross mutual information
$I_{X Y}(\tau)$

Significant delayed mutual information (for small lags), Insignificant cross mutual information?

$I_{X}(\tau), I_{Y}(\tau)$ and $I_{X Y}(\tau)$ after prewhitening

Example: Independent Henon maps, nonlinear measures

Delayed mutual information $I_{X}(\tau)$ and $I_{Y}(\tau)$ and cross mutual information $I_{X Y}(\tau)$

Significant delayed mutual information (for small lags), Insignificant cross mutual information ?

$$
I_{X}(\tau), I_{Y}(\tau) \text { and }
$$ $I_{X Y}(\tau)$ after prewhitening

Smaller but still significant delayed mutual information (for small lags),

Example: Independent Henon maps, nonlinear measures

Delayed mutual information $I_{X}(\tau)$ and $I_{Y}(\tau)$ and cross mutual information $I_{X Y}(\tau)$

Significant delayed mutual information (for small lags), Insignificant cross mutual information ?
$I_{X}(\tau), I_{Y}(\tau)$ and $I_{X Y}(\tau)$ after prewhitening

Smaller but still significant delayed mutual information (for small lags), Insignificant cross mutual information?

Example: Two dependent Henon maps - 1

$$
\begin{aligned}
& X_{t}=1.4-X_{t-1}^{2}+0.3 X_{t-2} \\
& Y_{t}=1.4-Y_{t-1}^{2}+0.3 Y_{t-2}+0.2\left(Y_{t-1}^{2}-X_{t-1}^{2}\right)
\end{aligned}
$$

Example: Two dependent Henon maps - 1

$$
\begin{aligned}
& X_{t}=1.4-X_{t-1}^{2}+0.3 X_{t-2} \\
& Y_{t}=1.4-Y_{t-1}^{2}+0.3 Y_{t-2}+0.2\left(Y_{t-1}^{2}-X_{t-1}^{2}\right) \\
& \text { The time series } X \text { and } Y
\end{aligned}
$$

Example: Two dependent Henon maps - 1

$X_{t}=1.4-X_{t-1}^{2}+0.3 X_{t-2}$

$$
Y_{t}=1.4-Y_{t-1}^{2}+0.3 Y_{t-2}+0.2\left(Y_{t-1}^{2}-X_{t-1}^{2}\right)
$$

Example: Two dependent Henon maps - 1

$X_{t}=1.4-X_{t-1}^{2}+0.3 X_{t-2}$

$$
Y_{t}=1.4-Y_{t-1}^{2}+0.3 Y_{t-2}+0.2\left(Y_{t-1}^{2}-X_{t-1}^{2}\right)
$$

Example: Two dependent Henon maps - 1

$X_{t}=1.4-X_{t-1}^{2}+0.3 X_{t-2}$

$$
Y_{t}=1.4-Y_{t-1}^{2}+0.3 Y_{t-2}+0.2\left(Y_{t-1}^{2}-X_{t-1}^{2}\right)
$$

Alternating autocorrelation, significant cross-correlation at $\tau=0$

Example: Two dependent Henon maps - 1

$X_{t}=1.4-X_{t-1}^{2}+0.3 X_{t-2}$

$$
Y_{t}=1.4-Y_{t-1}^{2}+0.3 Y_{t-2}+0.2\left(Y_{t-1}^{2}-X_{t-1}^{2}\right)
$$

Alternating autocorrelation, significant cross-correlation at $\tau=0$

Example: Two dependent Henon maps - 1

Alternating autocorrelation, significant cross-correlation at $\tau=0$

Example: Two dependent Henon maps - 1

Alternating autocorrelation, significant cross-correlation at $\tau=0$

Example: Two dependent Henon maps - 1

$$
\begin{aligned}
& X_{t}=1.4-X_{t-1}^{2}+0.3 X_{t-2} \\
& Y_{t}=1.4-Y_{t-1}^{2}+0.3 Y_{t-2}+0.2\left(Y_{t-1}^{2}-X_{t-1}^{2}\right)
\end{aligned}
$$

Alternating autocorrelation, significant cross-correlation at $\tau=0$

After prewhitening, zero autocorrelation, significant cross-correlation at $\tau=0$

Example: Two dependent Henon maps - 1

Example: Two dependent Henon maps - 1

Example: Two dependent Henon maps - 1

Significant $I_{X}(\tau), I_{Y}(\tau)$,

Example: Two dependent Henon maps - 1

Significant $I_{X}(\tau), I_{Y}(\tau)$,
Significant $I_{X Y}(\tau)$ for $\tau \geq 0, X_{t}$ is "correlated" to $Y_{t+\tau}$

Example: Two dependent Henon maps - 1

Significant $I_{X}(\tau), I_{Y}(\tau)$,
Significant $I_{X Y}(\tau)$ for $\tau \geq 0, X_{t}$ is "correlated" to $Y_{t+\tau}$
Delayed mutual information of the prewhitened time series

Example: Two dependent Henon maps - 1

Significant $I_{X}(\tau), I_{Y}(\tau)$,
Significant $I_{X Y}(\tau)$ for $\tau \geq 0, X_{t}$ is "correlated" to $Y_{t+\tau}$
Delayed mutual information of the prewhitened time series
Cross mutual information of the prewhitened time series

Example: Two dependent Henon maps - 1

Significant $I_{X}(\tau), I_{Y}(\tau)$,
Significant $I_{X Y}(\tau)$ for $\tau \geq 0, X_{t}$ is "correlated" to $Y_{t+\tau}$
Delayed mutual information of the prewhitened time series
Cross mutual information of the prewhitened time series

Significant $I_{X}(\tau), I_{Y}(\tau)$,

Example: Two dependent Henon maps - 1

Significant $I_{X}(\tau), I_{Y}(\tau)$,
Significant $I_{X Y}(\tau)$ for $\tau \geq 0, X_{t}$ is "correlated" to $Y_{t+\tau}$
Delayed mutual information of the prewhitened time series
Cross mutual information of the prewhitened time series

Significant $I_{X}(\tau), I_{Y}(\tau)$,
Small $I_{X Y}(\tau)$ for $\tau \geq 0$, is it significant?

Example: Two dependent Henon maps - 2

$$
\begin{aligned}
& X_{t}=1.4-X_{t-1}^{2}+0.3 X_{t-2}+0.14\left(X_{t-1}^{2}-Y_{t-1}^{2}\right) \\
& Y_{t}=1.4-Y_{t-1}^{2}+0.3 Y_{t-2}+0.08\left(Y_{t-1}^{2}-X_{t-1}^{2}\right)
\end{aligned}
$$

Example: Two dependent Henon maps - 2

$$
\begin{aligned}
& X_{t}=1.4-X_{t-1}^{2}+0.3 X_{t-2}+0.14\left(X_{t-1}^{2}-Y_{t-1}^{2}\right) \\
& Y_{t}=1.4-Y_{t-1}^{2}+0.3 Y_{t-2}+0.08\left(Y_{t-1}^{2}-X_{t-1}^{2}\right) \\
& \text { The time series } X \text { and } Y
\end{aligned}
$$

Example: Two dependent Henon maps - 2

$X_{t}=1.4-X_{t-1}^{2}+0.3 X_{t-2}+0.14\left(X_{t-1}^{2}-Y_{t-1}^{2}\right)$

$$
Y_{t}=1.4-Y_{t-1}^{2}+0.3 Y_{t-2}+0.08\left(Y_{t-1}^{2}-X_{t-1}^{2}\right)
$$

Example: Two dependent Henon maps - 2

$X_{t}=1.4-X_{t-1}^{2}+0.3 X_{t-2}+0.14\left(X_{t-1}^{2}-Y_{t-1}^{2}\right)$

$$
Y_{t}=1.4-Y_{t-1}^{2}+0.3 Y_{t-2}+0.08\left(Y_{t-1}^{2}-X_{t-1}^{2}\right)
$$

Example: Two dependent Henon maps - 2

$X_{t}=1.4-X_{t-1}^{2}+0.3 X_{t-2}+0.14\left(X_{t-1}^{2}-Y_{t-1}^{2}\right)$

$$
Y_{t}=1.4-Y_{t-1}^{2}+0.3 Y_{t-2}+0.08\left(Y_{t-1}^{2}-X_{t-1}^{2}\right)
$$

The time series X and Y

Alternating autocorrelation, alternating cross-correlation

Example: Two dependent Henon maps - 2

$$
\begin{aligned}
X_{t} & =1.4-X_{t-1}^{2}+0.3 X_{t-2}+0.14\left(X_{t-1}^{2}-Y_{t-1}^{2}\right) \\
Y_{t} & =1.4-Y_{t-1}^{2}+0.3 Y_{t-2}+0.08\left(Y_{t-1}^{2}-X_{t-1}^{2}\right)
\end{aligned}
$$

The time series X and Y

Alternating autocorrelation, alternating cross-correlation

Example: Two dependent Henon maps - 2

$$
\begin{aligned}
& X_{t}=1.4-X_{t-1}^{2}+0.3 X_{t-2}+0.14\left(X_{t-1}^{2}-Y_{t-1}^{2}\right) \\
& Y_{t}=1.4-Y_{t-1}^{2}+0.3 Y_{t-2}+0.08\left(Y_{t-1}^{2}-X_{t-1}^{2}\right)
\end{aligned}
$$

The time series X and Y

Cross-correlation of the original time series

Alternating autocorrelation, alternating cross-correlation

Example: Two dependent Henon maps - 2

$$
\begin{aligned}
& X_{t}=1.4-X_{t-1}^{2}+0.3 X_{t-2}+0.14\left(X_{t-1}^{2}-Y_{t-1}^{2}\right) \\
& Y_{t}=1.4-Y_{t-1}^{2}+0.3 Y_{t-2}+0.08\left(Y_{t-1}^{2}-X_{t-1}^{2}\right)
\end{aligned}
$$

Alternating autocorrelation, alternating cross-correlation

Example: Two dependent Henon maps - 2

$$
\begin{aligned}
& X_{t}=1.4-X_{t-1}^{2}+0.3 X_{t-2}+0.14\left(X_{t-1}^{2}-Y_{t-1}^{2}\right) \\
& Y_{t}=1.4-Y_{t-1}^{2}+0.3 Y_{t-2}+0.08\left(Y_{t-1}^{2}-X_{t-1}^{2}\right)
\end{aligned}
$$

Alternating autocorrelation, alternating cross-correlation

After prewhitening, zero autocorrelation, significant cross-correlation at $\tau=0$

Example: Two dependent Henon maps - 2

Example: Two dependent Henon maps - 2

Example: Two dependent Henon maps - 2

Significant $I_{X}(\tau), I_{Y}(\tau)$,

Example: Two dependent Henon maps - 2

Significant $I_{X}(\tau), I_{Y}(\tau)$,
Significant $I_{X Y}(\tau)$ for $\tau<0, \tau \geq 0, X_{t}$ is "correlated" to $Y_{t+|\tau|}$ and $Y_{t-|\tau|}$

Example: Two dependent Henon maps - 2

Significant $I_{X}(\tau), I_{Y}(\tau)$,
Significant $I_{X Y}(\tau)$ for $\tau<0, \tau \geq 0, X_{t}$ is "correlated" to $Y_{t+|\tau|}$ and $Y_{t-|\tau|}$ Delayed mutual information of the prewhitened time series

Example: Two dependent Henon maps - 2

Significant $I_{X}(\tau), I_{Y}(\tau)$,
Significant $I_{X Y}(\tau)$ for $\tau<0, \tau \geq 0, X_{t}$ is "correlated" to $Y_{t+|\tau|}$ and $Y_{t-|\tau|}$

Delayed mutual information of the prewhitened time series

Example: Two dependent Henon maps - 2

Significant $I_{X}(\tau), I_{Y}(\tau)$,
Significant $I_{X Y}(\tau)$ for $\tau<0, \tau \geq 0, X_{t}$ is "correlated" to $Y_{t+|\tau|}$ and $Y_{t-|\tau|}$

Delayed mutual information of the prewhitened time series

Significant $I_{X}(\tau), I_{Y}(\tau)$,

Example: Two dependent Henon maps - 2

Significant $I_{X}(\tau), I_{Y}(\tau)$,
Significant $I_{X Y}(\tau)$ for $\tau<0, \tau \geq 0, X_{t}$ is "correlated" to $Y_{t+|\tau|}$ and $Y_{t-|\tau|}$
Delayed mutual information of the prewhitened time series

Significant $I_{X}(\tau), I_{Y}(\tau)$,
Small $I_{X Y}(\tau)$ for $\tau \geq 0$, is it significant?

Example: Two dependent Henon maps - 2, large n

The same but for $n=4000$

Significant $I_{X}(\tau), I_{Y}(\tau)$, Significant $I_{X Y}(\tau)$ for $\tau<0, \tau \geq 0, X_{t}$ is "correlated" to $Y_{t+|\tau|}$ and $Y_{t-|\tau|}$

Significant $I_{X}(\tau), I_{Y}(\tau)$,

Example: Two dependent Henon maps - 2, large n

The same but for $n=4000$

Significant $I_{X}(\tau), I_{Y}(\tau)$, Significant $I_{X Y}(\tau)$ for $\tau<0, \tau \geq 0, X_{t}$ is "correlated" to $Y_{t+|\tau|}$ and $Y_{t-|\tau|}$

Significant $I_{X}(\tau), I_{Y}(\tau)$, Small $I_{X Y}(\tau)$ for $\tau \geq 0$

Example: Two dependent Henon maps - 2, large n

The same but for $n=4000$

Significant $I_{X}(\tau), I_{Y}(\tau)$, Significant $I_{X Y}(\tau)$ for $\tau<0, \tau \geq 0, X_{t}$ is "correlated" to $Y_{t+|\tau|}$ and $Y_{t-|\tau|}$

Significant $I_{X}(\tau), I_{Y}(\tau)$,
Small $I_{X Y}(\tau)$ for $\tau \geq 0 \ldots$ but also for $\tau<0$

Example: VAR model, $K=3$

$$
\left.\begin{array}{c}
{\left[\begin{array}{l}
X_{1, t} \\
X_{2, t} \\
X_{3, t}
\end{array}\right]=}
\end{array} \begin{array}{ccc}
0.95 & -0.5 & -0.3 \\
0 & 0.85 & 0.3 \\
0 & 0 & 0.9
\end{array}\right]\left[\begin{array}{l}
X_{1, t-1} \\
X_{2, t-1} \\
X_{3, t-1}
\end{array}\right]+\cdots+\left[\begin{array}{l}
\epsilon_{1, t} \\
\epsilon_{2, t} \\
\epsilon_{3, t}
\end{array}\right], ~\left[X_{1, t}, X_{2, t}, X_{3, t}\right]^{\prime} \quad \mathbf{X}_{t}=A_{1} \mathbf{X}_{t-1}+\epsilon_{t},
$$

Example: VAR model, $K=3$

$$
\begin{aligned}
{\left[\begin{array}{l}
X_{1, t} \\
X_{2, t} \\
X_{3, t}
\end{array}\right]=} & {\left[\begin{array}{ccc}
0.95 & -0.5 & -0.3 \\
0 & 0.85 & 0.3 \\
0 & 0 & 0.9
\end{array}\right]\left[\begin{array}{l}
X_{1, t-1} \\
X_{2, t-1} \\
X_{3, t-1}
\end{array}\right]+\cdots+\left[\begin{array}{l}
\epsilon_{1, t} \\
\epsilon_{2, t} \\
\epsilon_{3, t}
\end{array}\right] } \\
& \mathbf{X}_{t}=\left[X_{1, t}, X_{2, t}, X_{3, t}\right]^{\prime} \quad \mathbf{X}_{t}=A_{1} \mathbf{X}_{t-1}+\epsilon_{t}
\end{aligned}
$$

Example: VAR model, $K=3$

$$
\begin{aligned}
{\left[\begin{array}{l}
X_{1, t} \\
X_{2, t} \\
X_{3, t}
\end{array}\right]=} & {\left[\begin{array}{ccc}
0.95 & -0.5 & -0.3 \\
0 & 0.85 & 0.3 \\
0 & 0 & 0.9
\end{array}\right]\left[\begin{array}{l}
X_{1, t-1} \\
X_{2, t-1} \\
X_{3, t-1}
\end{array}\right]+\cdots+\left[\begin{array}{l}
\epsilon_{1, t} \\
\epsilon_{2, t} \\
\epsilon_{3, t}
\end{array}\right] } \\
& \mathbf{X}_{t}=\left[X_{1, t}, X_{2, t}, X_{3, t}\right]^{\prime} \quad \mathbf{X}_{t}=A_{1} \mathbf{X}_{t-1}+\epsilon_{t}
\end{aligned}
$$

Example: VAR model, $K=3$

$$
\begin{aligned}
{\left[\begin{array}{l}
X_{1, t} \\
X_{2, t} \\
X_{3, t}
\end{array}\right]=} & {\left[\begin{array}{ccc}
0.95 & -0.5 & -0.3 \\
0 & 0.85 & 0.3 \\
0 & 0 & 0.9
\end{array}\right]\left[\begin{array}{l}
X_{1, t-1} \\
X_{2, t-1} \\
X_{3, t-1}
\end{array}\right]+\cdots+\left[\begin{array}{l}
\epsilon_{1, t} \\
\epsilon_{2, t} \\
\epsilon_{3, t}
\end{array}\right] } \\
& \mathbf{X}_{t}=\left[X_{1, t}, X_{2, t}, X_{3, t}\right]^{\prime} \quad \mathbf{X}_{t}=A_{1} \mathbf{X}_{t-1}+\epsilon_{t}
\end{aligned}
$$

Example: VAR model, $K=3$

$$
\begin{aligned}
{\left[\begin{array}{l}
X_{1, t} \\
X_{2, t} \\
X_{3, t}
\end{array}\right]=} & {\left[\begin{array}{ccc}
0.95 & -0.5 & -0.3 \\
0 & 0.85 & 0.3 \\
0 & 0 & 0.9
\end{array}\right]\left[\begin{array}{l}
X_{1, t-1} \\
X_{2, t-1} \\
X_{3, t-1}
\end{array}\right]+\cdots+\left[\begin{array}{l}
\epsilon_{1, t} \\
\epsilon_{2, t} \\
\epsilon_{3, t}
\end{array}\right] } \\
& \mathbf{X}_{t}=\left[X_{1, t}, X_{2, t}, X_{3, t}\right]^{\prime} \quad \mathbf{X}_{t}=A_{1} \mathbf{X}_{t-1}+\epsilon_{t}
\end{aligned}
$$

Example: VAR model, $K=3$

$$
\begin{aligned}
{\left[\begin{array}{l}
X_{1, t} \\
X_{2, t} \\
X_{3, t}
\end{array}\right]=} & {\left[\begin{array}{ccc}
0.95 & -0.5 & -0.3 \\
0 & 0.85 & 0.3 \\
0 & 0 & 0.9
\end{array}\right]\left[\begin{array}{l}
X_{1, t-1} \\
X_{2, t-1} \\
X_{3, t-1}
\end{array}\right]+\cdots+\left[\begin{array}{l}
\epsilon_{1, t} \\
\epsilon_{2, t} \\
\epsilon_{3, t}
\end{array}\right] } \\
& \mathbf{X}_{t}=\left[X_{1, t}, X_{2, t}, X_{3, t}\right]^{\prime} \quad \mathbf{X}_{t}=A_{1} \mathbf{X}_{t-1}+\epsilon_{t}
\end{aligned}
$$

Example: VAR model, $K=3$

$$
\begin{aligned}
{\left[\begin{array}{l}
X_{1, t} \\
X_{2, t} \\
X_{3, t}
\end{array}\right]=} & {\left[\begin{array}{ccc}
0.95 & -0.5 & -0.3 \\
0 & 0.85 & 0.3 \\
0 & 0 & 0.9
\end{array}\right]\left[\begin{array}{l}
X_{1, t-1} \\
X_{2, t-1} \\
X_{3, t-1}
\end{array}\right]+\cdots+\left[\begin{array}{l}
\epsilon_{1, t} \\
\epsilon_{2, t} \\
\epsilon_{3, t}
\end{array}\right] } \\
& \mathbf{X}_{t}=\left[X_{1, t}, X_{2, t}, X_{3, t}\right]^{\prime} \quad \mathbf{X}_{t}=A_{1} \mathbf{X}_{t-1}+\epsilon_{t}
\end{aligned}
$$

Similarity measure for time series network

N variables (nodes) $X_{1}, X_{2}, \ldots, X_{N}$

Similarity measure for time series network

N variables (nodes) $X_{1}, X_{2}, \ldots, X_{N}$ and N time series $\left\{x_{1, t}, x_{2, t}, \ldots, x_{N, t}\right\}_{t=1}^{n}$

Similarity measure for time series network

N variables (nodes) $X_{1}, X_{2}, \ldots, X_{N}$ and N time series $\left\{x_{1, t}, x_{2, t}, \ldots, x_{N, t}\right\}_{t=1}^{n}$
Candidate similarity measures $\operatorname{sim}(i, j)$ for any observed X_{i}, X_{j} (without or after prewhitening):

Similarity measure for time series network

N variables (nodes) $X_{1}, X_{2}, \ldots, X_{N}$ and N time series $\left\{x_{1, t}, x_{2, t}, \ldots, x_{N, t}\right\}_{t=1}^{n}$
Candidate similarity measures $\operatorname{sim}(i, j)$ for any observed X_{i}, X_{j} (without or after prewhitening):
(1) delayed cross correlation $r X_{i} X_{j}(\tau)$

Similarity measure for time series network

N variables (nodes) $X_{1}, X_{2}, \ldots, X_{N}$ and N time series $\left\{x_{1, t}, x_{2, t}, \ldots, x_{N, t}\right\}_{t=1}^{n}$
Candidate similarity measures $\operatorname{sim}(i, j)$ for any observed X_{i}, X_{j} (without or after prewhitening):
(1) delayed cross correlation $r_{X_{i}} x_{j}(\tau)$
(2) delayed cross mutual information $I_{X_{i} X_{j}}(\tau)$

Similarity measure for time series network

N variables (nodes) $X_{1}, X_{2}, \ldots, X_{N}$ and N time series $\left\{x_{1, t}, x_{2, t}, \ldots, x_{N, t}\right\}_{t=1}^{n}$
Candidate similarity measures $\operatorname{sim}(i, j)$ for any observed X_{i}, X_{j} (without or after prewhitening):
(1) delayed cross correlation $r_{X_{i}} X_{j}(\tau)$
(2) delayed cross mutual information $I_{X_{i} X_{j}}(\tau)$

What τ to choose?

Similarity measure for time series network

N variables (nodes) $X_{1}, X_{2}, \ldots, X_{N}$ and N time series $\left\{x_{1, t}, x_{2, t}, \ldots, x_{N, t}\right\}_{t=1}^{n}$
Candidate similarity measures $\operatorname{sim}(i, j)$ for any observed X_{i}, X_{j} (without or after prewhitening):
(1) delayed cross correlation $r x_{i} x_{j}(\tau)$
(2) delayed cross mutual information $I_{x_{i} X_{j}}(\tau)$

What τ to choose?
(1) $\tau=0$ correlation of $X_{i, t}$ and $X_{j, t}$

Similarity measure for time series network

N variables (nodes) $X_{1}, X_{2}, \ldots, X_{N}$ and N time series $\left\{x_{1, t}, x_{2, t}, \ldots, x_{N, t}\right\}_{t=1}^{n}$
Candidate similarity measures $\operatorname{sim}(i, j)$ for any observed X_{i}, X_{j} (without or after prewhitening):
(1) delayed cross correlation $r x_{i} x_{j}(\tau)$
(2) delayed cross mutual information $I_{x_{i} x_{j}}(\tau)$

What τ to choose?
(1) $\tau=0$ correlation of $X_{i, t}$ and $X_{j, t}$
(2) $\tau>0$ correlation of $X_{i, t}$ and $X_{j, t+\tau}, X_{i}$ influences the evolution of X_{j}

Similarity measure for time series network

N variables (nodes) $X_{1}, X_{2}, \ldots, X_{N}$ and N time series $\left\{x_{1, t}, x_{2, t}, \ldots, x_{N, t}\right\}_{t=1}^{n}$
Candidate similarity measures $\operatorname{sim}(i, j)$ for any observed X_{i}, X_{j} (without or after prewhitening):
(1) delayed cross correlation $r x_{i} x_{j}(\tau)$
(2) delayed cross mutual information $I_{x_{i} X_{j}}(\tau)$

What τ to choose?
(1) $\tau=0$ correlation of $X_{i, t}$ and $X_{j, t}$
(2) $\tau>0$ correlation of $X_{i, t}$ and $X_{j, t+\tau}, X_{i}$ influences the evolution of X_{j}
(0) $\tau<0$ correlation of $X_{i, t}$ and $X_{j, t-|\tau|}, X_{j}$ influences the evolution of X_{i}

Similarity measure for time series network

N variables (nodes) $X_{1}, X_{2}, \ldots, X_{N}$ and N time series $\left\{x_{1, t}, x_{2, t}, \ldots, x_{N, t}\right\}_{t=1}^{n}$
Candidate similarity measures $\operatorname{sim}(i, j)$ for any observed X_{i}, X_{j} (without or after prewhitening):
(1) delayed cross correlation $r x_{i} x_{j}(\tau)$
(2) delayed cross mutual information $I_{x_{i} X_{j}}(\tau)$

What τ to choose?
(1) $\tau=0$ correlation of $X_{i, t}$ and $X_{j, t}$
(2) $\tau>0$ correlation of $X_{i, t}$ and $X_{j, t+\tau}, X_{i}$ influences the evolution of X_{j}
(0) $\tau<0$ correlation of $X_{i, t}$ and $X_{j, t-|\tau|}, X_{j}$ influences the evolution of X_{i} X_{i} influences the evolution of $X_{j} \Longrightarrow X_{i}$ (Granger) causes X_{j}

Similarity measure for time series network

N variables (nodes) $X_{1}, X_{2}, \ldots, X_{N}$ and N time series $\left\{x_{1, t}, x_{2, t}, \ldots, x_{N, t}\right\}_{t=1}^{n}$
Candidate similarity measures $\operatorname{sim}(i, j)$ for any observed X_{i}, X_{j} (without or after prewhitening):
(1) delayed cross correlation $r x_{i} x_{j}(\tau)$
(2) delayed cross mutual information $I_{x_{i} X_{j}}(\tau)$

What τ to choose?
(1) $\tau=0$ correlation of $X_{i, t}$ and $X_{j, t}$
(2) $\tau>0$ correlation of $X_{i, t}$ and $X_{j, t+\tau}, X_{i}$ influences the evolution of X_{j}
(0) $\tau<0$ correlation of $X_{i, t}$ and $X_{j, t-|\tau|}, X_{j}$ influences the evolution of X_{i}
X_{i} influences the evolution of $X_{j} \Longrightarrow X_{i}$ (Granger) causes X_{j}
There are other measures more appropriate to measure Granger causality.

Example: VAR model, $K=3$

$$
\left.\begin{array}{c}
{\left[\begin{array}{l}
X_{1, t} \\
X_{2, t} \\
X_{3, t}
\end{array}\right]=}
\end{array} \begin{array}{ccc}
0.95 & -0.5 & -0.3 \\
0 & 0.85 & 0.3 \\
0 & 0 & 0.9
\end{array}\right]\left[\begin{array}{l}
X_{1, t-1} \\
X_{2, t-1} \\
X_{3, t-1}
\end{array}\right]+\cdots+\left[\begin{array}{l}
\epsilon_{1, t} \\
\epsilon_{2, t} \\
\epsilon_{3, t}
\end{array}\right], ~\left[X_{1, t}, X_{2, t}, X_{3, t}\right]^{\prime} \quad \mathbf{X}_{t}=A_{1} \mathbf{X}_{t-1}+\epsilon_{t},
$$

Example: VAR model, $K=3$

$$
\begin{aligned}
{\left[\begin{array}{l}
X_{1, t} \\
X_{2, t} \\
X_{3, t}
\end{array}\right]=} & {\left[\begin{array}{ccc}
0.95 & -0.5 & -0.3 \\
0 & 0.85 & 0.3 \\
0 & 0 & 0.9
\end{array}\right]\left[\begin{array}{l}
X_{1, t-1} \\
X_{2, t-1} \\
X_{3, t-1}
\end{array}\right]+\cdots+\left[\begin{array}{l}
\epsilon_{1, t} \\
\epsilon_{2, t} \\
\epsilon_{3, t}
\end{array}\right] } \\
& \mathbf{X}_{t}=\left[X_{1, t}, X_{2, t}, X_{3, t}\right]^{\prime} \quad \mathbf{X}_{t}=A_{1} \mathbf{X}_{t-1}+\epsilon_{t}
\end{aligned}
$$

Cross correlation matrix $R(\tau)$

Example: VAR model, $K=3$

$$
\begin{aligned}
{\left[\begin{array}{l}
X_{1, t} \\
X_{2, t} \\
X_{3, t}
\end{array}\right]=} & {\left[\begin{array}{ccc}
0.95 & -0.5 & -0.3 \\
0 & 0.85 & 0.3 \\
0 & 0 & 0.9
\end{array}\right]\left[\begin{array}{l}
X_{1, t-1} \\
X_{2, t-1} \\
X_{3, t-1}
\end{array}\right]+\cdots+\left[\begin{array}{l}
\epsilon_{1, t} \\
\epsilon_{2, t} \\
\epsilon_{3, t}
\end{array}\right] } \\
& \mathbf{X}_{t}=\left[X_{1, t}, X_{2, t}, X_{3, t}\right]^{\prime} \quad \mathbf{X}_{t}=A_{1} \mathbf{X}_{t-1}+\epsilon_{t}
\end{aligned}
$$

Cross correlation matrix $R(\tau)$
$R(0)=\left[\begin{array}{ccc} & -0.00 & 0.01 \\ -0.00 & & 0.11 \\ 0.01 & 0.11 & \end{array}\right]$

Example: VAR model, $K=3$

$$
\begin{aligned}
{\left[\begin{array}{l}
X_{1, t} \\
X_{2, t} \\
X_{3, t}
\end{array}\right]=} & {\left[\begin{array}{ccc}
0.95 & -0.5 & -0.3 \\
0 & 0.85 & 0.3 \\
0 & 0 & 0.9
\end{array}\right]\left[\begin{array}{l}
X_{1, t-1} \\
X_{2, t-1} \\
X_{3, t-1}
\end{array}\right]+\cdots+\left[\begin{array}{l}
\epsilon_{1, t} \\
\epsilon_{2, t} \\
\epsilon_{3, t}
\end{array}\right] } \\
& \mathbf{X}_{t}=\left[X_{1, t}, X_{2, t}, X_{3, t}\right]^{\prime} \quad \mathbf{X}_{t}=A_{1} \mathbf{X}_{t-1}+\epsilon_{t}
\end{aligned}
$$

Cross correlation matrix $R(\tau)$

$$
\begin{aligned}
& R(0)=\left[\begin{array}{ccc}
& -0.00 & 0.01 \\
-0.00 & & 0.11 \\
0.01 & 0.11 &
\end{array}\right] \\
& R(1)=\left[\begin{array}{ccc}
-0.05 & -0.05 \\
-0.39 & & 0.01 \\
-0.40 & 0.20 &
\end{array}\right]
\end{aligned}
$$

Example: VAR model, $K=3$

$$
\begin{aligned}
{\left[\begin{array}{l}
X_{1, t} \\
X_{2, t} \\
X_{3, t}
\end{array}\right]=} & {\left[\begin{array}{ccc}
0.95 & -0.5 & -0.3 \\
0 & 0.85 & 0.3 \\
0 & 0 & 0.9
\end{array}\right]\left[\begin{array}{l}
X_{1, t-1} \\
X_{2, t-1} \\
X_{3, t-1}
\end{array}\right]+\cdots+\left[\begin{array}{l}
\epsilon_{1, t} \\
\epsilon_{2, t} \\
\epsilon_{3, t}
\end{array}\right] } \\
& \mathbf{x}_{t}=\left[X_{1, t}, X_{2, t}, X_{3, t}\right]^{\prime} \quad \mathbf{x}_{t}=A_{1} \mathbf{x}_{t-1}+\epsilon_{t}
\end{aligned}
$$

Cross correlation matrix $R(\tau)$

$$
\begin{aligned}
& R(0)=\left[\begin{array}{ccc}
-0.00 & -0.00 & 0.01 \\
0.01 & 0.11 & 0.11
\end{array}\right] \\
& R(1)=\left[\begin{array}{lll}
-0.39 & 0.05 & -0.05 \\
-0.30 \\
-0.40 & 0.20 & 0 .
\end{array}\right] \\
& R(2)=\left[\begin{array}{lll}
-0.09 & 0.04 \\
-0.20 & -0.03 \\
-0.12 & -0.02 &
\end{array}\right]
\end{aligned}
$$

Example: VAR model, $K=3$

$$
\begin{aligned}
{\left[\begin{array}{l}
X_{1, t} \\
X_{2, t} \\
X_{3, t}
\end{array}\right]=} & {\left[\begin{array}{ccc}
0.95 & -0.5 & -0.3 \\
0 & 0.85 & 0.3 \\
0 & 0 & 0.9
\end{array}\right]\left[\begin{array}{l}
X_{1, t-1} \\
X_{2, t-1} \\
X_{3, t-1}
\end{array}\right]+\cdots+\left[\begin{array}{l}
\epsilon_{1, t} \\
\epsilon_{2, t} \\
\epsilon_{3, t}
\end{array}\right] } \\
& \mathbf{X}_{t}=\left[X_{1, t}, X_{2, t}, X_{3, t}\right]^{\prime} \quad \mathbf{X}_{t}=A_{1} \mathbf{X}_{t-1}+\epsilon_{t}
\end{aligned}
$$

Cross correlation matrix $R(\tau)$

$$
\begin{aligned}
& R(0)=\left[\begin{array}{ccc}
-0.00 & -0.00 & 0.01 \\
0.01 & 0.11 & 0.11
\end{array}\right] \\
& R(1)=\left[\begin{array}{lll}
-0.39 & 0.05 & -0.05 \\
-0.01 \\
-0.40 & 0.20 & 0
\end{array}\right] \\
& R(2)=\left[\begin{array}{lll}
-0.20 & -0.09 & 0.04 \\
-0.12 & -0.02 & -0.03
\end{array}\right]
\end{aligned}
$$

Adjacency matrix threshold $\pm 2 / \sqrt{n}= \pm 0.11$

Example: VAR model, $K=3$

$$
\begin{aligned}
{\left[\begin{array}{l}
X_{1, t} \\
X_{2, t} \\
X_{3, t}
\end{array}\right]=} & {\left[\begin{array}{ccc}
0.95 & -0.5 & -0.3 \\
0 & 0.85 & 0.3 \\
0 & 0 & 0.9
\end{array}\right]\left[\begin{array}{l}
X_{1, t-1} \\
X_{2, t-1} \\
X_{3, t-1}
\end{array}\right]+\cdots+\left[\begin{array}{l}
\epsilon_{1, t} \\
\epsilon_{2, t} \\
\epsilon_{3, t}
\end{array}\right] } \\
& \mathbf{x}_{t}=\left[X_{1, t}, X_{2, t}, X_{3, t}\right]^{\prime}
\end{aligned} \quad \mathbf{X}_{t}=A_{1} \mathbf{x}_{t-1}+\epsilon_{t}-2 .
$$

Cross correlation matrix $R(\tau)$

$$
\begin{aligned}
& R(0)=\left[\begin{array}{ccc}
-0.00 & -0.00 & 0.01 \\
0.01 & 0.11 & 0.11
\end{array}\right] \\
& R(1)=\left[\begin{array}{lll}
-0.39 & 0.05 & -0.05 \\
-0.40 & 0.20 & 0.01
\end{array}\right] \\
& R(2)=\left[\begin{array}{lll}
-0.20 & -0.09 & 0.04 \\
-0.12 & -0.02 & -0.03
\end{array}\right]
\end{aligned}
$$

Adjacency matrix threshold $\pm 2 / \sqrt{n}= \pm 0.11$
$A(0)=\left[\begin{array}{lll} & 0 & 0 \\ 0 & & 0 \\ 0 & 0 & \end{array}\right]$

Example: VAR model, $K=3$

$$
\begin{aligned}
{\left[\begin{array}{l}
X_{1, t} \\
X_{2, t} \\
X_{3, t}
\end{array}\right]=} & {\left[\begin{array}{ccc}
0.95 & -0.5 & -0.3 \\
0 & 0.85 & 0.3 \\
0 & 0 & 0.9
\end{array}\right]\left[\begin{array}{l}
X_{1, t-1} \\
X_{2, t-1} \\
X_{3, t-1}
\end{array}\right]+\cdots+\left[\begin{array}{l}
\epsilon_{1, t} \\
\epsilon_{2, t} \\
\epsilon_{3, t}
\end{array}\right] } \\
& \mathbf{X}_{t}=\left[X_{1, t}, X_{2, t}, X_{3, t}\right]^{\prime} \quad \mathbf{X}_{t}=A_{1} \mathbf{X}_{t-1}+\epsilon_{t}
\end{aligned}
$$

Cross correlation matrix $R(\tau)$

$$
\begin{aligned}
& R(0)=\left[\begin{array}{ccc}
-0.00 & -0.00 & 0.01 \\
0.01 & 0.11 & 0.11
\end{array}\right] \\
& R(1)=\left[\begin{array}{lll}
-0.39 & 0.05 & -0.05 \\
-0.01 \\
-0.40 & 0.20 & 0
\end{array}\right] \\
& R(2)=\left[\begin{array}{lll}
-0.09 & 0.04 \\
-0.20 & -0.03 \\
-0.12 & -0.02 &
\end{array}\right]
\end{aligned}
$$

Adjacency matrix threshold $\pm 2 / \sqrt{n}= \pm 0.11$
$A(0)=\left[\begin{array}{lll} & 0 & 0 \\ 0 & & 0 \\ 0 & 0 & \end{array}\right]$
$A(1)=\left[\begin{array}{lll} & 0 & 0 \\ 1 & & 0 \\ 1 & 1 & \end{array}\right]$

Example: VAR model, $K=3$

$$
\begin{aligned}
{\left[\begin{array}{l}
X_{1, t} \\
X_{2, t} \\
X_{3, t}
\end{array}\right]=} & {\left[\begin{array}{ccc}
0.95 & -0.5 & -0.3 \\
0 & 0.85 & 0.3 \\
0 & 0 & 0.9
\end{array}\right]\left[\begin{array}{l}
X_{1, t-1} \\
X_{2, t-1} \\
X_{3, t-1}
\end{array}\right]+\cdots+\left[\begin{array}{l}
\epsilon_{1, t} \\
\epsilon_{2, t} \\
\epsilon_{3, t}
\end{array}\right] } \\
& \mathbf{X}_{t}=\left[X_{1, t}, X_{2, t}, X_{3, t}\right]^{\prime} \quad \mathbf{X}_{t}=A_{1} \mathbf{X}_{t-1}+\epsilon_{t}
\end{aligned}
$$

Cross correlation matrix $R(\tau)$

$$
\begin{aligned}
& R(0)=\left[\begin{array}{ccc}
-0.00 & -0.00 & 0.01 \\
0.01 & 0.11 & 0.11
\end{array}\right] \\
& R(1)=\left[\begin{array}{lll}
-0.39 & 0.05 & -0.05 \\
-0.01 \\
-0.40 & 0.20 & 0
\end{array}\right] \\
& R(2)=\left[\begin{array}{lll}
-0.20 & -0.09 & 0.04 \\
-0.12 & -0.02 & -0.03
\end{array}\right]
\end{aligned}
$$

Adjacency matrix threshold $\pm 2 / \sqrt{n}= \pm 0.11$

$$
\begin{aligned}
& A(0)=\left[\begin{array}{lll}
& 0 & 0 \\
0 & & 0 \\
0 & 0 &
\end{array}\right] \\
& A(1)=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right] \\
& A(2)=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Example: VAR model, $K=5$

$$
\begin{gathered}
\mathbf{X}_{t}=\left[X_{1, t}, X_{2, t}, X_{3, t}, X_{4, t}, X_{5, t}\right]^{\prime}
\end{gathered} \mathbf{X}_{t}=A_{1} \mathbf{X}_{t-1}+\epsilon_{t},\left[\begin{array}{ccccc}
-0.95 & 0.2 & -0.3 & 0.4 & -0.8 \\
0 & -0.2 & -0.3 & -0.4 & 0.9 \\
0 & 0 & -0.1 & -0.1 & 0.8 \\
0 & 0 & 0 & -0.8 & -0.9 \\
0 & 0 & 0 & 0 & 0.8
\end{array}\right] .
$$

Example: VAR model, $K=5$

$$
\begin{gathered}
\mathbf{X}_{t}=\left[X_{1, t}, X_{2, t}, X_{3, t}, X_{4, t}, X_{5, t}\right]^{\prime} \quad \mathbf{X}_{t}=A_{1} \mathbf{X}_{t-1}+\epsilon_{t} \\
A_{1}=\left[\begin{array}{ccccc}
-0.95 & 0.2 & -0.3 & 0.4 & -0.8 \\
0 & -0.2 & -0.3 & -0.4 & 0.9 \\
0 & 0 & -0.1 & -0.1 & 0.8 \\
0 & 0 & 0 & -0.8 & -0.9 \\
0 & 0 & 0 & 0 & 0.8
\end{array}\right]
\end{gathered}
$$

$R(0)=$
$\left[\begin{array}{ccccc} & -0.62 & -0.47 & 0.40 & 0.07 \\ -0.62 & & 0.58 & -0.36 & 0.05 \\ -0.47 & 0.58 & & -0.42 & 0.04 \\ 0.40 & -0.36 & -0.42 & & -0.04 \\ 0.07 & 0.05 & 0.04 & -0.04 & \end{array}\right]$

Example: VAR model, $K=5$

$$
\begin{gathered}
\mathbf{X}_{t}=\left[X_{1, t}, X_{2, t}, X_{3, t}, X_{4, t}, X_{5, t}\right]^{\prime}
\end{gathered} \mathbf{X}_{t}=A_{1} \mathbf{X}_{t-1}+\epsilon_{t},\left[\begin{array}{ccccc}
-0.95 & 0.2 & -0.3 & 0.4 & -0.8 \\
A_{1}= & -0.2 & -0.3 & -0.4 & 0.9 \\
0 & 0 & -0.1 & -0.1 & 0.8 \\
0 & 0 & 0 & -0.8 & -0.9 \\
0 & 0 & 0 & 0 & 0.8
\end{array}\right] .
$$

$R(0)=$
$\left[\begin{array}{ccccc} & -0.62 & -0.47 & 0.40 & 0.07 \\ -0.62 & & 0.58 & -0.36 & 0.05 \\ -0.47 & 0.58 & & -0.42 & 0.04 \\ 0.40 & -0.36 & -0.42 & & -0.04 \\ 0.07 & 0.05 & 0.04 & -0.04 & \end{array}\right]$
$R(1)=$
$\left[\begin{array}{ccccc} & -0.01 & 0.03 & -0.04 & 0.02 \\ 0.04 & & -0.12 & 0.09 & 0.02 \\ 0.29 & -0.12 & & 0.20 & 0.02 \\ -0.53 & 0.48 & 0.26 & & 0.06 \\ 0.49 & -0.53 & -0.62 & 0.65 & \end{array}\right]$

Example: VAR model, $K=5$

$$
\begin{gathered}
\mathbf{X}_{t}=\left[X_{1, t}, X_{2, t}, X_{3, t}, X_{4, t}, X_{5, t}\right]^{\prime} \quad \mathbf{X}_{t}=A_{1} \mathbf{X}_{t-1}+\epsilon_{t} \\
A_{1}=\left[\begin{array}{ccccc}
-0.95 & 0.2 & -0.3 & 0.4 & -0.8 \\
0 & -0.2 & -0.3 & -0.4 & 0.9 \\
0 & 0 & -0.1 & -0.1 & 0.8 \\
0 & 0 & 0 & -0.8 & -0.9 \\
0 & 0 & 0 & 0 & 0.8
\end{array}\right]
\end{gathered}
$$

$R(0)=$
$\left[\begin{array}{ccccc} & -0.62 & -0.47 & 0.40 & 0.07 \\ -0.62 & & 0.58 & -0.36 & 0.05 \\ -0.47 & 0.58 & & -0.42 & 0.04 \\ 0.40 & -0.36 & -0.42 & & -0.04 \\ 0.07 & 0.05 & 0.04 & -0.04 & \end{array}\right] \quad A(0)=\left[\begin{array}{ccccc} & 1 & 1 & 1 & 0 \\ 1 & & 1 & 1 & 0 \\ 1 & 1 & & 1 & 0 \\ 1 & 1 & 1 & & 0 \\ 0 & 0 & 0 & 0 & \end{array}\right]$
$R(1)=$
$\left[\begin{array}{ccccc} & -0.01 & 0.03 & -0.04 & 0.02 \\ 0.04 & & -0.12 & 0.09 & 0.02 \\ 0.29 & -0.12 & & 0.20 & 0.02 \\ -0.53 & 0.48 & 0.26 & & 0.06 \\ 0.49 & -0.53 & -0.62 & 0.65 & \end{array}\right]$

Example: VAR model, $K=5$

$$
\begin{gathered}
\mathbf{X}_{t}=\left[X_{1, t}, X_{2, t}, X_{3, t}, X_{4, t}, X_{5, t}\right]^{\prime} \quad \mathbf{X}_{t}=A_{1} \mathbf{X}_{t-1}+\epsilon_{t} \\
A_{1}=\left[\begin{array}{ccccc}
-0.95 & 0.2 & -0.3 & 0.4 & -0.8 \\
0 & -0.2 & -0.3 & -0.4 & 0.9 \\
0 & 0 & -0.1 & -0.1 & 0.8 \\
0 & 0 & 0 & -0.8 & -0.9 \\
0 & 0 & 0 & 0 & 0.8
\end{array}\right]
\end{gathered}
$$

$R(0)=$

$\left[\begin{array}{ccccc} & -0.62 & -0.47 & 0.40 & 0.07 \\ -0.62 & & 0.58 & -0.36 & 0.05 \\ -0.47 & 0.58 & & -0.42 & 0.04 \\ 0.40 & -0.36 & -0.42 & & -0.04 \\ 0.07 & 0.05 & 0.04 & -0.04 & \end{array}\right]$

$$
R(1)=
$$

$$
\left[\begin{array}{ccccc}
& -0.01 & 0.03 & -0.04 & 0.02 \\
0.04 & & -0.12 & 0.09 & 0.02 \\
0.29 & -0.12 & & 0.20 & 0.02 \\
-0.53 & 0.48 & 0.26 & & 0.06 \\
0.49 & -0.53 & -0.62 & 0.65 &
\end{array}\right]
$$

$$
\begin{aligned}
& A(0)=\left[\begin{array}{lllll}
& 1 & 1 & 1 & 0 \\
1 & & 1 & 1 & 0 \\
1 & 1 & & 1 & 0 \\
1 & 1 & 1 & & 0 \\
0 & 0 & 0 & 0 &
\end{array}\right] \\
& A(1)=\left[\begin{array}{lllll}
& 0 & 0 & 0 & 0 \\
0 & & 1 & 0 & 0 \\
1 & 1 & & 1 & 0 \\
1 & 1 & 1 & & 0 \\
1 & 1 & 1 & 1 &
\end{array}\right]
\end{aligned}
$$

Example: World market indices see [3]: Chp14, [4]

Detect information flow between stock indices

Example: World market indices see [3]: Chp14, [4]

Detect information flow between stock indices

- A linear measure: cross correlation for $\tau=0$ (correlation coefficient)

Example: World market indices see [3]: Chp14, [4]

Detect information flow between stock indices

- A linear measure: cross correlation for $\tau=0$ (correlation coefficient)
- A nonlinear measure: transfer entropy (in essence it is the conditional cross mutual information).

Example: World market indices see [3]: Chp14, [4]

Detect information flow between stock indices

- A linear measure: cross correlation for $\tau=0$ (correlation coefficient)
- A nonlinear measure: transfer entropy (in essence it is the conditional cross mutual information).

Indices correlation coefficient transfer entropy
http://finance. yahoo. com.

Americas	1	MERV	Argentina
	2	BVSP	Brazil
	3	GSPTSE	Canada
	4	MXX	Mexico
	5	GSPC	US
	6	DJA	US
	7	DJI	US
Asia/Pacific	8	AORD	Australia
	9	SSEC	China
	10	HSI	China
	11	BSESN	India
	12	JKSE	Indonesia
	13	KLSE	Malaysia
	14	N225	Japan
	15	STI	Singapore
	16	KS11	Korea
	17	TWII	Taiwan
	18	ATX	Austria
	19	BFX	Belgium
	20	FCE.NX	France
	21	GDAXI	Germany
	22	ABX	Holland
	23	MIBTEL	Italy
	24	SSMI	Switzerland
	25	FTSE	UK

Example: World market indices

Draw the network of "outgoing" transfer entropy and "incoming" transfer entropy.

(a)

Example: World market indices

Draw the network of "outgoing" transfer entropy and "incoming" transfer entropy.

(a)

(b)

Fig. 4: (Color online) Minimum spanning tree for (a) the outgoing transfer entropy and (b) the incoming transfer entropy. The minimum spanning tree is drawn by Pajek

Example: World market indices

Draw the network of "outgoing" transfer entropy and "incoming" transfer entropy.

(a)

(b)

Fig. 4: (Color online) Minimum spanning tree for (a) the outgoing transfer entropy and (b) the incoming transfer entropy. The minimum spanning tree is drawn by Pajek

- GSPC (Standard and Poor 500) is the information source of the system

Example: World market indices

Draw the network of "outgoing" transfer entropy and "incoming" transfer entropy.

(a)

(b)

Fig. 4: (Color online) Minimum spanning tree for (a) the outgoing transfer entropy and (b) the incoming transfer entropy. The minimum spanning tree is drawn by Pajek

- GSPC (Standard and Poor 500) is the information source of the system
- AORD (Australian index) is the information receiver

Literature

[1] Chatfield C (2004) The Analysis of Time Series, An Introduction, Sixth Edition, Chapman \& Hall.
[2] Brockwell PJ and Davis RA (2002) Introduction to Time Series and Forecasting, Second Edition, Springer.
[3] Kantz H and Schreiber T (2003) Nonlinear Time Series Analysis, Second Edition, Cambridge.
[4] Kwon O and Yang J.-S. (2008) Information flow between stock indices, Europhysics Letters, 82: 68003, doi: 10.1209/0295-5075/82/68003

